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Introduction and History 1
1.1 Brief history of AI 1

1.2 Approaches to AI? 3

1.3 AI areas 4

A precise definition of artificial intelligence (AI) is not easy and often contro-
versial. This introductory chapter outlines some areas associated with AI in a
historical context and by highlighting some modern approaches in AI. Many
problems in AI can be formulated as search problems, which we review in the
first part of the course. The course then concentrates on machine learning
(ML) and probabilistic reasoning.

1.1 Brief history of AI

1943 McCulloch & Pitts: Boolean circuit model of brain
1950 Turing’s “Computing Machinery and Intelligence”
1952–69 Look, Ma, no hands!
1950s Early AI programs, including Samuel’s checkers program,

Newell & Simon’s Logic Theorist, Gelernter’s Geometry Engine
1956 Dartmouth meeting: “Artificial Intelligence” adopted
1965 Robinson’s complete algorithm for logical reasoning
1966–74 AI discovers computational complexity

Neural network research almost disappears
1969–79 Early development of knowledge-based systems
1980–88 Expert systems industry booms
1988–93 Expert systems industry busts: “AI Winter”
1985–95 Neural networks return to popularity
1988 – Resurgence of probability; general increase in technical depth

“Nouvelle AI”: ALife, GAs, soft computing
1995 – Agents, agents, everywhere . . .

Machine learning comes to age, web intelligence, smart machines
2003 – Human-level AI back on the agenda

The term AI was born in 1956, at a workshop in Dartmouth organized by
John McCarthy. Those gathered agreed to adopt McCarthys name for the
new field: Artificial Intelligence. At that point, there was lots of enthusiasm.
Things seemed to work out really well. Only a few years before, computers were
viewed as large calcula- tors, and now truly intelligent systems seemed within
reach. Early programs did amazing things by simply representing knowledge
about a domain and searching for a solution. For example, Newell & Simon’s
‘Logic Theorist’ proved qualitative mathematical theorems, and even found a
shorter proof for one of the theorems in Russell and Whitehead’s ‘Principia
Mathematica’. In 1958, McCarthy suggested how the same paradigm could
be used for commonsense reasoning: represent knowledge about the everyday
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world as logical axioms, and use that knowledge to figure out how to act.
Amazingly, a general-purpose logical theorem prover was able (for instance) to
generate a plan for driving to the airport. Arguably the first convincing ma-
chine learning program, Arthur Samuel’s Checkers playing program started out
playing poorly, but learned to play better by playing many games against itself.
Growing to play better than Samuel, this program disproved the (still-made)
argument that computers can only do what they are told to do. A particu-
larly good example of how a simple set of rules can produce seemingly complex
behavior was Joseph Weizenbaum’s Eliza program, which simulates a Roge-
rian psychotherapist. Although Eliza’s algorithms are best described as simple
pattern matching, and it was not intended as a serious attempt at machine
intelligence, it still produced appropriate responses to a variety of statements.
Because of programs like Eliza, there was also a hope of building systems in
the near future that would pass the Turing Test for machine intelligence. In
the Turing Test, a human judge sits at a computer terminal, and chats via
instant messenger with one of two entities: either a human or an AI computer
program. The human and computer would each try to convince the human
judge that they are the human. If the judge is unable tell whether she is chat-
ting with a human or the AI program, then the AI program passes the Turing
Test. (Turing considered this a sufficient, but not necessary, condition for intel-
ligence, since a machine could be intelligent without being able to impersonate
a human.) Things seemed very rosy. Herb Simon, in 1957, said:

It is not my aim to surprise or shock you – but the simplest way I
can summarize is to say that there are now in the world machines
that think, that learn and that create. Moreover, their ability to do
these things is going to increase rapidly until – in a visible future –
the range of problems they can handle will be coextensive with the
range to which human mind has been applied.
More precisely: within 10 years a computer would be chess cham-
pion, and an important new mathematical theorem would be proved
by a computer.

Both of these milestones have now been achieved by computers, but each
took closer to 40 years, rather than 10. After the initial enthusiasm, there
was the dawning realization that problems are much harder than one originally
thought, and that simple tricks dont work. For instance, one of Elizas rules was
that if the user utters the word ‘mother’, then respond ‘Tell me more about
your family’. This sometimes works well, but it can also generate some very
unnatural responses. For example, if you say ‘I wanted to adopt a puppy, but
its too young to be separated from its mother’, Eliza may also respond ‘Tell
me more about your family’. Another example was machine translation. Much
time and money were spent following Sputnik’s launch in 1957 on develop-
ing systems to automatically translate Russian documents into English. This
turned out to be a very hard problem, since much specialized knowledge seems
to be required to understand language. A famous example:

The spirit is willing but the flesh is weak.

was translated into Russian and then retranslated back into English, giving:
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The vodka is strong but the meat is rotten.

At that point, people realized two things that made the AI problem much
harder than they had originally thought.

(1) In order to do a good job in any realistic task, simple syntactic manipu-
lation (i.e., simple rules to shuffle words around or do Russian-to-English
dictionary lookups) is not good enough. Instead, we must have enough
knowledge about the world to really understand what’s being said, so as
to reason more deeply about it. For example, in the translation example,
we need to understand that ‘spirit’ refers to the metaphorical or mystical
human spirit, rather than to alcohol.

(2) Computational intractability. The AI goal was defined before the theory
of NP-completeness was developed. At that point, people thought that
to deal with larger problems, we need only larger/faster computers. In
particular, the phenomena of exponential scaling – in which the compu-
tation scales exponentially with the size of the problem – was not yet
understood. Many early AI methods required solving NP-hard problems,
and therefore did not scale well to larger problems.

1.2 Approaches to AI?

How about the state of AI today? As a field, AI is now significantly more
mature, and we have a better understanding of what sort of methods work and
might scale well. There are perhaps two broad approaches to developing AI
methods today: (i) Acting like humans, and (ii) Acting rationally.

1.2.1 Acting like humans

The Turing Test, illustrated in Fig. 1.1, is perhaps the most famous example of
the former: a machine is pronounced intelligent if it is indistinguishable from
a human. Today, very little serious work is actually directed specifically at
passing the Turing test.

AI SYSTEM 

Human

? 

Human
Interregator 

Fig. 1.1 Illustration of Turing’s imita-
tion game.

Alan Turing anticipated many major arguments against AI in the following
50 years and predicted that by 2000, a machine might have a 30% chance of
fooling a lay person for 5 minutes. He also suggested major components of AI:
knowledge, reasoning, language understanding, learning, which are now the
backbone of modern AI.

There is however a small (but growing) community of researchers that hope
to achieve human-level AI by using insights from the humans – specifically,
from the human brain. This line of research is inspired by the thesis that much
of the human brain may be implementing a learning algorithm. Inspired by this
thesis, several research groups are trying to elucidate what the brains learning
algorithm might be, and implement this algorithm (or an approximation to it)
on a computer, so as to perhaps take a baby step towards solving the problem
of building machines that have intelligence comparable to humans.

Understanding how the brain and cognition works (computational neuro-
science: how the brain thinks) is an important area in its own right (and subject
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of CSCI 6508). After some years of clear separations between AI and compu-
tational neuroscience, there is now a renewed convergence with exciting new
ideas.

1.2.2 Acting rationally

Rather than trying to get computers to act like humans, the majority of AI
researchers have instead focused on the second approach, of trying to get com-
puters to act rationally. This class of methods will be the focus of this course.

Rational behavior means hereby doing the right thing. The right thing is
thereby a set of actions that is expected to maximize goal achievement, given
the available information. This does not necessarily involve thinking, but think-
ing should be in the service of rational action.

Today, many AI systems consider rational agents, where an agent is generally
an entity that perceives and acts. In an abstract form, an agent often be
described as a function from percept histories to actions:

[f : P∗ → A]

For any given class of environments and tasks, we seek the agent (or class of
agents) with the best performance. Importantly for practical considerations,
there are typically computational limitations which make perfect rationality
unachievable. Thus, in practice we are mostly interested in designing the best
program for the given se of machine resources.

The paradigm of acting rationally has seen numerous successes in terms of
building very useful AI systems with significant societal and economic impact.
In fact, you probably use AI algorithms dozens of times a day without being
aware of it, such through using web search engines, sending US mail or writing
checks (where software reads zip codes or handwritten checks automatically),
finding driving directions online, receiving Amazon/Netflix/etc. recommen-
dations for books or movies you might like, fraud detection algorithms that
check whether your credit card purchases are legitimate, spam filters, and many
more. At a high level, one can view this type of AI as being composed of a
set of techniques, such as search, machine learning, constraint satisfaction, and
probabilistic models. These techniques are useful for a variety of tasks that
are necessary to building various intelligent systems, such as the problems of
perception (understanding the physical environment using its sensor inputs),
planning, navigation, etc. This is a many-to-many relation: Many very dif-
ferent techniques can be used to perform the same task, and one technique is
useful for a wide variety of tasks, and as a component in other techniques.

1.3 AI areas

• State graphs & search

– Uninformed search

– Heuristic search

• Knowledge representation & expert systems
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– Formal logic (propositional, first-order)

– semantic nets

– case-based reasoning

• Machine learning & probabilistic reasoning

– Artificial Neural Networks & Support Vector Machines

– Bayesian networks

– Hidden Markov models & Kalman filters

• Common concepts & applications

– Intelligent (rational) agent systems

– Planing and decision making

– Natural language processing

– Games

In this course we will start with formulating AI applications as search prob-
lems, and talk about basic search strategies. We will then focus on machine
learning where much recent progress has been made. This will include super-
vised and unsupervised learning, some introduction to probabilistic reasoning,
and some further outlook to recent research in this area.



Part I

Search
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To build the controller for a rational agent (robot), we need to find a way to
describe the problem in a suitable way. In other word, we need to learn how
to translate a real world problem into a description that we can handle with
a computer. Central for this task is the understanding of abstractions and
configuration space.

An intelligent systems can be a robot and have a physical presence, or it can
live within your desktop computer. Today, let’s talk about what it takes to
physically control a robot. What is a robot? Informally, it is a physical system
that interacts with the environment using physical sensors and effectors. Some
examples of robotic sensors include video cameras; sonar (which measures dis-
tances to obstacles by measuring how long it takes sound to bounce off the
obstacle and return to the robot); laser range scanners (which works similarly
to sonar, except it bounces light rather than sound off the obstacles); micro-
phones; odometers (which measure distance traveled); GPS; accelerometers;
and many more. These sensors give the robot information about the state of
the environment around it, as well as information about the robots location
and orientation within that environment. Another important type of sensor
are proprioceptive sensors, which tells the robot about the position or changes
in position of its own joints. For most robots, their effectors can be divided
into two categories based on their function:

• Locomotors, such as wheels or legs, to allow the robot to move itself
around. Wheels are popular since they are easier to control, but there
many other possibilities, such as legs.

• Manipulators, such as a robot arm and hand, which allow the robot to
interact with the world and affect the world around it.

Given a robot, how can we get it to drive from one place to another, without
hitting obstacles? Alternatively, given a robot arm, how can we generate a
smooth motion for it to reach out and, say, pick up an object? At its basic
level, a robot consists of a set of motors, and we have to decide (say) what
sequence of joint angles to command each motor to go to. We would like to
find a sequence of joint angles that will cause the robot to follow some path from
its initial position to some goal position. To develop algorithms to accomplish
this, we will need to introduce the concept of a configuration space.
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2.1 Configuration or state space

First consider a robot in a 2D plane. How would we describe its position?
That depends on whether it can rotate, or just translate without rotating in
the plane. In the latter case, we can describe the robots position with a pair
of real numbers, such as its Cartesian coordinates (x, y). In the former case,
we would need three real-valued parameters (x, y, θ), with θ giving the robots
orientation.

This leads us to the important notion of degrees of freedom (dof): A robot
has k degrees of freedom if its current configuration can be fully described by a
set of k real numbers. Thus, the robot which is allowed to translate and rotate
has three degrees of freedom, while the one which is only allowed to translate
in a plane has two.

How about the state of a helicopter, that can fly around in 3D? We would
need three real numbers to give its position in space, as well as three more
numbers (such as roll, pitch, and yaw) to specify its orientation. Thus, the
helicopter has six degrees of freedom. Note that there are sometimes many
possible choices for the parametrization; for instance, we could use either the
Cartesian coordinates (x, y, z), or latitude, longitude, and height above sea level
to specify the location. The relative merits depend on the application, but any
sensible parametrization should still result in six degrees of freedom.

What about the robot arm shown in Fig. 2.1a? One (naive) parametriza-
tion would be to give the Cartesian coordinates of the lower-left corners of
each of the two parts; thus we could specify the position of the robot using
four real numbers. The problem with this parametrization is that that almost
all values of these four real numbers correspond to illegal configurations for
the robot (and are not possible unless we break the arm); therefore, it doesnt
capture the true dimensionality of the space. A better parametrization would
be two real numbers specifying the angle of each of the joints. This captures
the allowable variation with the minimum number of dimensions.

Fig. 2.1 (a) The workspace for a robot
arm with two degrees of freedom, one
for each joint. (Assume the base of the
arm is anchored to the wall.) (b) The
configuration space for the robot. Im-
ages courtesy Jean-Claude Latombe.

Suppose a robots configuration can be specified via k real numbers. The set
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of all possible values for these k real numbers is called the configuration space
or state space of the robot. Consider, for instance, a circular robot which moves
in a 2D workspace as shown in Fig.2.2a. The configuration space for this robot
is the set of all (x, y) coordinates; thus its configuration space is R2.

Fig. 2.2 (a) An example workspace
with the circular robot shown in red.
(b) The resulting configuration space,
where the white areas are the free
space. Coordinates are defined with re-
spect to the center of the robot.

Our goal is path-planning – finding a legal path for the robot which it can
physically follow. Therefore, we will divide the configuration space into two
parts: free space and obstacles. Free space is the part of the configuration
space that represents legal positions of the robot; obstacles correspond to the
illegal positions, such as if the robot is physically embedded within some other
object.1 1Note that obstacles in the configura-

tion space may not necessarily corre-
spond only to physical obstacles in the
world; for example, they might also cor-
respond to states where one part of
the robot tries to pass through another
part.

In point of terminology, we will use the term workspace to refer to the physical
environment that the robot works in. Thus the workspace is always 2D or 3D,
and corresponds directly to our physical world. The term free space will always
refer to a subset of the configuration space. But we may use obstacle either to
refer to the set of illegal positions in configuration space, or to physical obstacles
that the robot may encounter in its workspace. Previously, we described a 2D
planar robot. What is its free space? That depends on how big the robot is. If
the robot is a point, the configuration space looks the same as the workspace;
but if the robot has shape, the two usually differ. In this case, we need to
be precise about how we use a pair of cartesian coordinates (x, y) to describe
where the robot is. We define the configuration of the robot by the location of
some specific reference point on the robot. If the robot is round, for instance,
we may choose its center as the reference point.

For the case of a non-rotating 2D robot, a point (x, y) in the configuration
space is in the free space if, when the physical robots reference point is at
position (x, y) in the workspace, the robot does not intersect with any obstacle
in the workspace. The free space for our robot is shown in Fig. 2.2b. What
about our arm robot from before? There, we have to be even more careful.
Obstacles in the configuration space include configurations where the robot
overlaps an obstacle, but also configurations where one arm of the robot passes
through the other. The resulting configuration space is shown in Fig. 2.2b.

2.2 Path planning

Recall that our task is to find a path moving the robot from an initial position
to some goal position. The initial and goal positions of robot will correspond to
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a pair of initial and goal points in the configuration space. To accomplish our
task, all we need to do therefore is find a path in configuration space going from
the initial configuration to the goal configuration, that is contained entirely in
the free space. Once we have found a path, the sequence of points along this
path will correspond to a continuous sequence of valid positions for the robot
that take it from the initial position to the goal position. This formulation of
the problem makes several assumptions, namely, that:

• The obstacles are known in advance (and do not move).
• The robot can follow any path in free space.

These assumptions often hold, but lets discuss the second of these as- sump-
tions in more detail. In particular, lets discuss an example of when the second
assumption is violated.

A car moving in a 2D plane has three degrees of freedom, since its state can
be represented with the triple (x, y, θ), where θ is its orientation. We really do
need all three degrees of freedom to represent the cars position, since given a
big enough plane, it can get itself into any position and orientation. Suppose
now that we have a car in position (x, y, θ), and we want it to wind up in
(x, y + ∆y, θ). Assuming there are no obstacles in the workspace, there is
clearly a straight line in configuration space connecting these two points: one
in which y varies, but x and θ remain constant. The car can follow the path if
θ = 90o or 180o, because the car is then aligned with the y axis. Otherwise it
is impossible, because that would require it to move sideways.

In this particular case, we have three degrees of freedom, but we cant con-
trol them directly. In fact, we only have two independent controls: forward-
backward motion and steering. We say that the car has only two control-lable
degrees of freedom. Thus, even given two adjacent points in configuration space,
we may not be able to move directly from one of these points to another. A
robot where the number of controllable degrees of freedom is equal to the num-
ber of total degrees of freedom is called holonomic. Otherwise, its called non-
holonomic. It is possible, albeit difficult, to design robots capable of holonomic
locomotion in a plane. There are also techniques for controlling nonholonomic
robots (some of which well see later this quarter). But for simplicity, we will
assume here that our robot is holonomic.

2.3 Search space for motion planning

We have seen that the motion planning problem, under certain assumptions,
can be reduced to the problem of finding a path from an initial configuration
to a goal in the robots configuration space. Note how elegant this formulation
is – whereas the problem of moving a robot arm from one position to another
seems to involve lots of complicated things such as the geometry of the arm,
what obstacles there are around the robot, the specific shapes/positions of these
obstacles, etc., the notion of a configuration space takes all of the geometry and
obstacles into account, and reduces the motion planning problem into that of
planning a path in a k-dimensional configuration space.

Unfortunately, the configuration space is continuous, and it is usually very
hard to reason directly with continuous spaces. Therefore, our approach to
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finding a path in configuration space will be based on formulating a discrete
graph search problem, and applying standard discrete graph search algorithms
to find a path. The problem of finding a path (or the shortest path) from an
initial state to a goal in a discrete graph is well-studied in computer science.

There are many ways to discretize a continuous configuration space, and the
relative merits of each depend on many factors of the particular task, such
as the number of degrees of freedom, the complexity of the obstacles, and
the computational resources available. We are particularly interested in three
properties of a discretization method and/or search algorithm:

(1) Completeness: if a path exists in continuous space, whether our algo-
rithm will find a path.

(2) Optimality: if a path exists, whether our algorithm will find the shortest
one.

(3) Computational complexity: how the running time grows as a function
of the problem size. Many algorithms work fine for small numbers of
dimensions (such as 3 or 4), but dont scale well to higher dimensions.

Our approach will be to apply a roadmap methods, also called skeletoniza-
tion methods. Specifically, we will create a discrete graph where vertices in the
graph correspond to points, called landmarks, in the configuration space. The
edges in the graph will correspond to paths (such as straight lines in configu-
ration space) between the landmarks.

2.3.1 Grid discretization

To apply a grid discretization, we choose the landmarks to be the set of points
lying in a regular grid in the configuration space (discarding points that lie
in obstacles rather than free space). One vertex of our discrete graph will
correspond to each of these landmarks. In addition, two adjacent vertices in
the grid are connected if there is a straight-line path between them that lies
entirely in free space.

Fig. 2.3 (left) An example of using a
grid to select landmarks in a configu-
ration space. The obstacles are shown
in red. (right) The resulting graph is
superimposed.

For any fixed resolution grid, this method is unfortunately not complete or
optimal. 2 Grid based discretization pays a hefty price, however, in terms of

2By modifying the algorithm to keep on trying finer and finer grids, it is possible to get
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computational complexity. For instance, if we have a 3D configuration space,
and discretize each axis using 512 values, we get 5123 ≈ 1.3× 108 vertices. For
10 dimensions, if we discretize each dimension with just 100 values, we get on
the order of 1020 grid cells.

Grid based discretization often works fine for low dimensional problems (say
2D to 4D configuration spaces). For slightly higher dimensional problems (say
5D-6D) you can sometimes get it to work if youre clever and choose the grid
very carefully. But for problems much higher dimensional than that, grid
discretization usually does not work well, because of the exponential blowup in
the number of dimensions.

2.3.2 Visibility graph

Particularly in high dimensional configuration spaces, using a regular grid re-
sults in choosing far two many landmarks. This and the following section
describe two ways for choosing landmarks that result in a significantly smaller
number of them.

Fig. 2.4 (a) A path planning problem,
where we need to get from initial state S
to goal state G. (b) The visibility graph
for this planning problem. (c) An ex-
ample of a probabilistic roadmap. For
clarity, not all edges are shown.

In the visibility graph method we assume that all the obstacles in the con-
figuration space are polygons.3 We choose as landmarks all of the vertices of3If you really want to get the termi-

nology right, polygons are 2D; their
generalization to 3D is called polyhe-
drals; and their generalization to arbi-
trary numbers of dimensions is called
polytopes.

all of the obstacles in the configuration space (plus the start and goal states).4

4One problem with this approach is
that the resulting path tends to follows
the edges of the obstacles; this corre-
sponds to having the robot just barely
brush against the edges of the obsta-
cles, and is undesirable, since robots
cant be controlled to perfect accuracy.
In practice, for robustness, the obsta-
cles are usually expanded slightly when
the graph is generated.

We then draw edges between all pairs of vertices such that one is visible from
the other, i.e., that can be connected by a straight line. An example is shown
in Figure 4 (b). It is possible to prove that the visibility graph method is
complete.

In general, most obstacles are not, however, polygons (for example, see Figure
1b). So the visibility graph method is not very widely applicable.

2.3.3 Probabilistic Roadmap planning

The Probabilistic Roadmap (PRM) algorithm is due to Jean-Claude Latombe,
and is widely used for many classes of robots, such as many robot arms. It is
a randomized planning algorithm, in which we choose points at random in the

the algorithm to be complete – since if we sample finely enough, we will get good enough
resolution to find a path if one exists. By modifying the algorithm even further (to connect
all pairs of cells for which the straight-line path between them is entirely in free space, rather
than only immediately adjacent landmarks), it is also possible to get the algorithm to become
arbitrarily close to optimal, since as we use finer and finer discretizations, there will exist a
path arbitrarily close to the optimal one.
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free space to be landmarks. Concretely, we sample points at random from the
configuration space, and then discard the ones which lie within obstacles; this
leaves us a set of points lying in free space, we will be the landmarks. We then
check each pair of (say) nearby landmarks to see if they can be connected by a
straight line that lies entirely in free space. An example is shown in 4 (c).

In the PRM algorithm, we cant guarantee completeness or optimality, be-
cause we could, in principle, get extremely unlucky and choose a very bad set
of landmarks. However, it is possible to make probabilistic guarantees on com-
pleteness. For instance, assuming that the obstacles are widely spaced apart,
it is possible to show that a path from the initial state to the goal will be
found with very high probability (assuming one exists) so long as the number
of samples is sufficiently large.

Finally, note that in all of these algorithms, we dont ever explicitly compute
what the entire configuration space is or otherwise come up with a complete
explicit representation of what are the free space and obstacles in configuration
space. Thus, even though weve been drawing examples of 2D configuration
spaces in these lecture notes and on the chalkboard during lectures in order
to illustrate these ideas, you wouldnt actually write a program to draw out an
entire k-dimensional configuration space (which is not re- alistic to do anyway
when k is large, because of the exponential scaling in k). Specifically, note
that in order to implement PRMs, all we need are (i) A way to sample points
randomly in configuration space, (ii) A way to test if each of these points lies
in free space or obstacle, and (iii) A way to test if the straight line between
a pair of these points also lies entirely within free space. Step (i) is easily
done using a random number generator, and steps (ii) and (iii) are standard
geometric calculations (for example, in the case of a robot arm, step (ii) would
typically require only checking whether the robot will intersect either with itself
or with any obstacles in its workspace when all its joint angles are set to specific
values); and therere many free software packages that you can use to perform
these purely geometric computations.

2.4 Abstraction

In the examples above it was described how to replace a continuous configura-
tion space with a discrete one so that standard search algorithms can be applied
to the robot problem. In general, the real world is absurdly complex and the
configuration space (or state space) must be abstracted for problem solving.
Also, real world actions have to be abstracted so that they can be represented
by a computer. For example, the action of traveling from Halifax to Hawaii is
a complex thing, including not only different transportation means, emotional
states of travelers, luggage, logistic, etc. However, depending on the task to be
solved, not all such details are ecessary.
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This chapter is on search and is divided into three parts

(1) Uninformed search (tree search, graph search, etc)
(2) Heuristic search (A*, etc)
(3) Optimization search algorithms (gradient decent, GA, etc)

3.1 CS221 Lecture notes by Andrew Ng, No. 3



CS221 Lecture notes #3

Search
Previously, we showed how discretization techniques, such as grids, visibility
graphs, and probabilistic roadmaps, could be used to convert a continuous
motion planning problem into one on a discrete graph. How can we search
graphs like these efficiently? In this set of notes, we will present algorithms to
solve search problems on discrete graphs. We will first discuss blind search
(also called uninformed search) algorithm, where we know nothing except
for the nodes and edges which make up the graph. We will then describe
heuristic search, in which we will use knowledge about the problem to
greatly speed up the search. These search algorithms are quite general, and
are widely used many areas of AI.

Throughout much of these notes, our motivating example will be a toy
problem known as the 8-puzzle, shown in Figure 1.

1 Search formalism

A discrete graph search problem comprises:

• States. These correspond to the possible states of the world, such as
points in configuration space, or board positions for the 8-puzzle. We
typically denote individual states as s, and the set of all states as S.

• (Directed) edges. There is a directed edge from state s1 to state s2

if s2 can be reached from s1 in one step. We assume directed edges
for generality, but an undirected edge can be represented as a pair of
directed edges. We typically use e to denote an edge, and E the set of
all edges.

• Cost function. A non-negative function g : E 7→ R
+
0 . (This notation

means g is a function mapping from the edges E into the set of non-
negative real numbers R

+
0 .)

1
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(a) (b)

Figure 1: The 8-puzzle. There are 8 tiles, numbered 1 through 8, which slide
around on the board. In the initial state, the tiles are scrambled. The goal
is to put the numbers in order, with the blank square in the lower right hand
corner. (a) An initial state. (b) The goal state.

• Initial state. Usually a single state s ∈ S.

• Goal. For generality, we represent the goal with a goal test, which is
a function that tells us if any particular state s is a goal state. This is
because our task may be to get to any state within some “goal region,”
rather than to a very specific, single, goal state. For instance, in motion
planning, the goal test might be “end of finger presses the elevator
button.” This cannot be described with a single goal state, since many
different configurations of the robot’s joints are probably consistent with
the goal. In problems where we are interested in reaching one particular
goal state, the goal test will be a function which returns true for a state
s if and only if it is the goal state.

Given this definition of a search problem, there are two ways that we can
represent the search space:

• Explicitly. In this case, we explicitly construct the entire graph of the
search space in computer memory or on disk. Thus, we would create
a list of all the states, all the edges, and all the costs. The goal test
will also be explicitly represented as a list of all the goal states. This
explicit representation only works for fairly small graphs. Consider, for
instance, our example of the 8-puzzle. The total number of possible
board configurations is 9! = 1 × 2 × · · · × 9, and the total number of
edges is larger still. For the larger 15-puzzle (on a 4x4 grid rather than
3x3 grid), the number of states is 16! ≈ 2 × 1013. Clearly, we can store
the graph in memory only for the smallest problem sizes.

• Implicitly. To represent a search problem implicitly, we will use some
data structure for representing individual states. For example, if the
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states comprise a 2D grid, the data structure might be an (i, j) pair.
The edges and costs are also represented implicitly. Edges are usually
described in terms of operators, which are functions o : S 7→ S that
map from states to states.1 In a 2D grid, our operators may be N,
S, E, and W, corresponding to movements in the four directions. In
the 8-puzzle, we would have some data structure that represents board
positions, as well as four operators, each corresponding to moving one
of the four adjacent tiles into the empty hole. Each operator is assigned
a positive real-valued cost.2 The successor states of a state are the
states reachable by the application of a single operator.

2 Basic search

As we develop different search algorithms, we’ll be interested in questions of
whether they are complete, whether they are optimal, and in their computa-
tional efficiency. A search algorithm is complete if, whenever there exists a
path from the initial state to the goal, it will find one. It is optimal if any
path it finds to the goal is a minimum cost path.

We first consider the case where we are given nothing except the nodes,
edges, and costs of the search space. This is referred to as blind, or un-
informed search. We will discuss several different search algorithms for
discrete graphs (represented either implicitly or explicitly). Our search algo-
rithms will, conveniently, all follow the same basic search template:

Queue q;

q.insert(initialState);

while (!q.isEmpty()){

node = q.remove();

if (goalTest(node)) return node;

foreach (n in successors(node, operators))

q.insert(n);

1We will be slightly loose in our terminology, and not specify the result of operators
which cannot be applied in a given position, such as what happens if the N operator is
applied when we’re at the uppermost row of the grid and can’t move any further north.
There are many options: the operator could be deemed inapplicable to that state, it could
return the same state, and so on.

2We could allow the cost also to depend on the state itself. For instance, it might cost a
robot dog more to move north in rugged terrain than smooth terrain. This is a reasonably
straightforward generalization that would require only a small change to the algorithms
we describe below.
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Figure 2: A portion of a search tree for the 8-puzzle. The root node is the
initial state, and each of the children of a given node corresponds to one of
the four possible operators. In this example, we did not eliminate repeated
states (which you should usually do); so, for example, the third and fifth
nodes in the bottommost row are repeats of the root.

}

return FAIL;

For now, we will leave exactly what sort of queue we use unspecified. De-
pending on this choice, we will get different search algorithms.

In the inner loop of the algorithm, we remove a state, and check if it’s a
goal. If it’s not, we put all of its successors on the queue, to be examined
later. We say a node is expanded when it is taken out of the list and checked
for goalness and its successors are inserted into the queue.

Note that the order of operations is important. In particular, we check
for goalness when the node is expanded, not when it is being added to the
queue. This will become important later on when we prove optimality of
various algorithms.

This process implicitly defines a search tree, like the one shown in Figure
2. The search tree contains nodes n. Each node is labeled with a state s.
Each node also corresponds to a specific sequence of states (specifically, the
sequence of states you pass through as you start from the root, and traverse
the tree until you reach n). Because this is a tree, the path from the root to a
node n is always unique. Note that even though nodes in the tree are labeled
with states (board positions), nodes and states are two distinct concepts.
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We will use “states” only to refer to states in the original search graph, and
“nodes” only to refer to nodes in the search tree. For example, in the original
search graph, there can sometimes be multiple paths from the initial state
to some other state s. Thus, as shown in the figure, the search tree can also
contain multiple nodes n that are labeled with the same state s. (Later in
these notes, we’ll also discuss how to deal with repeated states, but we’ll
ignore this issue for now.)

The search tree is defined as follows. When the search algorithm is first
run and the initial state is placed on the queue, think of this as constructing
a tree with just a root node, which is labeled with the initial state. At each
point in our search, the nodes in the queue correspond to the “fringe” of the
search tree, and nodes which have already been expanded correspond to the
interior nodes. Each time we expand a node on the queue, that corresponds
to taking a node on the fringe and adding children to it, and then putting
these new children (which are now on the fringe) onto the queue.

Note that this search tree is a mathematical concept used to help us
reason about the process of running the search algorithms, and is implicitly
defined by the running of our search algorithm. The search tree isn’t actually
explicitly constructed anywhere.

Now we discuss particular search algorithms which follow this template.
We give only a very brief overview of each algorithm; some additional details
can be found in Section 3.4 of the course textbook. Also, see the Exercise
Set 1 solutions for worked-out examples of each.

2.1 Depth-first search

When our queue is a LIFO queue (stack), we get depth-first search (DFS).
DFS keeps recursively expanding nodes until it reaches a goal state or en-
counters a state with no successors. When a state has no successors, DFS
backtracks.

In an undergraduate programming/data structures classes, you may have
seen DFS written as follows, where the stack was implicitly maintained
through the program’s stack frame:

State DepthFirstSearch(node){

if (goalTest(node)) return node;

foreach (n in successors(node, operators)){

result = DepthFirstSearch(n);

if (result != FAIL) return result;

}
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return FAIL;

}

Using a LIFO queue in the search template given previously, the stack is
now explicitly maintained through our own queue, but it results in the same
search process as this.

Under mild assumptions, DFS is usually complete. Unfortunately, DFS
is generally not optimal.

2.2 Breadth-first search

When our queue is a FIFO queue, we get breadth-first search (BFS).
Intuitively, nodes will be expanded in order by the length of the path (number
of edges). (You should convince yourself of this.)

BFS is a complete search algorithm under very reasonable assumptions.
It is also optimal in the particular case where all of the operators have a cost
of 1 (because it then becomes a special case of uniform-cost search).

2.3 Uniform-cost search

When our queue is a priority queue ordered by the total cost of the path to
a node, we get uniform-cost search (UCS). Note that by the definition
of a search tree, the path from the root node to any given node n is always
unique (even if, in the original search graph, there may be multiple paths
from the initial state to the state s associated with the node n). Thus, the
priority of n is simply the total cost of all the edges between the root node
and the node n. We will denote this cost g(n).

Assuming that we handle repeated states (described in Section 4.1, this
algorithm is also commonly known as Dijkstra’s shortest-path algorithm,
which is a complete and optimal algorithm. (You can find a proof of this
in the textbook.) The gist of the optimality proof is as follows: nodes are
expanded in order according to the total cost to reach that node. Out of all
paths to a goal, the optimal path is (by definition) the shortest, and so the
node in the search tree corresponding to that path will be expanded before
all of the others. This proof works for all finite graphs, as well as infinite
graphs under mild assumptions.
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3 Heuristic search

All of the algorithms presented above are examples of blind (uninformed)
search, where the algorithm has no concept of the “right direction” towards
the goal, so that it blindly stumbles around until it happens to expand the
goal node. We can do much better if we have some notion of which is the right
direction to go. For instance, if a robot is trying to get from the first floor
to the basement, then going up in the elevator is unlikely to help. One way
to provide this sort of information to the algorithm is by using a heuristic
function, which estimates the cost to get from any state to a goal. For
instance, if our goal is to get to the basement, a heuristic might assign a
higher estimated cost to the fourth floor than to the first. More formally, a
heuristic is a non-negative function h : S 7→ R

+
0 , that assigns a cost estimate

to each state.
For example, consider the grid in Figure 3. We know it is likely to be

more productive to move right than to move left, because the goal is to
the right. We can formalize this notion with a heuristic called Manhattan
distance, defined as the total number of N/S/E/W moves required to get
from the current state to the goal, ignoring obstacles. The name “Manhattan
distance” comes from the observation the in much of Manhattan island in
New York, the city blocks are our laid along the compass directions, out so
that you can only drive in compass directions, rather than diagonally.

In constructing heuristics, we often face a tradeoff between the accuracy
of a heuristic and how expensive it is to compute it. For instance, here are
two examples of trivial heuristics:

• The constant heuristic h(s) = 0. This heuristic requires no computation,
but provides no useful information about the problem.

• The heuristic equal to the minimum cost from s to a goal. If we knew
this heuristic function, the search problem would be trivial. (Why?)
However, computing this requires actually solving the problem, and so
it is no good in practice.

The most useful heuristics will almost always lie between these two extremes.
So far, we have defined a heuristic function as taking input a state. Given

a node n in a search tree, we also define h(n) to be the value obtained by
applying the heuristic function h to the state s that the node n is associated
(labeled) with.

Let us now consider some particular algorithms which make use of the
heuristic function. As in the section on uninformed search, we will follow the
search template given previously.
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Figure 3: A search problem on a grid, with obstacles in black.

3.1 Best-first search

As in uniform-cost search, we will take our queue to be a priority queue, but
this time the priority is given by h itself. The resulting algorithm, best-first
search (or greedy search), greedily expands the node n with the smallest
value of h(n), i.e., the one with the smallest estimated distance to the goal.
Thus, it repeatedly picks whichever node on the fringe is estimated to be
closest to the goal, and expands that node.

Unfortunately, best-first search is not optimal, as is demonstrated in Fig-
ure 4. Often, the node which is seemingly closest to the goal is already the
result of a long search path. For example, let’s suppose we have a choice
between expanding two nodes m and n, where the path to get to m is of
length 8, and the heuristic value is 3, while the path to n is of length 19 and
the heuristic value is 2. Best-first search would choose to expand n, because
it looks closer to the goal. However, any resulting path must be of length at
least 21, while expanding m might lead to a path of length 11. The problem
with best-first search is that it only considers the expected distance to the
goal, and this causes it not to be optimal.

By modifying the algorithm to also take into account the cost already
incurred along a path, we can obtain an algorithm that is optimal (in the
sense of finding minimum cost paths to the goal).

3.2 A∗ search

We now describe the A∗ search algorithm. This algorithm is due to Nils
Nilsson, and is one of the most widely used algorithms in all of AI. It uses
uses a priority queue like uniform cost search and best-first search, but the
priority of a node n is now given by

f(n) = g(n) + h(n),
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where g(n) is the total cost of the path from the root to node n, and h(n) is
the heuristic as before.

In other words, A∗’s priority value for a node will be our total estimated
cost of getting from the initial state to n to the goal. Thus, the priority takes
into account two costs:

• The cost to get to the node n, given by g(n).

• The cost to get from n to a goal, which is estimated by h(n).

Uniform cost search took into account only the first term, and being a blind
search algorithm, can be very slow. Best-first search took into account only
the second terms, and was not optimal.

For the sake of completeness, here is pseudocode for the A∗ algorithm:

PriorityQueue q;

q.insert(initialState, h(initialState));

while (!q.isEmpty()){

node = q.remove();

if (goalTest(node)) return node;

foreach (n in successors(node, operators))

q.insert(n, g(n) + h(n));

}

return FAIL;

Let us now prove some key properties of A∗ search For convenience, we
have summarized most of the notation we’ll use in this set of notes in Figure
5.

4 Optimality of A∗ search

One basic question to ask about any search algorithm is whether it is com-
plete. Recall that a search algorithm is complete if it is guaranteed to find
some path to a goal state whenever such a path exists. Under fairly mild
assumptions, we can show that A∗ is complete. We will not present the proof
here, but the interested reader is referred to Chapter 4 of the textbook.

A more interesting question is optimality. A search algorithm is optimal
if it is guaranteed to find the least-cost path to a goal state, provided a path
to the goal exists. To prove the optimality of A∗ search, we first need a
definition.
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(a) (b)

(c) (d)

Figure 4: (a) An example of a search problem where the goal is to get from S

to G. (b) The search space, labeled with the Manhattan distance heuristic.
(c) The set of nodes expanded by best-first search. The solution is clearly
suboptimal. (d) The set of nodes expanded by A∗ search. (Note: the pair of
numbers in each square represent the heuristic value h(n) and the distance
already traveled g(n).)

s a state in search space

n a node in the search tree

ng A goal node

g(n) The cost of the path to node n

h(n) The heuristic function evaluated at n

h∗(n) The actual cost of the least-cost path from n to a goal state

f(n) The estimated cost of the least-cost path that goes from the root

node through n to a goal, f(n) = g(n) + h(n)

f ∗(n) The actual cost of the least-cost path that goes from the root node

through n to a goal, f ∗(n) = g(n) + h∗(n)

Pa(n) The parent of node n in the search tree.

Figure 5: Notation used in this lecture.
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Definition. A heuristic function h is admissible if it never overestimates
the true cost to get to the goal; in order words, if for any state s, we have
h(s) ≤ h∗(s).

Theorem 4.1: If h is an admissible heuristic function, then A∗ search with

h is optimal.

Proof: Our overall strategy is to take ng, the first goal node to be ex-
panded, and show that it represents an optimal path. Since A∗ returns the
first goal node expanded, this implies the optimality of A∗.

Suppose h is an admissible heuristic, and ng is the first goal node to be
expanded. Since ng is a goal and h is an admissible heuristic, we have

0 ≤ h(ng) since heuristic functions are nonnegative

≤ h∗(ng) since h is admissible

= 0 since ng is a goal

Hence, h(ng) = 0, and therefore

f(ng) = g(ng) + h(ng) = g(ng). (1)

We need to guarantee that the path to ng is no longer than any potential
path through some other unexpanded node. Suppose that (by expanding
more nodes) it is possible to reach some other goal node n′

g
other than the

one ng chosen by A∗. We will prove that g(n′

g
) ≥ g(ng).

There is some unique path from the root to n′

g
. Let n be the first node

on this path that has not yet been expanded. Note therefore that n’s parent
must have been expanded previously, and therefore n is on the fringe of our
search tree at the instant that A∗ expanded ng.

Let f ∗(n) denote the minimum cost path to a goal that passes through n.
Since n′

g
is a goal node, and the path to n′

g
passes through n, we must have

f ∗(n) ≤ g(n′

g
).

So, by admissibility, we have

f(n) = g(n) + h(n) ≤ g(n) + h∗(n) = f ∗(n) ≤ g(n′

g
). (2)

Furthermore, n is on the fringe, and was therefore on the priority queue
(along with ng) at the instant A∗ expanded the goal node. But A∗ chose
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to expand ng rather than n. Since A∗ chooses nodes to expand in order of
priority, this implies that

f(ng) ≤ f(n). (3)

Putting together equations (1-3), we get

g(ng) = f(ng) by Equation (1)

≤ f(n) by Equation (3)

≤ g(n′

g
) by Equation (2)

This proves that g(n′

g
) ≥ g(ng) for any goal node n′

g
other than the one

chosen by A∗. This therefore shows that A∗ finds a minimum cost path to
the goal.

If this proof made sense to you, then as a studying technique to make sure
you really mastered this, one thing you might consider trying is covering up
the proof, and proving the theorem from scratch by yourself without referring
to these notes. (This is a common studying technique for mastering proofs,
and I still use it a lot when learning about new proof methods.)

4.1 Repeated states

In this section, we address a technicality regarding repeated states. As you
saw in Figure 2, search trees can have repeated states, in which multiple
nodes in the tree are labeled with the same state. In the most straightforward
implementation of A∗ and other search algorithms, we would therefore end
up carrying out searches from the same state multiple times, which is very
inefficient.

In some problems (examples in Exercise Set 2 and in one of the questions
in Problem Set 1), it is possible to formulate the search space so that there
are no repeated states. I.e., each state in the discrete graph search problem
is reachable only via a unique path from the initial state. In problems such
as the 8-puzzle and in various “maze” or “grid search” problems (such as in
Figure 3), repeated states are unavoidable, since the nature of the problem
is that there are intrinsically many different paths to the same state.

Dealing with repeated states requires only a small change to our search
algorithm (as stated in Section 2 and Section 3.2). Specifically, when pre-
viously the algorithm would insert a node n onto a queue, we would now
modify the algorithm to consider three cases:

• If the node n is labeled with a state s that was previously expanded
(i.e., if the search tree contains a previously expanded node n′ that was
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also labeled with the same state s), then discard n and do not insert it
onto the queue.

• If the node n is labeled with a state s that is already on the queue—i.e.,
if the queue/fringe currently contains a different node n′ that is also
labeled with the same state s—then keep/add on the queue whichever
of n or n′ has a lower priority value, and discard whichever of n or n′

has a higher priority value.3

• If neither of the cases above hold, then insert n onto the queue normally.

If you are familiar with Dijkstra’s shortest paths algorithm, you can also
check for yourself that making this change to uniform cost search results in
exactly Dijkstra’s algorithm.

If you are implementing one of these search algorithms for a problem that
does have repeated states, then making the change above to the algorithm
will usually make it much more efficient (since now it would expand each
state at most once), and this should pretty much always be done.

4.2 Monotonicity

To hone our intuitions about heuristic functions, another useful property of
heuristic functions is monotonicity. A heuristic function h is monotonic
if (a) for any nodes m and n, where n is a descendant of m in the search
tree, h(m) − h(n) ≤ g(n) − g(m), and (b) for any goal node ng, h(ng) =
0. (The second condition is necessary, because otherwise, we could add an
arbitrary constant to the heuristic function.) We can rephrase condition (a)
into something more intuitive: if n is a descendant of m, then f(n) ≥ f(m).
In other words, the heuristic function is not allowed to decrease as we follow
a path from the root.

Monotonicity is a stronger assumption than admissibility, as we presently
show.

Theorem 4.2: If a heuristic function h is monotonic, then it is admissible.

Proof: Let ng be an arbitrary goal node, and let n be a node on the path
to ng. Then we have

g(n) + h(n) = f(n)

≤ f(ng) by condition (a)

= g(ng) by condition (b).

3For BFS and DFS which use FIFO and LIFO queues rather than a priority queue, we
can discard n and keep n

′ on the queue.



14

(a) (b) (c)

Figure 6: Some examples of the value of f(n) for different nodes during A∗

search, when different heuristic functions are used. The value of f(n) is
shown via a colorscale, where small values are red, intermediate values are
green, and large values are purple. (a) h(n) = 0, e.g. blind search. (b)
h(n) = h∗(n). (c) Manhattan distance.

By subtracting g(n) from both sides, we get

h(n) ≤ g(ng) − g(n).

This must hold true for any ng which is a descendant of n, and in particular
the shortest one. Hence, h(n) ≤ f ∗(n) − g(n) = h∗(n).

The converse is not true, however, and it is possible to create admissible
heuristics that are not monotonic. But this difference is largely a formal
one, and in practice, admissibility and monotonicity almost always coincide.
Therefore, the intuitions we develop for monotonic heuristic functions can
generally be applied to admissible functions.

Monotonicity is useful, because when it holds, it implies that A∗ expands
all of the nodes in increasing order by f(n). This follows easily from the
definition; when a node n is expanded, all of its descendants (by property
(a)) must have larger values of f . Hence, it is impossible for f to decrease.
This gives a convenient intuitive picture of the behavior of A∗ search, as
shown in Figure 6. A∗ first expands the red squares, followed by the orange
ones, followed by the green ones, and so on.

5 Heuristic functions

Up to this point, we have treated heuristic functions as a black-box concept
which we feed into our algorithms. But how do we actually come up with
good heuristics? This is often highly nontrivial, and there have been many
research papers published that introduce clever heuristics for given domains.
Finding heuristics is hard because we are trying to balance several desiderata:
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• Admissibility. If we are truly interested in finding the least-cost path,
we want only admissible heuristics. (In practice, if we’re willing to settle
for a suboptimal path, we often use inadmissible heuristics to hopefully
get better computational efficiency.)

• Accuracy. We want our heuristics to estimate the distance as accurately
as possible. When working with admissible heuristics, this means we
want the values to be as large as possible (but no larger than h∗).

• Computational efficiency. If we come up with a very predictive heuristic,
it is still no good if we can’t compute it efficiently. This is particularly
important, since heuristic functions are usually evaluated deep in the
inner loop of a search algorithm.

These different criteria lead to a tradeoff when we design heuristic functions.
Two extreme (admissible) examples are the zero heuristic h(n) = 0 and the
oracle heuristic h(n) = h∗(n), which returns the actual least-cost path to the
goal. The former is trivial to compute, but provides no information; using it
is equivalent to blind, uniform cost search. On the other hand, if we knew
h∗(n), the problem would be trivial because we could head straight to the
goal. Computing it, however, is as hard as solving the search problem itself.
Clearly, any useful heuristic will have to lie somewhere in between these
extremes. Figure 6 shows an intuitive picture of how different heuristics
behave in a least-cost-path problem.

Constructing heuristics is not always easy, but there is a very useful way
of thinking about the problem that often generates good heuristics. Specifi-
cally, we can often construct heuristics by thinking about solving a relaxed
problem. In other words, we eliminate one or more constraints from the
problem formulation. Our heuristic h(n) will then be the minimum cost
of getting from n to a goal, under the assumption that we do not have to
obey the eliminated constraint(s). Such a heuristic will always be admissible.
(Why?)

As a concrete example, recall our definition from the previous lecture of
Manhattan distance, which measures the city-block distance from a state
to the goal, ignoring obstacles. Basically, we eliminated the constraint that
our path could not pass through an obstacle. In other words, h(n) is the exact

cost of getting from n to the goal if we were to eliminate the “you can’t go
through obstacles” constraint. Note that whereas computing costs f ∗(n) in
the original problem was hard (and required performing a search), computing
optimal costs when this constraint has been eliminated is easy. Analogously,
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(a) (b) (c)

Figure 7: The heuristic for the 15-puzzle, defined as the number of moves
required to move a subset of pieces into the correct positions. The number of
possibilities to consider is small enough that they can all be cached in mem-
ory. (a) A possible board configuration. (b) The subset of tiles considered
to compute the heuristic. Asterisks denote “don’t care” tiles for the purpose
of computing this heuristic. (c) An even better heuristic is if we take the
maximum of the times required to get either the red tiles or the blue tiles
into their goal positions.

if we are searching in a continuous space, eliminating the constraint that we
can’t pass through obstacles gives us the Euclidean distance heuristic.

More generally, even if we have an NP-hard or combinatorially large prob-
lem, eliminating one or more constraints often makes the problem trivial to
solve exactly, which allows us to compute a heuristic value very quickly. For
a more involved example, let us turn to the 15-puzzle (the 4x4 version of
the 8-puzzle from last lecture). Recall that we can move a tile from A to B

if (i) A and B are adjacent, and (ii) B is blank. Here are two examples of
heuristics we can generate by eliminating constraints:

• If we eliminate (ii), we get the total number of moves the tiles have to
make, if we could move them all independently without any tile getting
into another tile’s way. In other words, we get the sum of the Manhattan
distances of all of the tiles to their final locations.

• If we eliminate both (i) and (ii), we get the number of tiles out of
place. Note that, because we’ve eliminated more constraints, the value
of this heuristic will be strictly smaller than the previous one. Since the
heuristics are admissible, this is equivalent to saying it is always less
accurate.

In the case of the 15-puzzle, it turns out to be possible to create an even
better heuristic than these. Specifically, we will choose a subset of tiles, and
pre-compute the minimum number of moves needed to get this subset of tiles
from any initial configuration to their goal states. Our heuristic will ignore
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all the tiles except for this subset. (Thus, it corresponds to eliminating the
constraint that the tiles not in this subset must also be moved to the goal
state.) This is illustrated in Figure 7. Unlike Manhattan distance, this
heuristic takes into account interactions between tiles—i.e., that you might
need to get one of the tiles (in the subset) “out of the way” before you can
move a different tile to its goal. Note also that, no matter which subset of
the squares we choose to compute this heuristic on, we get an admissible
heuristic. Thus, we can actually partition the tiles into two subsets, say the
red and blue subsets show in Figure 7c, and compute a heuristic value for
the red subset, and a heuristic value for the blue subset. In other words,
we pre-compute the minimum number of moves needed to get the red tiles
into their goal positions (ignoring all other tiles); and we also pre-compute
the minimum number of moves needed to get the blue tiles into their goal
positions. The final heuristic value that we’ll give to A∗ is then the maximum

of these two values.4 (Why not the sum? Why not the minimum?) This
approach, called pattern databases heuristics, works very well for the
15- (and 24-) puzzle. It also gave the first algorithm that could find optimal
solutions to randomly generated Rubik’s cube puzzles. (In the Rubik’s cube
problem, we would precompute the minimum number of moves needed to get
different subsets of the Rubik’s cube facets into the goal positions).

Note the tradeoff here between the cost of computing the heuristic func-
tion and how much it saves us in the number of nodes we need to search. The
approach described above is implemented by generating all possible board po-
sitions where only the selected subset of tiles (say the red tiles) are treated
as distinct, finding the shortest paths for all configurations of this subset of
tiles to their goal positions,5 and caching the results. By including larger
subsets of the tiles in this set, we could make the heuristic more accurate
(closer to h∗), but this would increase the computational cost of computing
the heuristic, as well as the memory requirements of storing it. We could also
use a smaller subset of tiles, which would give a less accurate heuristic, but
be cheaper to compute and store. More generally, there is often a tradeoff,
where we can either find a more expensive, better heuristic (which would
cause A∗ to need to perform fewer node expansions before finding the goal),
or use a heuristic that’s cheaper to compute (but result in A∗ needing to
do more of the work in the sense of expanding more nodes). The heuristics
h(n) = 0 and h(n) = h∗(n) represent two extremes of this tradeoff, and it’ll

4More generally, for other search problem as well, if we have several admissible heuris-
tics, we can take the maximum to get an even better admissible heuristic.

5It turns out this can be done efficiently by running one big breadth first search algo-
rithm backwards from the goal state.
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Figure 8: A cartoon example of greedy hill-climbing. The horizontal axis
corresponds to the set of states. Starting from point A, the algorithm would
take tiny steps downhill until it reaches the global minimum. Starting from
the plateau at B, it would not know where to go because the terrain is flat.
Finally, starting from C, it would move downhill and get stuck in a local
optimum.

usually be something in-between that performs best.

6 Greedy hill-climbing search

Best-first search, or greedy search, expanded nodes in order of the heuristic
h(n). It was not optimal, because it was too greedy. Actually, it turns out
that there is an even greedier algorithm, that’s even more aggressive in terms
of trying to get to the goal as quickly as possible. We now describe greedy
hill-climbing search (called hill-climbing in the textbook). This algorithm
throws caution to the winds and simply tries to minimize h and head straight
to the goal as quickly as possible, with no backtracking. In other words, from
a state s, we will choose whichever successor has the lowest heuristic value,
and simply “move” there. Figure 8 shows a cartoon example of greedy hill-
climbing search. (Given that we’re actually going downhill, perhaps this
is better called “hill-descending” search, but the terminology we’re using is
quite standard.)

Note the difference between best-first search and greedy hill-climbing
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search: while best-first search backtracks, greedy hill-climbing search does
not. In other words, the search tree is really more of a long “chain”-structured
graph. Generally, we don’t even think of greedy hill-climbing as building a
tree; rather, we think of it as just hopping from one state to another. The
fact that the algorithm only has to “know” about the current state and its
immediate successors is often referred to as locality. This property gives the
algorithm great power, since it can be used even when some of our earlier
assumptions for path-finding are violated. For example, it works for robot
motion planning even if we don’t know the locations of all of the obstacles
in advance, or if the obstacles can move around.

There are two major problems commonly associated with hill-climbing
search:

• Local optima. This is where we get to a state where all of the pos-
sible moves increase the heuristic function (make it worse). Because
the algorithm doesn’t backtrack, it gets stuck. Because of local optima,
hill-climbing search is usually not complete.

• Plateaus. The algorithm reaches a plateau when a move in any di-
rection causes the heuristic function to remain the same. Thus, the
heuristic offers no information locally about what’s a good direction to
head in, and we may wander around for a long time on a large plateau
before we get lucky and find a way downhill again. As a concrete ex-
ample, suppose that in the 15-puzzle, we define h(n) to be the number
of tiles out of place. There will then often be no single move (or even
any short sequence of moves) which changes the value of h. Thus, the
heuristic offers no indication of where to go next, and it’s hard to make
progress towards the goal.

A cartoon illustration of these problems is shown in Figure 8.
Don’t be fooled by Figure 8 into thinking that plateaus are easy to deal

with. Many local search problems can involve search spaces in thousands of
dimensions, and therefore plateaus can be exponentially large. Even if the
plateau does have a way out, it might take so long to explore the plateau
that we never find it.

6.1 Potential fields

Since we’re using greedy hill-climbing search, we’ve already given up on opti-
mality. Therefore, there’s no need to make sure the heuristic h is admissible.
In fact, there’s no need to even choose h to be an estimate of the cost to the
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goal—it can be anything you want, so long as going downhill on h tends to
move you closer to the goal.

In motion planning, there’s a particularly effective class of methods called
potential fields, pioneered by Oussama Khatib. Concretely, we will define
an attractive potential (in configuration space) that tends to pull us towards
the goal, and a set of repulsive potentials that tend to push us away from the
obstacles. Our robot will then perform local greedy hill-climbing search on
an overall potential function that’s given by the sum of all of these attractive
and repulsive potentials, to try to get to areas of lower and lower potential,
and hopefully all the way to the goal. An example of this is given in Figure 9.

Potential fields are extremely easy to implement, and are very space ef-
ficient because they don’t need to maintain a priority queue. Furthermore,
while even A∗ eventually faces exponential blowup for large enough problem
sizes, potential fields can sometimes scale up to very large problem sizes, be-
cause all we need to keep track of is one current state. Finally, it applies even
when the obstacles may move and we don’t in advance how or where they’ll
move. For example, in class we saw a robot soccer demo, implemented with
potential fields, where the robot was attracted to the ball, and repulsed by
the opposing team’s robots. Even though we don’t know where the opponent
robots will move next, at any instant in time, all we have to do is place a
repulsive potential around where they are currently, place an attractive po-
tential centered on the ball, and take a local greedy hill-climbing step; this
will tend to cause our robot move towards the ball while avoiding the other
robots.

We also saw in the soccer demo that by adding other terms to the overall
potential field, we could quite easily get the robots to exhibit fairly complex
behavior. For example, we could use an attractive potential to the ball that’s
strongest for the player nearest it (so that essentially only one player at a time
goes after the ball); we also saw “player position fields” that cause the players
to be attracted to different areas of the soccer field, that correspond to various
soccer positions, such as defender, right field, center, forward, left field; we
also had a “kicking potential field” that causes the robot to be attracted
to the appropriate side of the ball so as to kick it towards the opponent
goal (and not towards our own goal); and so on. The combination of these
relatively simple potential fields led to very rich, effective, soccer playing
behavior, with each robot automatically taking into account many factors
such as where the ball is, where the teammates are, where the opponent is,
etc., and coordinating with its teammates to play soccer impressively well.

One disadvantage of potential fields is that, like other hill climbing search
algorithms, we can get stuck in local optima. Sometimes, you might code up
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(a) (b)

(c) (d)

(e)

Figure 9: An example of potential fields. (a) The configuration space in a
path planning problem. (b) The attractive potential which pulls the robot
towards the goal. (c) The repulsive potential which keeps the robot away
from obstacles. (d) The total potential. (e) The path the robot winds up
following. Images courtesy of Jean-Claude Latombe.
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a potential field, hand-tune it slightly and it’ll give you exactly the behavior
you wanted (as in the soccer example). Other times, it’s also possible that
if the robot keeps getting stuck in local optima (or keeps running into some
other problem), and you may end up spending weeks tuning the potential
functions by hand (fiddling with the strength of the attractive vs. repulsive
potentials, etc.) and still not get the robot to do what you want. Thus, one
disadvantage of potential fields is that if an implementation using a complex
combination of potential fields does not work, it can sometimes be extremely
difficult to figure out how to modify things to make it work.

Nonetheless, their scalability to huge problems, and ease of implementa-
tion, makes potential fields a very good choice for many problems. In class,
we also saw a hybrid application of potential fields (together with PRMs) to
plan the motions for a character in a computer graphics animation (this was
the video of an animated character playing chess with a robot). That exam-
ple had an extremely large state space—it used 64 degree of freedom, with
each axis discretized to 100 values—but was still amenable to a potential
fields solution.

6.2 Optimization search

Up until now, we have been considering a search formulation where we are
interested in finding a low-cost path from the initial state to a goal. We now
describe a different class of search problems, where we don’t care about the
cost of the path we take, but only about the final state we wind up in.

In an optimization search problem, we have some set of states that
we search over. Furthermore, we have a cost function we want to minimize
(or a goodness function we want to maximize). Usually the states will all
correspond to valid solutions to some problem, and our goal is to find a good
solution; in other words, a state with minimum possible cost. The solution
is therefore defined implicitly as the lowest-cost state. In fact, sometimes it’s
possible for an algorithm to have already found the minimum cost state, but
to have no way to realize it. Furthermore, we also don’t care about the path
we take to get to this state; we care only about the final state we find.

Local search methods work quite well for many optimization search prob-
lems, especially in cases where we are willing to settle for a “pretty good”
(in the sense of minimizing cost), but not necessarily optimal, solution. Let
us consider some examples.
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6.2.1 Traveling salesperson problem

The traveling salesperson problem (TSP) is one of the classic NP-hard prob-
lems. Consider a salesperson who starts at a given city, and has a list of
cities to visit. His task is to visit all of these cities, and then return to the
starting city. Furthermore, he is a dishonest salesperson, and therefore can’t
return to the same city twice, lest he face his angry customers. The problem
is to find a circuit of these cities, or tour, that has minimum cost.

More formally, we are given a graph G, which we assume is complete (but
may possibly have edges with infinite cost). To each of the edges in G is as-
signed a cost. We are interested in finding the minimum-cost tour that visits
each vertex exactly once, and returns to the city where we started. Since TSP
is NP-hard, we shouldn’t expect to find a polynomial time algorithm which
guarantees finding the optimal solution. Nevertheless, local search methods
often work well for finding good solutions.

Note that this problem can be expressed as a path planning problem and
solved exactly using A∗ search. More specifically, the states would correspond
to partial tours, and each operator would extend the tour by one city, with the
cost function giving the cost of the edge we just added. It is even possible
to even define good admissible heuristics. Since A∗ is optimal, this will
eventually find the optimal solution. Since the problem is NP-hard, however,
this suggests that A∗ will be exponential in the worst case. In practice, we
don’t necessarily need to find the best tour, but would rather get a good tour
quickly. We will use greedy local search to do this, by posing an optimization
search problem.

To formulate the TSP as an optimization search problem, we need to
define states, operators, and a cost function. There are many possible for-
mulations, but here is one:

• States: complete tours (that visit all the cities).

• Operators: taking two adjacent cities in the tour and flipping the order
in which they are visited.

• Cost: the sum of the edge costs of the edges in the tour.

Applying greedy hill-climbing search in this search space to minimize the
cost function gives a nice intuitive picture, where the tour is incrementally
tweaked (swapping two cities) until it gets to a local optimum—a point where
the solution can’t be made better by swapping two more cities.
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6.2.2 Other examples

There are many other problems that can be posed as optimization search.

• Machine Learning. Many machine learning algorithms are formulated
by posing an optimization problem, and solving it. For example, suppose
we would like to have a learning algorithm estimate the prices of various
houses, based on properties of the houses such as its size, etc. In the
linear regression model (which we’ll see in detail in about a week),
we will write down a cost function that corresponds to how accurate
our algorithm’s estimate of housing prices are. We then apply a greedy
hill-climbing search algorithm to minimize the errors in our algorithm’s
predictions.

• 8 queens. One famous toy problem is the 8 queens puzzle. In the game
of chess, a queen can attack any piece which shares a row, column, or
diagonal with it. The goal is to place 8 queens on an 8 × 8 chessboard
such that no queen can attack any other queen. Local search methods
have been shown to work surprisingly well for this problem. In one
possible formulation, each state corresponds to an assignment of all of
the queens to squares on the chess board, and the cost function is defined
as the number of queens under attack. Our operators can take one of
the queens, and move it elsewhere on the board.

• Building an automobile. In order to build a car in an automobile
plant, we must decide on the order in which parts will be fabricated, fin-
ished, painted, combined, and so on. We must schedule jobs on different
machines, each of which needs to work on different parts for a different
amount of time. The aim is to maximize the output of a factory, so this
is an optimization search problem. By applying simulated annealing (a
kind of local search) to the car design problem, an engineer at General
Motors found a way to save $20 per automobile.

6.3 Propositional satisfiability

One problem which has received a huge amount of attention is proposi-
tional satisfiability, also known as SAT. This is an NP-hard problem —
in fact, the original NP-hard problem — but can often be solved efficiently
in practice. Here, we are given a sentence in propositional logic; in other
words, a sentence built out of a set of propositional variables A1, . . . , An,
each of which can be either true or false, and the propositional connectives
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∧ (and), ∨ (or), and ¬ (not). For example, the following sentence is true if
and only if A and B are either both true or both false:

(A ∧ B) ∨ (¬A ∧ ¬B)

Given a sentence in propositional logic, our goal is to determine if there is a
satisfying assignment, meaning an assignment of true or false to each of
the variables which causes the sentence to evaluate to true.

SAT is an important problem because many other problems in AI, such
as planning, can be solved by turning it into a huge SAT problem. In fact,
one effective way to solve many other AI problems is by converting them
into a big SAT problem, and feeding it to a state-of-the-art SAT solver.
This takes advantage of the immense effort which has already been spent
engineering efficient SAT solvers, and has the added benefit that we get a
free performance boost when newer and better SAT solvers are released.

When we discuss SAT algorithms, we consider a particular type of propo-
sitional sentence called conjunctive normal form (CNF). This form is
popular because it significantly simplifies the process of designing SAT algo-
rithms, yet there exists a straightforward procedure to translate any propo-
sitional sentence into CNF.

To define CNF, we first introduce some terminology:

• A literal is a single variable, possible negated. For example, A3 or ¬A5.

• A clause is a disjunction (“or”) of literals. In other words, it is true if
any one of the literals is true. For example, A3 ∨ ¬A7 ∨ A8.

A CNF sentence is a conjunction (“and”) of clauses. Therefore, a CNF
sentence evaluates to true if and only if at least one of the literals is satisfied
in each clause. Here is an example CNF sentence:

(A1 ∨ A3 ∨ ¬A4) ∧ (¬A1 ∨ A2 ∨ A3) ∧ A5

Since our goal is for the number of unsatisfied clauses to equal zero, we can
formulate it as a local search problem in the following way:

• States: complete assignments to all of the variables

• Operators: flipping the truth value of a single variable

• Cost: the number of unsatisfied clauses
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Greedy hill-climbing search for SAT, also known as GSAT, iteratively flips
the variable which causes the greatest net gain in the number of satisfied
clauses. Ties are broken randomly. Despite its simplicity, GSAT is a surpris-
ingly effective SAT algorithm. There’re also many other algorithms (such as
WalkSAT) which implement various improvements to GSAT, and work even
better. The current state-of-the-art can solve often problems with tens of
thousands of variables, which is quite impressive for an NP-hard problem.
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Additional notes

• Figure 1:
states: integer locations of tiles (ignore intermediate positions)
actions: move blank left, right, up, down (ignore unjamming etc.)
goal test : = goal state (given)
path cost : 1 per move

• Optimal solution of n-Puzzle family is NP-hard]
• State vs node

Fig. 3.1 States vs. nodes: A state is a
(representation of) a physical configu-
ration, a node is a data structure con-
stituting part of a search tree. A search
graph includes parent, children, depth,
path cost g(x). States do not have par-
ents, children, depth, or path cost!
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• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated/expanded
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Repeated states: Failure to detect repeated states can turn a linear
problem into an exponential one!
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• More search algorithms:

– bi-directional search
– see http://en.wikipedia.org/wiki/Graph traversal
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Constraint satisfaction
problems (CSP)
In the previous set of notes, we discussed the application of local search
algorithms to problems such TSP, 8-queens and SAT. In those problems, we
were interested in finding a solution, but we didn’t care how we get to a
good state. Greedy hill-climbing search is an effective algorithm for these
problems, but for a subset of them, we will be able to devise more efficient
search algorithms, ones that rely on our making explicit more of the structure
in the problem.

Recall that by incorporating a heuristic function, we converted uniform
cost search into a much better algorithm, A∗. The heuristic function was a
way to convey information about the problem to the algorithm, so that A∗

could reason about what nodes it could skip expanding, and still guaran-
tee finding an optimal solution. That reasoning process was an example of
inference.

In today’s lecture, we’ll describe a formalism that makes more of the
structure of certain search problems explicit to the search algorithm, so that
it can reason more “deeply” into the problem and perform deeper inference
regarding the space of solutions. Specifically, we will describe constraint
satisfaction problems (CSP), where the goal is to find assignments to a
set of variables, so that the assignments satisfy a certain set of constraints.
The CSP problem specification will allow us to do inference to prune off
huge portions of the search space which would have been explored by simpler
algorithms such as blind search. In some cases, it will also help us to choose
the most promising areas of the state space to explore first.

1
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(a) (b)

Figure 1: (a) A map which we want to color using only three colors, with no
two adjacent countries sharing the same color. (b) A portion of the search
tree if we attempt to solve the problem using naive depth-first search. Note
that the search continues down the left hand side even though the color
constraint is already violated after just two steps.

1 Problem Definition

First, a motivating example. Consider the problem of coloring the map in
Figure 1 with no more than three colors, such that no two adjacent countries
share the same color. How might we solve this problem naively using depth-
first search? We define a variable Ci for each region, which can take values
in the set {red, green, blue}. The states will be partial assignments of values
(colors) to the variables. The operator takes the next uncolored region, and
colors it. The goal test takes a full assignment of colors to all of the countries
and checks if all pairs of adjacent countries have different colors.

What happens when we apply naive depth first search (DFS) using this
formalism? Part of the search tree is shown in Figure 1. The algorithm
first proceeds down the left-hand side of the search tree, assuming the first
operator is to color the next country red. Therefore, it immediately colors
countries 1 and 2 red. This seems silly to us, because we know there can’t
possibly be a satisfying solution where both of these countries are red. But
remember that for general search, the goal test is simply a black box which
takes a state and tells us if it is a goal. It can’t tell us whether or not a state
might lead to a goal later on, and so after having colored countries 1 and 2
red, it will waste a large amount of time exploring all possible combinations
of colors for countries 3, 4, . . . , 7, not realizing that there’s no combination
of colors for them that could lead to a solution in this leftmost portion of the
tree where countries 1 and 2 have already been colored red.

In order to make this sort of information available to the algorithm, we
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must make the constraints explicit, or declarative. This will allow us to
construct algorithms which can prune large portions of the search space as
soon as inconsistencies are introduced.

A constraint satisfaction problem (CSP) comprises the following:

• A set V = {v1, . . . , vn} of variables. In our example, V is the set of
countries.

• A finite domain D = {d1, . . . , dm} of possible values for each variable.
(When the domain is different for different variables, we will use Di

to denote the domain of variable Vi.) In our example, D is the set
{red, green, blue}.

• A set C of constraints. Each constraint defines some restriction on
the possible values a subset of the variables may jointly take. Each
constraint is defined by specifying a subset V ′ ⊆ V of variables, and
the set of legal values (tuples) for the variables in V ′. For example,
the constraint that neighboring countries have different colors can be
represented as:

{(red, green), (red, blue), (green, red),

(green, blue), (blue, red), (blue, green)}

Our goal is to find a set of domain values to assign to all the variables Vi.
so that all the constraints in C are satisfied simultaneously. Let us look now
at some additional examples of CSPs.

1.1 8 queens problem

Recall that, in chess, a queen can attack any piece which lies on the same
row, column, or diagonal. We want to place 8 queens on a chess board such
that no one queen can attack any other queen. An example solution to the
8 queens problem is shown in Figure 2.

There are many ways to formulate the problem of finding a solution to
the 8 queens problem as a CSP. Here is a fairly good one, which uses the
insight that there has to be exactly one queen per column:

• Variables: Vi for i = 1, . . . 8, representing the row number of the queen
in the ith column.

• Domain: {1, . . . , 8}
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Figure 2: An example of a solution to the 8 queens puzzle.

• Constraints: For each Vi and Vj, the constraint that they cannot attack
each other. For each Vi and Vj, (ri, rj) is a legal pair of values if:

ri 6= rj for i 6= j

|ri − rj| 6= |i − j| for i 6= j

The first line above ensures that the queens in columns i and j aren’t
in the same row (ri 6= rj). The second line above ensures that the
queens in columns i and j aren’t along the same diagonal. (This is
perhaps an unfortunately cryptic way of writing it, but it is basically
the constraint that the difference in x-coordinate |ri− rj| isn’t the same
as the difference in y-coordinate |i−j|—in other words, that they aren’t
on the same diagonal.)

1.2 Scheduling Ph.D. visits

Here’s our third example. It’s visiting weekend for Stanford Ph.D. admits,
and there are n admitted students who want to meet with all n professors.
All these meetings must happen in the n available time slots; further, each
person can be in only one meeting at a time, so if a student and a professor
are meeting at some time, then neither one of them can have any other
meeting at the same time. We can represent this as a CSP:
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Figure 3: An example of a completed Latin square.

• Variables: Vij for each student i and professor j, giving the time slot
in which they meet.

• Domain: {1, . . . , n}

• Constraints: For all i, j, i′ 6= i, and j′ 6= j, we have Vij 6= Vi′j and
Vij 6= Vij′. In other words, no student or professor can be in more than
one meeting at a time.

We can also represent this problem pictorially. Imagine a matrix where
the rows and columns represent students and professors respectively, and the
value in each cell represents the meeting time. If we use a different color
to represent each of the n possible timeslots, the problem is to find a way
to color the cells such that each color appears only once in each row and
column. This is also known as the Latin square problem, and an example
solution is shown in Figure 3. Often, we are interested in solving a harder
problem: given an assignment of colors to a subset of the cells, is it possible
to find a coloring of the remaining cells which gives a Latin square?

It turns out that, more generally, most scheduling problems can be for-
mulated as CSPs.1

2 Inference algorithms

Now that we’ve defined the constraint satisfaction problem, how do we ac-
tually solve it? Actually, we are not going to present individual monolithic

1For example, in case our Ph.D. visit weekend scenario seems contrived, note that n

students, each of whom wants to meet a different subset of m professors, in a total of t

timeslots (and with each professor being available for a different subset of the timeslots),
is also a CSP, and this is what actually happens at Stanford’s Ph.D. visit weekend. This
more general formulation doesn’t lead to the nice Latin square solutions, though.
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algorithms for solving CSPs. Rather, we will present three inference pro-
cedures of increasing sophistication, and then we will discuss a variety of
heuristics which further help in the search process. Our inference procedures
will allow us to rule out large sections of the search tree by proving it could
not possibly contain a solution. These inference procedures and heuristics
will be embedded in the overall search algorithm, and can be mixed and
matched in various ways depending on the task at hand.

Recall our description previously of a depth-first search process over a
state space of partial assignments to variables. Our operators in the search
space will take one unassigned variable, and assign a value to it. This depth-
first search algorithm will serve as our overall template. Now, however, we
will check at each node which assignments could possibly lead to solutions.
This will allow us to select more promising assignments for each variable, or
to backtrack earlier when it is clear no assignment will work.

2.1 Consistency checking

When we discussed the map coloring example, we saw that naive depth-
first search wasted time considering an entire section of the search tree even
though it had already assigned two neighboring countries the same color. The
most basic inference algorithm, consistency checking, simply rules out this
case. Specifically, we say that a partial assignment is consistent if it does
not already violate any of the constraints in C.2 In consistency checking, we
simply don’t assign any value vi to Vi which leads to an inconsistent partial
assignment. For instance, in map coloring, we don’t even consider coloring
C2 red if we have already colored C1 red. As shown in Figure 4, this often
allows us to backtrack early.

2.2 Forward checking

A somewhat more powerful inference algorithm is called forward checking.
We don’t have to wait until we assign a value vj to variable Vj to check which
assignments are consistent. Rather, each time we instantiate a variable Vi, we
can propagate all of its constraints forward. For each variable Vj which has
not been instantiated, we remove from its domain all values which conflict
with Vi. An example is shown in Figure 5. The key advantage of forward

2Technically, this definition only works for binary constraints (constraints between two
variables). For N -ary constraints with N > 2, an assignment to a subset of the variables
in a constraint C is consistent if there exists some tuple in C which does not contradict
that assignment.
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Figure 4: The complete search tree for solving the 4 queens problem using
consistency checking.
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checking over consistency checking is that it allows us to detect early on
when a given variable has no possible consistent assignments, and therefore
backtrack. A case where this makes a difference is demonstrated in Figure 6.
When we only use consistency checking, we have to wait until the offending
variable V6 is actually instantiated.

2.3 Arc consistency and constraint propagation

The most powerful inference algorithm we will discuss here, constraint
propagation, actually considers pairs of uninstantiated variables and rules
out inconsistent pairings. The goal is to eliminate values from domains until
all of the domains become arc consistent, a term we define shortly. This
often rules out significantly more possibilities than forward checking, but at
a much larger computational cost. For simplicity, let’s restrict our attention
to binary constraints (those involving only two variables).

For intuition, consider a pair of variables Vi and Vj , with domains Di

and Dj. (These are not the original domains from the problem definition,
but rather the domains with some values already removed by constraint
propagation.) Suppose we try all of the assignments vj ∈ Dj for Vj , and
all of them turn out to be inconsistent with some specific assignment vi to
Vi. We can then rule out assigning vi to Vi, since it is inconsistent with all
remaining values for Vj.

Definition. Let c be a constraint over two variables Vi and Vj. A value vi

for Vi is c-consistent with Dj if there is some possible assignment vj ∈ Dj

to Vj which does not violate c (more formally, (vi, vj) ∈ c). A domain Di is
c-consistent with a domain Dj if all values vi ∈ Di are c-consistent with Dj .
If Di is c-consistent with Dj, we also say that Di is arc consistent with
Dj.

3

The basic step in our algorithm is constraint propagation. Given
a constraint c over variables Vi and Vj, we propagate c from j to i by
eliminating from Di all values vi that are not c-consistent with Dj. After
this step, Di will be c-consistent with Dj.

The goal of arc consistency checking is to ensure that all pairs of domains
are arc-consistent. To ensure arc consistency, on each pass over the variables,
we perform constraint propagation on all pairs Vi, Vj of variables for i 6=
j. Note that our definitions of c-consistency and constraint propagation

3For general CSPs, two domains Di and Dj can be included in multiple constraints,
and in this case, c-consistency and arc consistency are different. Here, however, we restrict
ourselves to the case of binary constraints, so we treat the two as the same.
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Figure 5: The complete search tree for solving the 4 queens problem using
forward checking.
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Figure 6: An example of a search node in the 6 queens puzzle where forward
checking saves a lot of time relative to consistency checking. As soon as we
instantiate the fourth queen, we detect that the sixth queen has no moves
left, and we can backtrack. Using consistency checking, we would have to
wait until we instantiated the sixth queen, thereby going two levels deeper
into the search tree.
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are not symmetric, so we must perform constraint propagation separately
on (Vi, Vj) and (Vj , Vi). Because removing a value from one domain might
make it possible to remove other values from other domains, we must keep
repeating the above procedure until the graph is arc consistent. (Make sure
you understand why this procedure will eventually terminate and guarantee
arc consistency.)

In our description of the algorithm thus far, we talked about iterating
over all pairs of variables Vi, Vj. We described the procedure this way since
it made it conceptually simpler to describe, but repeatedly iterating over all
pairs of variables would be unnecessarily inefficient, and real implementations
of arc consistency typically use somewhat more efficient ways to organize
the ordering of the constraint propagation steps and keep track of what
constraints need to be propagated next. (For example, one such algorithm
is AC-3, which is described in the textbook.)

Suppose we run arc consistency to convergence, until no more domain
values can be eliminated. What happens when we’re done propagating con-
straints at a particular point in the search tree? There are three possibilities:

• For some variable Vi, we have Di = ∅. We know then the problem is
inconsistent, so we can backtrack.4

• For all variables Vi, we have |Di| = 1. I.e., every Di is a singleton set. In
this case, we are done—we’ve found a solution, and can simply assign all
remaining variables to the value in their corresponding domains. (Why
are we guaranteed that this won’t violate any additional constraints?)

• Di has multiple remaining values. In this case, we have to keep search-
ing. I.e., we instantiate some value for Di, and keep searching.

In practice, full arc consistency is often too expensive to run deep in the
inner loop of a search algorithm, so we usually make a compromise between
effective inference and computational efficiency. For instance, one common
choice is to check arc consistency only at the very highest levels of the search
tree, and then use only forward checking for the rest of the search. Al-
ternatively, we might check arc consistency only for a fixed subset of the
constraints. This is the usual tradeoff between expensive inference to allow

4Note that these domain variables Di (in both the cases of forward checking and con-
straint propagation) depend on what node of the search tree we are in. In particular, when
our DFS procedure backtracks and “unassigns” some variable, we need some sort of data
structure to keep track of which values were previously removed from a given domain Di

and need to be added them back as part of the backtracking step.
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us to search fewer nodes, vs. using cheaper inference but more brute force
to search more nodes.

3 Heuristics

In the last section, we outlined three inference algorithms to use inside the
search. Even with these algorithms, however, as part of DFS we have to
make two arbitrary decisions:

• Which variable to instantiate next.

• For a given variable, which values in the domain to try first.

For both of these, we have assumed a naive approach, where we arbitrarily
numbered our variables V1, . . . , Vn and the domain values d1, . . . , dn, and we
checked them in those orders. It turns out we can do significantly better
using two simple heuristics. These heuristics can be used with any of the
three inference algorithms presented above.

3.1 Most constrained variable

First, we tackle the question of which variable to instantiate next. Intuitively,
if we are exploring the wrong part of the search tree, we want to find out
as soon as possible. One way to do this is by using the most constrained
variable (MCV) heuristic (also called the minimum remaining values
(MRV) heuristic), in which we start by instantiating the variable with the
fewest remaining values left in its domain. The fewer values we have left, the
fewer we have to try before we reach a contradiction. As a special case of
this heuristic, if a variable only has one value left in its domain, we may as
well go ahead and assign that variable.

3.2 Least-constraining value

Once we’ve chosen a variable to instantiate, in what order do we try the
different values? In this case, the order in which we choose values won’t
affect how long it takes to find a contradiction. If there is a contradiction,
we will have to try all of the values no matter what. On the other hand, if we
are in the correct part of the search tree, we want to find a correct solution
as soon as possible. This suggests choosing the value which would remove
the fewest values from other variables’ domains, or the least constraining



13

value (LCV), since this leaves more of our options open, so that there’s
hopefully more likely for there to be a solution to be found still.

Note a key difference between these two heuristics in terms of how we treat
them when backtracking. Under the LCV heuristic, if we color Country 2
green and it doesn’t work, it makes sense to backtrack and try red. In
contrast, choosing variable ordering is a non-backtrack step. E.g., if we
choose to color Country 2 first and find that that doesn’t work—none of the
values work with our current assignment—then it doesn’t make sense to go
back and try coloring Country 4 first.
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Machine Learning
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This chapter gives a brief historical introduction to learning machines and
neural networks, before treating this area in a more modern fashion in the
following chapters.

5.1 Learning Machines

We have, so far, mainly looked at programming strategies to solve complex
tasks. Specifically, we formulated complex tasks as search problems in a con-
figuration space and then discussed general search strategies in potentially large
spaces. Search is a huge component of AI. Of course, the real challenge is with
the AI engineer to translate the problem into the programmable structure (ab-
stractions) and to find the principle solution strategy.

A further main area of AI is that of reasoning. In this area, we consider
some information given to us and how we combine such information to make
statements that are derived from such facts (e.g. if such and such, then ...).
This included propositional logic and higher order logic.

Many of these strategies have gone a long way to solve complex tasks such
as providing support for decision making or making computers that are good
game players. However, many years of research and the analysis of common
challenges has pointed to a common problem in AI. The major challenges for
AI is that many problem domains in the real world are, at least in the eyes
of a common observer, ever changing and unreliable. Modern research is AI is
therefore looking into tackling this problem domain with two major strategies
that dominate modern AI, that of machine learning (ML) and probabilistic
reasoning (PR). Learning machines are important for several reasons. For
example, such machines have the potential to find solutions strategies on their
own when solutions are not known a priori, and, maybe more importantly,
machines that are capable of learning have the ability to adapt to changing
situations or to situations that have not been considered by the engineer when
setting up the machine.

The rest of this course will focus on ML and PR. Both areas deal with un-
certain environments and unreliable components such as sensors and actuators
where a probabilistic description is appropriate. A probabilistic framework
is therefore useful in the following treatments, and a refresher of probability
theory is provided in the tutorials.
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5.2 The McCulloch-Pitts neuron model

In this chapter, we briefly discuss the historical area of learning machines,
specifically the area that became known as Neural Networks. There was always
a strong interest of AI researchers in real intelligence, that is, to understand
the human mind. For example, both Alan Turing and John von Neumann
worked more directly on biological systems in their last years before their early
deaths, and human behaviour and the brain have always been of interest to AI
researchers.

Fig. 5.1 Representation of the boolean
OR function with a McCulloch-Pitts
neuron (TLU).
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A seminal paper, which has greatly influenced the development of early learn-
ing machines, is the 1943 paper by Warren McCulloch and Walter Pitts. In
this paper, they proposed a simple model of a neuron, called the threshold log-
ical unit or McCulloch–Pitts neuron (node). Such a unit is shown in Fig. 5.1A
with three input channels, although it could have an arbitrary number of in-
put channels. Input values are labeled by x with a subscript for each channel.
Each channel has also a weight parameter, θi. The TLU unit operates in the
following way. Each input value is multiplied with the corresponding weight
value, and these weighted values are then summed. If the weighted summed
input is larger than a certain threshold value, θ0, then the output is set to one,
and zero otherwise, that is,

hθ(x) =
{

1 if
∑
i θixi = θTx > θ0

0 otherwise . (5.1)

Such an operation resembles, to some extend, a neuron in that a neuron is
also summing synaptic inputs and fires (has a spike in its membrane potential)
when the membrane potential is higher than some level. While McCulloch and
Pitts introduced this unit as a simple neuron model, But they also argued that
such a unit can perform computational tasks resembling boolean logic. This
is demonstrated in Fig. 5.1. The symbol h is used in these lecture notes since
the output of the perceptron is the hypothesis of the perceptron, given the
parameters θ.

5.3 The perceptron

The next major developments in this area were done by Frank Rosenblatt and
his engineering colleague Charles Wightman (Fig. 5.2), using such elements to
build a machine that Rosenblatt called the perceptron. As can be seen in the
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figures, they worked on a machine that can perform letter recognition, and
that the machine consisted of a lot of cables, forming a network of simple,
neuron-like elements.

Frank Rosenblatt

Charles Wightman Fig. 5.2 Neural Network computers in
the late 1950s.

The most important challenge for the team was to find a way how to adjust
the parameters of the model, the connection weights θi, so that the perceptron
would perform a task correctly. The procedure was to provide to the system a
number of examples, let’s say m input data, x(i) and the corresponding desired
outputs, y(i). The procedure to update the parameters of the systems based on
these training examples is called a learning rule, and this form of learning with
explicit examples is called supervised learning. The perceptron learning rule is
given by

θj := θj + α
(
y(i) − hθ(xi)

)
x

(i)
j . (5.2)

This learning rule is also known, or related to, the Widrow-Hoff learning rule,
the Adaline rule, and the Delta rule.1 It is often called the delta-rule because 1These learning rules are nearly identi-

cal, but are sometimes used in slightly
different contexts. We will not discuss
these issues further.

the difference between the desired and actual output (difference between actual
(training) data and hypothesis) to guide the learning. When multiplying out
the difference with the inputs we have end up with the product of the activity
between the inputs and output values for each synaptic channel. Such a learning
rule is also called Hebbian after the famous NovaScotian Donald Hebb.

There was a lot of excitement during the 1960s in the AI and psychology
community about such learning system that resemble some brain functions.
However, Minsky and Peppert showed in 1968 that such perceptrons can not
represent all possible boolean functions (sometimes called the XOR problem).
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While it was known at this time that this problem could be overcome by a lay-
ered structure of such perceptrons (called multilayer perceptrons), a learning
algorithms was not widely known at this time. This killed the field, and the
AI community concentrated on rule-based systems in the following years. The
generalization of a delta rule, known as error-backpropagation, was finally in-
troduced by Rumelhart, Hinton and Williams in 1992 (although Paul Werbos,
and also Sunichi Amari, used it before), and resulted in the explosion of the
field of Neural Networks. This area has now become known as machine learn-
ing, which has clarified a lot of the abilities and challenges of neural networks.
We therefore follow in the next sections a more contemporary path.

5.4 Summary

The area of Neural Networks has been active since the 1950s. A large potion of
this area is concerned with supervised learning, which we will discuss further in
the next sections. This area is now mainly absorbed into the field of machine
learning. There is also an active area modelling brain functions known as com-
putational neuroscience. This area is subject of CSCI6508/NESC4177 taught
in the winter term. While these fields have developed into some different di-
rections and have some distinct goals, there is now some exciting convergence
when it comes to unsupervised learning and complex modelling. This will be
subject of later discussions in this course.
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CS221 Lecture notes #5

Supervised learning
So far in this course, we have only considered problems where the entire state
of the world is known in advance. Rarely, however, can we completely specify
the state of the world a priori, so often the agent must be able to learn about
the world from actual observations. For instance, we might be interested in
automatically distinguishing different handwritten digits. It’s hard for us to
formally state a set of rules which distinguish handwritten 2’s from 5’s, and
so we can’t simply program it directly into the computer. Rather, we will
have an algorithm automatically figure it out from data. The general set
of techniques for doing this is known as machine learning. Since machine
learning is such a broad field, there is no single definition that everybody
agrees upon, but here are some attempts:

• Machine learning is the field of study that gives computers the ability
to learn without being explicitly programmed.1

• A computer program is said to learn from experience E with respect to
some task T and some performance measure P if its performance on T,
as measured by P, improves with experience E.2

An example of an early machine learning program was Arthur Samuel’s
chess playing program, which learned to play checkers by playing many games
against itself, and eventually learned to play much better than Samuel him-
self. Since them, machine learning has produced many practical applications.

For the next two lectures, we will focus on supervised learning, where
our algorithm will work with labeled training examples, or examples which

1Arthur, S. “Some studies in machine learning using the game of checkers.” IBM

Journal (3): 210-229.
2Mitchell, T. Machine Learning. McGraw-Hill, 1997.

1
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are labeled with the property we are trying to predict. For instance, if we
are trying to classify handwritten digits, labeled data would constitute image
files which are labeled by humans as being a particular digit.

1 Linear regression

As a motivating example, suppose we have a dataset giving the living areas
and prices of 47 houses from Portland, Oregon:

Living area (feet2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540

...
...

We can plot this data:
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Given data like this, how can we learn to predict the prices of other houses
in Portland, as a function of the size of their living areas?

To establish notation for future use, we’ll use x(i) to denote the “input”
variables (living area in this example), also called input features, and y(i)

to denote the “output” or target variable that we are trying to predict
(price). A pair (x(i), y(i)) is called a training example, and the dataset
that we’ll be using to learn—a list of m training examples {(x(i), y(i)); i =
1, . . . , m}—is called a training set. Note that the superscript “(i)” in the
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notation is simply an index into the training set, and has nothing to do with
exponentiation. We will also use X denote the space of input values, and Y

the space of output values. In this example, X = Y = R.
To describe the supervised learning problem slightly more formally, our

goal is, given a training set, to learn a function h : X 7→ Y so that h(x) is a
“good” predictor for the corresponding value of y. For historical reasons, this
function h is called a hypothesis. Seen pictorially, the process is therefore
like this:

Training 
    set

 house.)
(living area of

Learning 
algorithm

h predicted yx
(predicted price)
of house)

When the target variable that we’re trying to predict is continuous, such
as in our housing example, we call the learning problem a regression prob-
lem. When y can take on only a small number of discrete values (such as
if, given the living area, we wanted to predict if a dwelling is a house or an
apartment, say), we call it a classification problem.

To perform supervised learning, we must decide how we’re going to rep-
resent functions/hypotheses h in a computer. In linear regression, our
hypotheses are linear functions of the features. In the case of housing prices,
we have one feature x representing the area, and so our hypothesis is

hθ(x) = θ0 + θ1x.

(We will drop the subscript θ when there is no risk of confusion.) We might
also happen to know the number of bedrooms as well. In this case, we have
two features x1 and x2, so our hypothesis is

h(x) = θ0 + θ1x1 + θ2x2.

For the purposes of this lecture, our hypothesis will be a linear combination
of n features, plus the intercept θ0. For notational convenience, we introduce
the convention of letting x0 = 1. Then, we can rewrite our hypothesis as:

h(x) =

n
∑

i=0

θixi.
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Equivalently, we can rewrite this using an inner product:

h(x) = θT x,

where on the right-hand side we are viewing θ and x both as vectors in R
n+1,

and n is the number of input variables (not counting x0). We refer to θ as
the parameters, or weights, of the hypothesis. θ0 is also referred to as the
intercept term.

Now, given a training set, how do we pick, or learn, the parameters θ?
One reasonable method seems to be to make h(x) close to y, at least for
the training examples we have. To formalize this, we will define a function
that measures, for each value of the θ’s, how close the h(x(i))’s are to the
corresponding y(i)’s. We define the cost function:

J(θ) =
1

2

m
∑

i=1

(hθ(x
(i)) − y(i))2.

In other words, we penalize the squared magnitude of the error term
(hθ(x

(i)) − y(i))2 for each training example. This algorithm is commonly
referred to as ordinary least-squares.

2 Gradient descent

We want to choose θ so as to minimize J(θ). This is an optimization search
problem, since we are only interested in finding a good value of θ, and we
don’t care about the path we take to find it. This suggests using greedy
hill-climbing search. In our previous formulation, we applied a fixed set of
operators to generate all of the successor states, and then chose the successor
which minimized the cost function. This formulation is only appropriate for
discrete spaces, but fortunately, there is a continuous analog called gradi-
ent descent. The idea behind gradient descent is to take a series of small
steps in the direction of steepest descent. This direction is given by the neg-
ative gradient of J(θ), where each component is the corresponding partial
derivative of J .

In other words, we start with an arbitrary “initial guess” for θ, and then
apply the following update rules:3

θj := θj − α
∂

∂θj

J(θ).

3We use := to denote assignment and = to denote mathematical equality. For instance,
a := b is a computer operation assigning a variable a the value b, and a = b is making the
statement that a and b have the same value.
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(This update is simultaneously performed for all values of j = 0, . . . , n.)
Here, α is called the learning rate.4

In order to implement this algorithm, we have to work out what is the
partial derivative term on the right hand side. We have:

∂

∂θj

J(θ) =
∂

∂θj

1

2

m
∑

i=1

(

hθ(x
(i)) − y(i)

)2

=
1

2

m
∑

i=1

∂

∂θj

(

hθ(x
(i)) − y(i)

)2

= 2 ·
1

2

m
∑

i=1

(

hθ(x
(i)) − y(i)

)

·
∂

∂θj

(hθ(x
(i)) − y(i))

=
m
∑

i=1

(

hθ(x
(i)) − y(i)

)

·
∂

∂θj

(

n
∑

k=0

θkx
(i)
k − y(i)

)

=
m
∑

i=1

(

hθ(x
(i)) − y

)

x
(i)
j

This gives the update rule:

θj := θj + α

m
∑

i=1

(

y(i)
− hθ(x

(i))
)

x
(i)
j .

The rule is called the LMS update rule (LMS stands for “least mean squares”).
This rule has several properties that seem natural and intuitive. For instance,
the magnitude of the update is proportional to the error term (y(i)−hθ(x

(i)));
thus, for instance, if we are encountering a training example on which our
prediction nearly matches the actual value of y(i), then we find that there
is little need to change the parameters; in contrast, a larger change to the
parameters will be made if our prediction hθ(x

(i)) has a large error (i.e., if it
is very far from y(i)).

The update rule we just described looks at every example in the entire
training set on every step, and is called batch gradient descent. Note
that, while gradient descent can be susceptible to local minima in general,
the optimization problem we have posed here for linear regression has only
one global, and no other local, optima; thus gradient descent always converges

4The learning rate is a parameter of the algorithm which must be set by hand. Choosing
the wrong value can lead to poor performance. Specifically, large values can cause gradient
descent not to converge, while small values can cause it to converge too slowly.
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(assuming the learning rate α is not too large) to the global minimum.5 Here
is an example of gradient descent as it is run to minimize a quadratic function.
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, with was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

800

900

1000

housing prices

square feet

pr
ic

e 
(in

 $
10

00
)

5More formally, it turns out that our least-squares cost function is convex, which
implies it has no local optima.



7

If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

Loop {

for i=1 to m, {

θj := θj + α
(

y(i) − hθ(x
(i))
)

x
(i)
j (for every j).

}

}

(We arrive at the update rule by taking the partial derivatives of 1
2
(hθ(x

(i))−
y(i))2 with respect to θj .) In this algorithm, we repeatedly run through the
training set, and each time we encounter a training example, we update the
parameters according to the gradient of the error with respect to that sin-
gle training example only. This algorithm is called stochastic gradient
descent (also incremental gradient descent). Whereas batch gradient
descent has to scan through the entire training set before taking a single
step—a costly operation if m is large—stochastic gradient descent can start
making progress right away, and continues to make progress with each exam-
ple it looks at. Often, stochastic gradient descent gets θ “close” to the min-
imum much faster than batch gradient descent. (Note however that it may
never “converge” to the minimum, and the parameters θ will keep oscillating
around the minimum of J(θ); but in practice most of the values near the min-
imum will be reasonably good approximations to the true minimum.6) For
these reasons, particularly when the training set is large, stochastic gradient
descent is often preferred over batch gradient descent.

3 Classification and logistic regression

Lets now talk about classification. This is just like the regression problem,
except that the values y we want to predict now take on only a small number
of discrete values. For now, we will focus on the binary classification

6While it is more common to run stochastic gradient descent as we have described it
and with a fixed learning rate α, by slowly letting the learning rate α decrease to zero as
the algorithm runs, it is also possible to ensure that the parameters will converge to the
global minimum rather then merely oscillate around the minimum.
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problem in which y can take on only two values, 0 and 1. (Most of what
we say here will also generalize to the multiple-class case.) For instance, if
we are trying to build a spam classifier for email, then x(i) may be some
features of a piece of email, and y may be 1 if it is a piece of spam mail, and
0 otherwise. 0 is also called the negative class, and 1 the positive class,
and they are sometimes also denoted by the symbols “-” and “+.” Given x(i),
the corresponding y(i) is also called the label for the training example. As
before, we will focus on linear models, so our goal is to find a linear function
which can distinguish one class from the other, such as the one shown below.

We could approach the classification problem ignoring the fact that y is
discrete-valued, and use our old linear regression algorithm to try to predict
y given x. However, it is easy to construct examples where this method per-
forms very poorly. Furthermore, linear regression would lead to the counter-
intuitive notion of predictions less than 0 or greater than 1. Linear regression
also leads to the strange effect shown below. This figure represents a decision
problem with a single feature, where we use linear regression to predict the
0 or 1 value of y given that one feature. The solid blue line shows the linear
regression fit, and the dashed blue line shows where the decision boundary
would lie if we use the arbitrary cutoff of 0.5. On the right, we add data
points far to the right of the decision boundary. Counter-intuitively, this
causes the estimated decision boundary to shift to the right.
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To fix this, lets change the form for our hypotheses hθ(x). We will choose

hθ(x) = g(θTx) =
1

1 + e−θT x
,

where

g(z) =
1

1 + e−z

is called the logistic function or the sigmoid function. Here is a plot
showing g(z):
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Notice that g(z) tends towards 1 as z → ∞, and g(z) tends towards 0 as
z → −∞. Moreover, g(z), and hence also h(x), is always bounded between
0 and 1. As before, we are keeping the convention of letting x0 = 1, so that
θT x = θ0 +

∑n

j=1 θjxj .
Our objective function (which we are trying to maximize, rather than

minimize) is the following:

ℓ(θ) =

m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))
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As we show in the next section, this objective function can be maximized
using the same batch gradient descent rule as before:

θj := θj + α

m
∑

i=1

(y(i)
− hθ(x

(i)))x
(i)
j .

4 Maximum likelihood

So far, we have presented recipes for the cost functions in linear regression
and logistic regression. Now we show the justification behind these formulas.
These two algorithms are both special cases of a general parameter estima-
tion method called maximum likelihood. The intuition behind maximum
likelihood is that we want to choose the hypothesis which makes the data
as probable as possible. What do we mean by probable? To answer this
question, we will have to define probabilistic models of how our data are
generated.

As a motivating example, suppose we are given a (possibly biased) coin,
and we want to determine the probability that this coin will come up heads.
A coin toss can be modeled as a Bernoulli random variable, i.e. one which
takes the value 1 with probability φ and 0 with probability 1 − φ. Suppose
now that we toss this coin m times. This will give us m independently
and identically distributed (IID) samples from this Bernoulli random
variable. By IID, we mean that each sample is drawn from the same distri-
bution, and each sample is independent of all of the others.

Let h represent the number of heads in the m tosses. You can check that
the probability of seeing a particular sequence of exactly h heads is m − h

tails is:
φh(1 − φ)m−h.

We call this probability the likelihood; it is the probability of the observed
data assuming the model parameters. We often denote this probability as
p(data; φ).7

In maximum likelihood, we choose our parameters to maximize the like-
lihood. Here, this gives us

φ = arg max
φ

P (data; φ) = arg max
φ

φh(1 − φ)m−h.

Sometimes we can compute the maximum analytically by setting the partial
derivatives equal to zero, and when this is not possible, we use an iterative

7Note that, in this class, we do not write p(data|φ), because we are not treating our
parameter φ as a random variable, and therefore it makes no sense to condition on it.
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procedure such as gradient descent. However, we don’t usually apply either of
these techniques to the likelihood itself, since it’s awkward to take derivatives
of products. Rather, we usually maximize the log likelihood log p(data; φ),
and this will always give us the same answer because the logarithm is a
monotonically increasing function. In the case of coin flips,

φ = arg max
φ

log p(data; φ) = arg max
φ

h log φ + (m − h) log(1 − φ).

We can find the maximum likelihood solution by setting ∂ log p(data;φ)
∂φ

to zero:

∂

∂φ
log p(data; φ) =

∂

∂φ
(h log φ + (m − h) log(1 − φ))

=
h

φ
−

m − h

1 − φ

φ

1 − π
=

h

m − h

φ =
h

m
.

Hence, the maximum likelihood estimate of φ turns out to be what we would
expect: φ = h

m
, the proportion of flips which came up heads.

Before we move on, it’s worth noting what maximum likelihood does not

give us. It does not give us the probability of a given value of φ being the
correct parameter. For instance, if you flip the coin once and it comes up
heads, the likelihood for φ = 1 would be 1, and the likelihood for φ = 0 would
be 0. But this doesn’t mean we know that φ = 1; in fact, we cannot make
any statements about the probability of the parameters. (There is a branch
of statistics called Bayesian statistics which does make such statements, but
it is beyond the scope of this lecture.)

4.1 Linear regression

Now we’ll show that linear regression and logistic regression are both special
cases of maximum likelihood. For linear regression, we assume we have a
fixed set of inputs x(1), . . . , x(m). For each input x(i), we assume that y(i) is a
Gaussian random variable whose mean is a linear function of x(i), and whose
variance is fixed at σ2. Mathematically,

p(y|x; θ) =
1

√
2πσ

exp

(

−
(y − θT x)2

2σ2

)

.
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Taking the log as we usually do,

log p(y|x; θ) = −
1

2
log(2πσ2) −

(y − θT x)2

2σ2
.

When summed over all of our training examples,

log p(y(1), . . . , y(m)
|x(1), . . . , x(m); θ) = log

m
∏

i=1

p(y(i)
|x(i); θ)

=

m
∑

i=1

log p(y(i)
|x(i); θ)

= −
m

2
log(2πσ2) −

m
∑

i=1

(y − θT x)2

2σ2

The −m
2

log(2πσ2) term doesn’t depend on θ, and so maximizing this is equiv-
alent to minimizing our least-squares objective function from before, so linear
regression is a special case of maximum likelihood where the observations are
assumed to be Gaussian. Note that we are treating the x(i)’s as fixed, and
the y(i)’s as random variables.

4.2 Logistic regression

The derivation for logistic regression is similar. As in linear regression, we
assume a fixed set of inputs x(i), and the targets y(i)’s are treated as ran-
dom variables. This time, the y(i)’s are Bernoulli random variables whose
parameter φ depends on x. In particular, we model φ as a logistic function
of θT x(i). Mathematically, we have

p(y = 1|x, θ) = hθ(x)

= g(θT x)

=
1

1 + exp(−θT x)

log p(y|x, θ) = y log hθ(x) + (1 − y) log(1 − hθ(x))
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The log likelihood, therefore, is

log p(y(1), . . . , y(m)
|x(1), . . . , x(m); θ) = log

m
∏

i=1

p(y(i)
|x(i); θ)

=
m
∑

i=1

log p(y(i)
|x(i); θ)

=

m
∑

i=1

y log hθ(x) + (1 − y) log(1 − hθ(x))

We have arrived at the objective function we presented earlier for logistic
regression.

Now we take the partial derivatives of the likelihood with respect to θ in
order to derive the gradient descent update rules. Before moving on, here’s
a useful property of the derivative of the sigmoid function g(z), which we
write a g′:

g′(z) =
d

dz

1

1 + e−z

=
1

(1 + e−z)2

(

e−z
)

=
1

(1 + e−z)
·

(

1 −
1

(1 + e−z)

)

= g(z)(1 − g(z)).

Written in vectorial notation, our updates will be given by θ := θ +
α∇θℓ(θ). (Note the positive rather than negative sign in the update formula,
since we’re maximizing, rather than minimizing, a function now.) Lets start
by working with just one training example (x, y), and take derivatives to
derive the stochastic gradient ascent rule:

∂

∂θj

ℓ(θ) =

(

y
1

g(θTx)
− (1 − y)

1

1 − g(θTx)

)

∂

∂θj

g(θT x)

=

(

y
1

g(θTx)
− (1 − y)

1

1 − g(θTx)

)

g(θTx)(1 − g(θTx)
∂

∂θj

θT x

=
(

y(1 − g(θT x)) − (1 − y)g(θTx)
)

xj

= (y − hθ(x)) xj

Above, we used the fact that g′(z) = g(z)(1 − g(z)). This therefore gives us
the stochastic gradient ascent rule

θj := θj + α
(

y(i)
− hθ(x

(i))
)

x
(i)
j
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The batch gradient descent rule will simply use the partial derivative summed
over all of the training examples:

θj := θj + α

m
∑

i=1

(

y(i)
− hθ(x

(i))
)

x
(i)
j

Thus, logistic regression is simply the special case of maximum likelihood
where the target variables are Bernoulli(φ), and φ is a sigmoidal function of
x. As it turns out, maximum likelihood is a widely applicable formalism,
and we will see one more example when we discuss decision tree learning in
the next lecture.
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Support Vector Machines
This set of notes presents the Support Vector Machine (SVM) learning al-
gorithm. SVMs are among the best (and many believe is indeed the best)
“off-the-shelf” supervised learning algorithm. To tell the SVM story, we’ll
need to first talk about margins and the idea of separating data with a large
“gap.” Next, we’ll talk about the optimal margin classifier, which will lead
us into a digression on Lagrange duality. We’ll also see kernels, which give
a way to apply SVMs efficiently in very high dimensional (such as infinite-
dimensional) feature spaces, and finally, we’ll close off the story with the
SMO algorithm, which gives an efficient implementation of SVMs.

1 Margins: Intuition

We’ll start our story on SVMs by talking about margins. This section will
give the intuitions about margins and about the “confidence” of our predic-
tions; these ideas will be made formal in Section 3.

Consider logistic regression, where the probability p(y = 1|x; θ) is mod-
eled by hθ(x) = g(θT x). We would then predict “1” on an input x if and
only if hθ(x) ≥ 0.5, or equivalently, if and only if θT x ≥ 0. Consider a
positive training example (y = 1). The larger θT x is, the larger also is
hθ(x) = p(y = 1|x; w, b), and thus also the higher our degree of “confidence”
that the label is 1. Thus, informally we can think of our prediction as being
a very confident one that y = 1 if θT x � 0. Similarly, we think of logistic
regression as making a very confident prediction of y = 0, if θT x � 0. Given
a training set, again informally it seems that we’d have found a good fit to
the training data if we can find θ so that θT x(i) � 0 whenever y(i) = 1, and

1
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θT x(i) � 0 whenever y(i) = 0, since this would reflect a very confident (and
correct) set of classifications for all the training examples. This seems to be
a nice goal to aim for, and we’ll soon formalize this idea using the notion of
functional margins.

For a different type of intuition, consider the following figure, in which x’s
represent positive training examples, o’s denote negative training examples,
a decision boundary (this is the line given by the equation θT x = 0, and
is also called the separating hyperplane) is also shown, and three points
have also been labeled A, B and C.

��

��
�� B

A

C

Notice that the point A is very far from the decision boundary. If we are
asked to make a prediction for the value of y at at A, it seems we should be
quite confident that y = 1 there. Conversely, the point C is very close to
the decision boundary, and while it’s on the side of the decision boundary
on which we would predict y = 1, it seems likely that just a small change to
the decision boundary could easily have caused out prediction to be y = 0.
Hence, we’re much more confident about our prediction at A than at C. The
point B lies in-between these two cases, and more broadly, we see that if
a point is far from the separating hyperplane, then we may be significantly
more confident in our predictions. Again, informally we think it’d be nice if,
given a training set, we manage to find a decision boundary that allows us
to make all correct and confident (meaning far from the decision boundary)
predictions on the training examples. We’ll formalize this later using the
notion of geometric margins.
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2 Notation

To make our discussion of SVMs easier, we’ll first need to introduce a new
notation for talking about classification. We will be considering a linear
classifier for a binary classification problem with labels y and features x.
From now, we’ll use y ∈ {−1, 1} (instead of {0, 1}) to denote the class labels.
Also, rather than parameterizing our linear classifier with the vector θ, we
will use parameters w, b, and write our classifier as

hw,b(x) = g(wT x + b).

Here, g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise. This “w, b” notation
allows us to explicitly treat the intercept term b separately from the other
parameters. (We also drop the convention we had previously of letting x0 = 1
be an extra coordinate in the input feature vector.) Thus, b takes the role of
what was previously θ0, and w takes the role of [θ1 . . . θn]T .

Note also that, from our definition of g above, our classifier will directly
predict either 1 or −1 (cf. the perceptron algorithm), without first going
through the intermediate step of estimating the probability of y being 1
(which was what logistic regression did).

3 Functional and geometric margins

Lets formalize the notions of the functional and geometric margins. Given a
training example (x(i), y(i)), we define the functional margin of (w, b) with
respect to the training example

γ̂(i) = y(i)(wT x + b).

Note that if y(i) = 1, then for the functional margin to be large (i.e., for our
prediction to be confident and correct), then we need wT x + b to be a large
positive number. Conversely, if y(i) = −1, then for the functional margin to
be large, then we need wT x + b to be a large negative number. Moreover,
if y(i)(wT x + b) > 0, then our prediction on this example is correct. (Check
this yourself.) Hence, a large functional margin represents a confident and a
correct prediction.

For a linear classifier with the choice of g given above (taking values in
{−1, 1}), there’s one property of the functional margin that makes it not a
very good measure of confidence, however. Given our choice of g, we note that
if we replace w with 2w and b with 2b, then since g(wT x+b) = g(2wT x+2b),



4

this would not change hw,b(x) at all. I.e., g, and hence also hw,b(x), depends
only on the sign, but not on the magnitude, of wT x + b. However, replacing
(w, b) with (2w, 2b) also results in multiplying our functional margin by a
factor of 2. Thus, it seems that by exploiting our freedom to scale w and b,
we can make the functional margin arbitrarily large without really changing
anything meaningful. Intuitively, it might therefore make sense to impose
some sort of normalization condition such as that ||w||2 = 1; i.e., we might
replace (w, b) with (w/||w||2, b/||w||2), and instead consider the functional
margin of (w/||w||2, b/||w||2). We’ll come back to this later.

Given a training set S = {(x(i), y(i)); i = 1, . . . ,m}, we also define the
function margin of (w, b) with respect to S as the smallest of the functional
margins of the individual training examples. Denoted by γ̂, this can therefore
be written:

γ̂ = min
i=1,...,m

γ̂(i).

Next, lets talk about geometric margins. Consider the picture below:

wA

γ

B

(i)

The decision boundary corresponding to (w, b) is shown, along with the
vector w. Note that w is orthogonal (at 90◦) to the separating hyperplane.
(You should convince yourself that this must be the case.) Consider the
point at A, which represents the input x(i) of some training example with
label y(i) = 1. Its distance to the decision boundary, γ(i), is given by the line
segment AB.

How can we find the value of γ(i)? Well, w/||w|| is a unit-length vector
pointing in the same direction as w. Since A represents x(i), we therefore
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find that the point B is given by x(i) − γ(i) · w/||w||. But this point lies on
the decision boundary, and all points x on the decision boundary satisfy the
equation wT x + b = 0. Hence,

wT

(

x(i) − γ(i) w

||w||

)

+ b = 0.

Solving for γ(i) yields

γ(i) =
wT x(i) + b

||w|| =

(

w

||w||

)T

x(i) +
b

||w|| .

This was worked out for the case of a positive training example at A in the
figure, where being on the “positive” side of the decision boundary is good.
More generally, we define the geometric margin of (w, b) with respect to a
training example (x(i), y(i)) to be

γ(i) = y(i)

(

(

w

||w||

)T

x(i) +
b

||w||

)

.

Note that if ||w|| = 1, then the functional margin equals the geometric
margin—this thus gives us a way of relating these two different notions of
margin. Also, the geometric margin is invariant to rescaling of the parame-
ters; i.e., if we replace w with 2w and b with 2b, then the geometric margin
does not change. This will in fact come in handy later. Specifically, because
of this invariance to the scaling of the parameters, when trying to fit w and b
to training data, we can impose an arbitrary scaling constraint on w without
changing anything important; for instance, we can demand that ||w|| = 1, or
|w1| = 5, or |w1 + b| + |w2| = 2, and any of these can be satisfied simply by
rescaling w and b.

Finally, given a training set S = {(x(i), y(i)); i = 1, . . . ,m}, we also define
the geometric margin of (w, b) with respect to S to be the smallest of the
geometric margins on the individual training examples:

γ = min
i=1,...,m

γ(i).

4 The optimal margin classifier

Given a training set, it seems from our previous discussion that a natural
desideratum is to try to find a decision boundary that maximizes the (ge-
ometric) margin, since this would reflect a very confident set of predictions
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on the training set and a good “fit” to the training data. Specifically, this
will result in a classifier that separates the positive and the negative training
examples with a “gap” (geometric margin).

For now, we will assume that we are given a training set that is linearly
separable; i.e., that it is possible to separate the positive and negative ex-
amples using some separating hyperplane. How we we find the one that
achieves the maximum geometric margin? We can pose the following opti-
mization problem:

maxγ,w,b γ

s.t. y(i)(wT x(i) + b) ≥ γ, i = 1, . . . ,m

||w|| = 1.

I.e., we want to maximize γ, subject to each training example having func-
tional margin at least γ. The ||w|| = 1 constraint moreover ensures that the
functional margin equals to the geometric margin, so we are also guaranteed
that all the geometric margins are at least γ. Thus, solving this problem will
result in (w, b) with the largest possible geometric margin with respect to the
training set.

If we could solve the optimization problem above, we’d be done. But the
“||w|| = 1” constraint is a nasty (non-convex) one, and this problem certainly
isn’t in any format that we can plug into standard optimization software to
solve. So, lets try transforming the problem into a nicer one. Consider:

maxγ,w,b

γ̂

||w||
s.t. y(i)(wT x(i) + b) ≥ γ̂, i = 1, . . . ,m

Here, we’re going to maximize γ̂/||w||, subject to the functional margins all
being at least γ̂. Since the geometric and functional margins are related by
γ = γ̂/||w|, this will give us the answer we want. Moreover, we’ve gotten rid
of the constraint ||w|| = 1 that we didn’t like. The downside is that we now
have a nasty (again, non-convex) objective γ̂

||w||
function; and, we still don’t

have any off-the-shelf software that can solve this form of an optimization
problem.

Lets keep going. Recall our earlier discussion that we can add an arbitrary
scaling constraint on w and b without changing anything. This is the key idea
we’ll use now. We will introduce the scaling constraint that the functional
margin of w, b with respect to the training set must be 1:

γ̂ = 1.
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Since multiplying w and b by some constant results in the functional margin
being multiplied by that same constant, this is indeed a scaling constraint,
and can be satisfied by rescaling w, b. Plugging this into our problem above,
and noting that maximizing γ̂/||w|| = 1/||w|| is the same thing as minimizing
||w||2, we now have the following optimization problem:

minγ,w,b

1

2
||w||2

s.t. y(i)(wT x(i) + b) ≥ 1, i = 1, . . . ,m

We’ve now transformed the problem into a form that can be efficiently
solved. The above is an optimization problem with a convex quadratic ob-
jective and only linear constraints. Its solution gives us the optimal mar-
gin classifier. This optimization problem can be solved using commercial
quadratic programming (QP) code.1

While we could call the problem solved here, what we will instead do is
make a digression to talk about Lagrange duality. This will lead us to our
optimization problem’s dual form, which will play a key role in allowing us to
use kernels to get optimal margin classifiers to work efficiently in very high
dimensional spaces. The dual form will also allow us to derive an efficient
algorithm for solving the above optimization problem that will typically do
much better than generic QP software.

5 Lagrange duality

Lets temporarily put aside SVMs and maximum margin classifiers, and talk
about solving constrained optimization problems.

Consider a problem of the following form:

minw f(w)

s.t. hi(w) = 0, i = 1, . . . , l.

Some of you may recall how the method of Lagrange multipliers can be used
to solve it. (Don’t worry if you haven’t seen it before.) In this method, we
define the Lagrangian to be

L(w, β) = f(w) +
l
∑

i=1

βihi(w)

1You may be familiar with linear programming, which solves optimization problems
that have linear objectives and linear constraints. QP software is also widely available,
which allows convex quadratic objectives and linear constraints.
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Here, the βi’s are called the Lagrange multipliers. We would then find
and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
∂L
∂βi

= 0,

and solve for w and β.
In this section, we will generalize this to constrained optimization prob-

lems in which we may have inequality as well as equality constraints. Due to
time constraints, we won’t really be able to do the theory of Lagrange duality
justice in this class,2 but we will give the main ideas and results, which we
will then apply to our optimal margin classifier’s optimization problem.

Consider the following, which we’ll call the primal optimization problem:

minw f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l.

To solve it, we start by defining the generalized Lagrangian

L(w, α, β) = f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w).

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β : αi≥0

L(w, α, β).

Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either gi(w) > 0 or hi(w) 6= 0
for some i), then you should be able to verify that

θP(w) = max
α,β : αi≥0

f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w) (1)

= ∞. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then θP(w) = f(w). Hence,

θP(w) =

{

f(w) if w satisfies primal constraints
∞ otherwise.

2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.
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Thus, θP takes the same value as the objective in our problem for all val-
ues of w that satisfies the primal constraints, and is positive infinity if the
constraints are violated. Hence, if we consider the minimization problem

min
w

θP(w) = min
w

max
α,β : αi≥0

L(w, α, β),

we see that it is the same problem (i.e., and has the same solutions as) our
original, primal problem. For later use, we also define the optimal value of
the objective to be p∗ = minw θP(w); we call this the value of the primal
problem.

Now, lets look at a slightly different problem. We define

θD(α, β) = min
w

L(w, α, β).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of θP we were optimizing (maximizing) with respect to α, β, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:

max
α,β : αi≥0

θD(α, β) = max
α,β : αi≥0

min
w

L(w, α, β).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d∗ = maxα,β : αi≥0 θD(w).

How are the primal and the dual problems related? It can easily be shown
that

d∗ = max
α,β : αi≥0

min
w

L(w, α, β) ≤ min
w

max
α,β : αi≥0

L(w, α, β) = p∗.

(You should convince yourself of this; this follows from the “max min” of a
function always being less than or equal to the “min max.”) However, under
certain conditions, we will have

d∗ = p∗,

so that we can solve the dual problem in lieu of the primal problem. Lets
see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.

3When f has a Hessian, then it is convex if and only if the hessian is positive semi-
definite. For instance, f(w) = w

T
w is convex; similarly, all linear (and affine) functions

are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

4I.e., there exists ai, bi, so that hi(w) = a
T

i
w + bi. “Affine” means the same thing as

linear, except that we also allow the extra intercept term bi.
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Under our above assumptions, there must exist w∗, α∗, β∗ so that w∗ is the
solution to the primal problem, α∗, β∗ are the solution to the dual problem,
and moreover p∗ = d∗ = L(w∗, α∗, β∗). Moreover, w∗, α∗ and β∗ satisfy the
Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

∂

∂wi

L(w∗, α∗, β∗) = 0, i = 1, . . . , n (3)

∂

∂βi

L(w∗, α∗, β∗) = 0, i = 1, . . . , l (4)

α∗
i gi(w

∗) = 0, i = 1, . . . , k (5)

gi(w
∗) ≤ 0, i = 1, . . . , k (6)

α∗ ≥ 0, i = 1, . . . , k (7)

Moreover, if some w∗, α∗, β∗ satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.

We draw attention to Equation (5), which is called the KKT dual com-
plementarity condition. Specifically, it implies that if α∗

i > 0, then gi(w
∗) =

0. (I.e., the “gi(w) ≤ 0” constraint is active, meaning it holds with equality
rather than with inequality.) Later on, this will be key for showing that the
SVM has only a small number of “support vectors”; the KKT dual comple-
mentarity condition will also give us our convergence test when we talk about
the SMO algorithm.

6 Optimal margin classifiers

Previously, we posed the following (primal) optimization problem for finding
the optimal margin classifier:

minγ,w,b

1

2
||w||2

s.t. y(i)(wT x(i) + b) ≥ 1, i = 1, . . . ,m

We can write the constraints as

gi(w) = −y(i)(wT x(i) + b) + 1 ≤ 0.

We have one such constraint for each training example. Note that from the
KKT dual complementarity condition, we will have αi > 0 only for the train-
ing examples that have functional margin exactly equal to one (i.e., the ones
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Lets move on. Looking ahead, as we develop the dual form of the problem,
one key idea to watch out for is that we’ll try to write our algorithm in terms
of only the inner product 〈x(i), x(j)〉 (think of this as (x(i))T x(j)) between
points in the input feature space. The fact that we can express our algorithm
in terms of these inner products will be key when we apply the kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b, α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wT x(i) + b) − 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Lets find the dual form of the problem. To do so, we need to first minimize
L(w, b, α) with respect to w and b (for fixed α), to get θD, which we’ll do by
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setting the derivatives of L with respect to w and b to zero. We have:

∇wL(w, b, α) = w −
m
∑

i=1

αiy
(i)x(i) = 0

This implies that

w =
m
∑

i=1

αiy
(i)x(i). (9)

As for the derivative with respect to b, we obtain

∂

∂b
L(w, b, α) =

m
∑

i=1

αiy
(i) = 0. (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w, b, α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))T x(j) − b

m
∑

i=1

αiy
(i).

But from Equation (10), the last term must be zero, so we obtain

L(w, b, α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))T x(j).

Recall that we got to the equation above by minimizing L with respect to w
and b. Putting this together with the constraints αi ≥ 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉.

s.t. αi ≥ 0, i = 1, . . . ,m
m
∑

i=1

αiy
(i) = 0,

You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later
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about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −maxi:y(i)=−1 w∗T x(i) + mini:y(i)=1 w∗T x(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, lets also take a more careful look at Equation (9), which

gives the optimal value of w in terms of (the optimal value of) α. Suppose
we’ve fit our model’s parameters to a training set, and now wish to make a
prediction at a new point input x. We would then calculate wT x + b, and
predict y = 1 if and only if this quantity is bigger than zero. But using (9),
this quantity can also be written:

wT x + b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x + b (12)

=
m
∑

i=1

αiy
(i)〈x(i), x〉 + b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-
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sion using the features x, x2 and x3 (say) to obtain a cubic function. To
distinguish between these two sets of variables, we’ll call the “original” input
value the input attributes of a problem (in this case, x, the living area).
When that is mapped to some new set of quantities that are then passed to
the learning algorithm, we’ll call those new quantities the input features.
(Unfortunately, different authors use different terms to describe these two
things, but we’ll try to use this terminology consistently in these notes.) We
will also let φ denote the feature mapping, which maps from the attributes
to the features. For instance, in our example, we had

φ(x) =





x
x2

x3



 .

Rather than applying SVMs using the original input attributes x, we may
instead want to learn using some features φ(x). To do so, we simply need to
go over our previous algorithm, and replace x everywhere in it with φ(x).

Since the algorithm can be written entirely in terms of the inner prod-
ucts 〈x, z〉, this means that we would replace all those inner products with
〈φ(x), φ(z)〉. Specificically, given a feature mapping φ, we define the corre-
sponding Kernel to be

K(x, z) = φ(x)T φ(z).

Then, everywhere we previously had 〈x, z〉 in our algorithm, we could simply
replace it with K(x, z), and our algorithm would now be learning using the
features φ.

Now, given φ, we could easily compute K(x, z) by finding φ(x) and φ(z)
and taking their inner product. But what’s more interesting is that often,
K(x, z) may be very inexpensive to calculate, even though φ(x) itself may
be very expensive to calculate (perhaps because it is an extremely high di-
mensional vector). In such settings, by using in our algorithm an efficient
way to calculate K(x, z), we can get SVMs to learn in the high dimensional
feature space space given by φ, but without ever having to explicitly find or
represent vectors φ(x).

Lets see an example. Suppose x, z ∈ R
n, and consider

K(x, z) = (xT z)2.
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We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)T φ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =





























x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3





























.

Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√

2cxi)(
√

2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown
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for n = 3)

φ(x) =













































x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3√
2cx1√
2cx2√
2cx3

c













































,

and the parameter c controls the relative weighting between the xi (first
order) and the xixj (second order) terms.

More broadly, the kernel K(x, z) = (xT z + c)d corresponds to a feature
mapping to an

(

n+d
d

)

feature space, corresponding of all monomials of the
form xi1xi2 . . . xik that are up to order d. However, despite working in this
O(nd)-dimensional space, computing K(x, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.

Now, lets talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if φ(x) and φ(z)
are close together, then we might expect K(x, z) = φ(x)T φ(z) to be large.
Conversely, if φ(x) and φ(z) are far apart—say nearly orthogonal to each
other—then K(x, z) = φ(x)T φ(z) will be small. So, we can think of K(x, z)
as some measurement of how similar are φ(x) and φ(z), or of how similar are
x and z.

Given this intuition, suppose that for some learning problem that you’re
working on, you’ve come up with some function K(x, z) that you think might
be a reasonable measure of how similar x and z are. For instance, perhaps
you chose

K(x, z) = exp

(

−||x − z||2
2σ2

)

.

This is a resonable measure of x and z’s similarity, and is close to 1 when
x and z are close, and near 0 when x and z are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example, the
answer is yes. (This kernel is called the Gaussian kernel, and corresponds
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to an infinite dimensional feature mapping φ.) But more broadly, given some
function K, how can we tell if it’s a valid kernel; i.e., can we tell if there is
some feature mapping φ so that K(x, z) = φ(x)T φ(z) for all x, z?

Suppose for now that K is indeed a valid kernel corresponding to some
feature mapping φ. Now, consider some finite set of m points (not necessarily
the training set) {x(1), . . . , x(m)}, and let a square, m-by-m matrix K be
defined so that its (i, j)-entry is given by Kij = K(x(i), x(j)). This matrix
is called the Kernel matrix. Note that we’ve overloaded the notation and
used K to denote both the kernel function K(x, z) and the kernel matrix K,
due to their obvious close relationship.

Now, if K is a valid Kernel, then Kij = K(x(i), x(j)) = φ(x(i))T φ(x(j)) =
φ(x(j))T φ(x(i)) = K(x(j), x(i)) = Kji, and hence K must be symmetric. More-
over, letting φk(x) denote the k-th coordinate of the vector φ(x), we find that
for any vector z, we have

zT Kz =
∑

i

∑

j

ziKijzj

=
∑

i

∑

j

ziφ(x(i))T φ(x(j))zj

=
∑

i

∑

j

zi

∑

k

φk(x
(i))φk(x

(j))zj

=
∑

k

∑

i

∑

j

ziφk(x
(i))φk(x

(j))zj

=
∑

k

(

∑

i

ziφk(x
(i))

)2

≥ 0.

The second-to-last step above used the same trick as you saw in Problem
set 1 Q1. Since z was arbitrary, this shows that K is positive semi-definite
(K ≥ 0).

Hence, we’ve shown that if K is a valid kernel (i.e., if it corresponds to
some feature mapping φ), then the corresponding Kernel matrix K ∈ R

m×m

is symmetric positive semidefinite. More generally, this turns out to be not
only a necessary, but also a sufficient, condition for K to be a valid kernel
(also called a Mercer kernel). The following result is due to Mercer.5

5Many texts present Mercer’s theorem in a slightly more complicated form involving
L

2 functions, but when the input attributes take values in R
n, the version given here is

equivalent.
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Theorem (Mercer). Let K : R
n × R

n 7→ R be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{x(1), . . . , x(m)}, (m < ∞), the corresponding kernel matrix is symmetric
positive semi-definite.

Given a function K, apart from trying to find a feature mapping φ that
corresponds to it, this theorem therefore gives another way of testing if it is
a valid kernel. You’ll also have a chance to play with these ideas more in
problem set 2.

In class, we also briefly talked about a couple of other examples of ker-
nels. For instance, consider the digit recognition problem, in which given
an image (16x16 pixels) of a handwritten digit (0-9), we have to figure out
which digit it was. Using either a simple polynomial kernel K(x, z) = (xT z)d

or the Gaussian kernel, SVMs were able to obtain extremely good perfor-
mance on this problem. This was particularly surprising since the input
attributes x were just a 256-dimensional vector of the image pixel intensity
values, and the system had no prior knowledge about vision, or even about
which pixels are adjacent to which other ones. Another example that we
briefly talked about in lecture was that if the objects x that we are trying
to classify are strings (say, x is a list of amino acids, which strung together
form a protein), then it seems hard to construct a reasonable, “small” set of
features for most learning algorithms, especially if different strings have dif-
ferent lengths. However, consider letting φ(x) be a feature vector that counts
the number of occurrences of each length-k substring in x. If we’re consider-
ing strings of english alphabets, then there’re 26k such strings. Hence, φ(x)
is a 26k dimensional vector; even for moderate values of k, this is probably
too big for us to efficiently work with. (e.g., 264 ≈ 460000.) However, using
(dynamic programming-ish) string matching algorithms, it is possible to ef-
ficiently compute K(x, z) = φ(x)T φ(z), so that we can now implicitly work
in this 26k-dimensional feature space, but without ever explicitly computing
feature vectors in this space.

The application of kernels to support vector machines should already
be clear and so we won’t dwell too much longer on it here. Keep in mind
however that the idea of kernels has significantly broader applicability than
SVMs. Specifically, if you have any learning algorithm that you can write
in terms of only inner products 〈x, z〉 between input attribute vectors, then
by replacing this with K(x, z) where K is a kernel, you can “magically”
allow your algorithm to work efficiently in the high dimensional feature space
corresponding to K. For instance, this kernel trick can be applied with
the perceptron to to derive a kernel perceptron algorithm. Many of the
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algorithms that we’ll see later in this class will also be amenable to this
method, which has come to be known as the “kernel trick.”

8 Regularization and the non-separable case

The derivation of the SVM as presented so far assumed that the data is
linearly separable. While mapping data to a high dimensional feature space
via φ does generally increase the likelihood that the data is separable, we
can’t guarantee that it always will be so. Also, in some cases it is not clear
that finding a separating hyperplane is exactly what we’d want to do, since
that might be susceptible to outliers. For instance, the left figure below
shows an optimal margin classifier, and when a single outlier is added in the
upper-left region (right figure), it causes the decision boundary to make a
dramatic swing, and the resulting classifier has a much smaller margin.

To make the algorithm work for non-linearly separable datasets as well
as be less sensitive to outliers, we reformulate our optimization (using `1

regularization) as follows:

minγ,w,b

1

2
||w||2 + C

m
∑

i=1

ξi

s.t. y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m.

Thus, examples are now permitted to have (functional) margin less than 1,
and if an example whose functional margin is 1 − ξi, we would pay a cost of
the objective function being increased by Cξi. The parameter C controls the
relative weighting between the twin goals of making the ||w||2 large (which
we saw earlier makes the margin small) and of ensuring that most examples
have functional margin at least 1.
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As before, we can form the Lagrangian:

L(w, b, ξ, α, r) =
1

2
wT w +C

m
∑

i=1

ξi −
m
∑

i=1

αi

[

y(i)(xT w + b) − 1 + ξi

]

−
m
∑

i=1

riξi.

Here, the αi’s and ri’s are our Lagrange multipliers (constrained to be ≥ 0).
We won’t go through the derivation of the dual again in detail, but after
setting the derivatives with respect to w and b to zero as before, substituting
them back in, and simplifying, we obtain the following dual form of the
problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m
m
∑

i=1

αiy
(i) = 0,

As before, we also have that w can be expressed in terms of the αi’s
as given in Equation (9), so that after solving the dual problem, we can
continue to use Equation (13) to make our predictions. Note that, somewhat
surprisingly, in adding `1 regularization, the only change to the dual problem
is that what was originally a constraint that 0 ≤ αi has now become 0 ≤
αi ≤ C. The calculation for b∗ also has to be modified (Equation 11 is no
longer valid); see the comments in the next section/Platt’s paper.

Also, the KKT dual-complementarity conditions (which in the next sec-
tion will be useful for testing for the convergence of the SMO algorithm)
are:

αi = 0 ⇒ y(i)(wT x(i) + b) ≥ 1 (14)

αi = C ⇒ y(i)(wT x(i) + b) ≤ 1 (15)

0 < αi < C ⇒ y(i)(wT x(i) + b) = 1. (16)

Now, all that remains is to give an algorithm for actually solving the dual
problem, which we will do in the next section.

9 The SMO algorithm

The SMO (sequential minimal optimization) algorithm, due to John Platt,
gives an efficient way of solving the dual problem arising from the derivation
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of the SVM. Partly to motivate the SMO algorithm, and partly because it’s
interesting in its own right, lets first take another digression to talk about
the coordinate ascent algorithm.

9.1 Coordinate ascent

Consider trying to solve the unconstrained optimization problem

max
α

W (α1, α2, . . . , αm).

Here, we think of W as just some function of the parameters αi’s, and for now
ignore any relationship between this problem and SVMs. We’ve already seen
two optimization algorithms, gradient ascent and Newton’s method. The
new algorithm we’re going to consider here is called coordinate ascent:

Loop until convergence: {

For i = 1, . . . ,m, {
αi := arg maxα̂i

W (α1, . . . , αi−1, α̂i, αi+1, . . . , αm).

}

}

Thus, in the innermost loop of this algorithm, we will hold all the vari-
ables except for some αi fixed, and reoptimize W with respect to just the
parameter αi. In the version of this method presented here, the inner-loop
reoptimizes the variables in order α1, α2, . . . , αm, α1, α2, . . .. (A more sophis-
ticated version might choose other orderings; for instance, we may choose
the next variable to update according to which one we expect to allow us to
make the largest increase in W (α).)

When the function W happens to be of such a form that the “arg max”
in the inner loop can be performed efficiently, then coordinate ascent can be
a fairly efficient algorithm. Here’s a picture of coordinate ascent in action:
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The ellipses in the figure are the contours of a quadratic function that
we want to optimize. Coordinate ascent was initialized at (2,−2), and also
plotted in the figure is the path that it took on its way to the global maximum.
Notice that on each step, coordinate ascent takes a step that’s parallel to one
of the axes, since only one variable is being optimized at a time.

9.2 SMO

We close off the discussion of SVMs by sketching the derivation of the SMO
algorithm. Some details will be left to the homework, and for others you
may refer to the paper excerpt handed out in class.

Here’s the (dual) optimization problem that we want to solve:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉. (17)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m (18)
m
∑

i=1

αiy
(i) = 0. (19)

Lets say we have set of αi’s that satisfy the constraints (18-19). Now,
suppose we want to hold α2, . . . , αm fixed, and take a coordinate ascent step
and reoptimize the objective with respect to α1. Can we make any progress?
The answer is no, because the constraint (19) ensures that

α1y
(1) = −

m
∑

i=2

αiy
(i).
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Or, by multiplying both sides by y(1), we equivalently have

α1 = −y(1)

m
∑

i=2

αiy
(i).

(This step used the fact that y(1) ∈ {−1, 1}, and hence (y(1))2 = 1.) Hence,
α1 is exactly determined by the other αi’s, and if we were to hold α2, . . . , αm

fixed, then we can’t make any change to α1 without violating the con-
straint (19) in the optimization problem.

Thus, if we want to update some subject of the αi’s, we must update at
least two of them simultaneously in order to keep satisfying the constraints.
This motivates the SMO algorithm, which simply does the following:

Repeat till convergence {

1. Select some pair αi and αj to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (α) with respect to αi and αj, while holding all the
other αk’s (k 6= i, j) fixed.

}
To test for convergence of this algorithm, we can check whether the KKT

conditions (Equations 14-16) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)

The key reason that SMO is an efficient algorithm is that the update to
αi, αj can be computed very efficiently. Lets now briefly sketch the main
ideas for deriving the efficient update.

Lets say we currently have some setting of the αi’s that satisfy the con-
straints (18-19), and suppose we’ve decided to hold α3, . . . , αm fixed, and
want to reoptimize W (α1, α2, . . . , αm) with respect to α1 and α2 (subject to
the constraints). From (19), we require that

α1y
(1) + α2y

(2) = −
m
∑

i=3

αiy
(i).

Since the right hand side is fixed (as we’ve fixed α3, . . . αm), we can just let
it be denoted by some constant ζ:

α1y
(1) + α2y

(2) = ζ. (20)

We can thus picture the constraints on α1 and α2 as follows:
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α2

α1

α1 α2

C

C

(1)
+

(2)y y =ζH

L

From the constraints (18), we know that α1 and α2 must lie within the box
[0, C]× [0, C] shown. Also plotted is the line α1y

(1) +α2y
(2) = ζ, on which we

know α1 and α2 must lie. Note also that, from these constraints, we know
L ≤ α2 ≤ H; otherwise, (α1, α2) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line α1y

(1) + α2y
(2) = ζ looks like, this won’t always necessarily be

the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissable values for α2 that will ensure that α1, α2

lie within the box [0, C] × [0, C].
Using Equation (20), we can also write α1 as a function of α2:

α1 = (ζ − α2y
(2))y(1).

(Check this derivation yourself; we again used the fact that y(1) ∈ {−1, 1} so
that (y(1))2 = 1.) Hence, the objective W (α) can be written

W (α1, α2, . . . , αm) = W ((ζ − α2y
(2))y(1), α2, . . . , αm).

Treating α3, . . . , αm as constants, you should be able to verify that this is
just some quadratic function in α2. I.e., this can also be expressed in the
form aα2

2 + bα2 + c for some appropriate a, b, and c. If we ignore the “box”
constraints (18) (or, equivalently, that L ≤ α2 ≤ H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.
We’ll let αnew,unclipped

2 denote the resulting value of α2. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to α2 but subject to the box constraint, then we can find the resulting
value optimal simply by taking αnew,unclipped

2 and “clipping” it to lie in the



25

[L,H] interval, to get

αnew
2 =







H if αnew,unclipped
2 > H

αnew,unclipped
2 if L ≤ αnew,unclipped

2 ≤ H

L if αnew,unclipped
2 < L

Finally, having found the αnew
2 , we can use Equation (20) to go back and find

the optimal value of αnew
1 .

There’re a couple more details that are quite easy but that we’ll leave you
to read about yourself in Platt’s paper: One is the choice of the heuristics
used to select the next αi, αj to update; the other is how to update b as the
SMO algorithm is run.
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Supervised learning summary
In the previous sets of notes on supervised learning, we discussed many spe-
cific algorithms for supervised learning. Now, we’re going to take a step back
and discuss some of the principles of how to use these learning algorithms to
achieve good performance.

1 Multi-class classification

When discussing logistic regression and decision trees, we simplified our task
by focusing on binary classification tasks, where there are only two categories
to distinguish. However, many problems require us to distinguish more than
two categories. Many binary classification algorithms can be extended to
directly deal with multiple classes, but there is one general approach we
can take even for algorithms which don’t have straightforward multiclass
extensions.

In one-vs.-all (also called one-vs.-many or one-vs.-rest), if we are
trying to distinguish between N different classes, we train N different clas-
sifiers, each one of which tries to distinguish one class from all the rest. For
instance, suppose we are given the three-class data shown in Figure 1 (a).
We construct three different classification problems, each of which uses one
of the three classes for the positive examples and the other two classes for
the negative examples. The resulting classifiers are shown.

How do we combine these classifiers to get a prediction on a novel example
x? Each of the classifiers outputs some sort of confidence score that it sees a
positive example. For instance, with logistic regression, the confidence score
is given by hθ(x). For decision trees, it is the probability estimate associated
with the corresponding leaf node. Our prediction on the new example x will

1
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Figure 1: (a) A multiclass classification problem, with three categories. (b-
d) Learned classifiers for each of the binary classification subproblems in
one-vs.-all.

simply be the class for which the classifier returns the highest confidence
score of the example being a member of that class.

2 Bias, variance, and generalization error

In the first machine learning lecture, we introduced the idea of overfitting or
underfitting. Recall that we said a model underfits the training data if, like
the first model in Figure 2 (b), it does not capture all of the structure available
from the data. On the other hand, a model overfits if it captures too many
of the ideosyncrasies of the training data, as in Figure 2 (d). In this section,
we define more formally what we mean by overfitting and underfitting.

2.1 Regression

For the moment, let’s focus on the regression problem. Suppose we have
a training set Strain = {(x(1), y(1)), . . . , (x(m), y(m))} sampled independently
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Figure 2: (a) Five data points to which we would like to fit a polynomial
model. (b) The linear regression fit of a linear function to the five data
points. New test examples are shown in red. (c) The linear regression fit
of a quadratic polynomial. (d) The linear regression fit of a fourth-degree
polynomial.
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and identically distributed (IID) from some distribution D. Define the av-
erage training error εstrain

(hθ) of a hypothesis hθ to be:

εStrain
(hθ) =

1

m

m
∑

i=1

(hθ(x
(i)) − y(i))2.

But we’re not actually interested in classifying training examples, since we
have their labels already. What we care about is the generalization error,
or the expected error on new examples (drawn from D). This is written as
as:

ε(hθ) = E(x,y) ∼ D[(hθ(x) − y)2].

Now we can be more precise about why underfitting and overfitting are
bad: they lead to high generalization error. Figure 2 shows what happens
when we draw new examples from D. The linear model shown in (b) has
high generalization error because it is too simple a model to capture all of
the structure in the data. The fourth-order polynomial in (d), however, has
high generalization error because it varies too wildly. The best model, the
quadratic polynomial in (c), has the lowest generalization error because it
captures all the structure in the data, but no more.

We often describe models which underfit as having high bias, and models
which overfit as having high variance. To make sense of these terms, imagine
fitting the model parameters to a series of random data sets drawn from D.
Such a simulation is shown in Figure 3. The linear model will typically
generate roughly the same parameters on each run, and so the “variance”
from one trial to the next is small. However, all of these models will be
systematically “biased” to underestimate the target values for points in the
middle and overestimate the target values of points near the ends. On the
other hand, the fourth-degree polynomial estimate varies wildly from trial to
trial, and therefore it has high variance. But on average, it tends to guess
correctly. This is shown on the right, where the parameters are averaged
over many iterations.

We can’t directly find out the generalization error, since we only have
a finite set of data to work with. Instead, we estimate generalization error
using a separate test set {(x

(1)

test, x
(1)

test), . . . , (x
(k)

test, y
(k)

test)}, which we do not
include during the training phase. We define the test error εStest

as follows:

εStest
(hθ) =

k
∑

i=1

(hθ(x
(i)

test) − y
(i)

test)
2.
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Figure 3: (a) The linear regression fits of linear functions to three different
training sets, each uniformly sampled over the interval [0, 4]. Because most of
these functions look fairly similar, we say the linear model has low variance.
(b) The resulting linear model when the parameters are averaged over 50,000
trials. On average, the models systematically underestimate the function in
the middle of the range and overestimate it near the ends, so we say the
linear model has high bias. (c) The linear regression fits of a fourth-order
polynomial to three random training sets. The fourth-order model has high
variance. (d) The fourth-order fit averaged over 50,000 trials. The average
of all of the parameter values achieves a good fit, so we say the model has
low bias.

It can be shown that the test error is a good predictor of the generalization
error. Training error is not a good predictor of generalization error; in fact,
it will be overly optimistic, especially for more complex models. Recall from
the first machine learning lecture our cartoon, shown in Figure 4, which
show how training and test error vary as a function of model complexity.
(Model complexity might include the degree of the polynomial, the size of
the decision tree, or the number of features.)

2.2 Classification

What do overfitting and underfitting mean in the context of classification?
Figure 5 shows a cartoon example. Our definitions for classification will be
identical to those for regression, except that we use the 0/1 classification
error, the proportion of misclassified examples, rather than mean-squared
error, as the penalty. Suppose for a moment that our classifier outputs a
binary decision 0 or 1. (This might be achieved, for instance, by choosing
a threshold confidence score in logistic regression.) A useful notation is the
indicator function 1{·}, where 1{true} = 1 and 1{false} = 0. For instance,
1{2 = 3} = 0 and 1{1 + 1 = 2} = 1.
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Figure 4: A cartoon picture of training and test error as a function of model
complexity. Model complexity increases from left to right.

(a) (b)

(c)

Figure 5: (a) A classifier which underfits the data. (b) A classifier which
achieves a good fit. (c) A classifier which overfits.
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We define the training error as the proportion of training examples
which are misclassified:

εStrain
(hθ) =

1

m

m
∑

i=1

1{hθ(x
(i)

train) 6= y
(i)

train}

The generalization error is defined as the probability of a new example
being misclassified:

ε(hθ) = P(x,y) ∼ D(hθ(x) 6= y)

All of the properties we outlined above hold true for classification as well as
for regression.

3 Bias and variance in practice

Now that we’ve introduced bias and variance, how do we minimize the prob-
lems associated with both of them? In other words, how do we choose a
model which achieves a good tradeoff between bias and variance? Often, we
might have a fixed set of models to choose from. For instance, we might be
choosing between the polynomials of degree i, for i ≤ N . Or we might be
trying to choose the right tree depth for our decision tree classifier. In these
cases, it makes sense to use hold-out cross-validation. Here, we leave
aside part of our training data as a hold-out cross-validation set which
we use to evaluate the performace of the different models. Specifically, the
procedure is as follows:

• Split your data (not including test data) randomly into, say, 70% train
and 30% cross-validation.

• For each of your N models, train a hypothesis from the training set.
This will result in N different hypotheses.

• Evaluate each of these hypotheses on the cross-validation set. Choose
the one with lowest error on the cross-validation set.

• Evaluate this model on the test data. This will give you the final number
you report as your estimated generalization error.

Optionally, between the third and fourth step above, you may also retrain
the selected model on the combination of the training and cross-validation
sets, since training on more data almost always gives better performance.
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But, as is the case with most of what we learn, real life is rarely this simple.
Often, you won’t have a fixed set of models you are trying to choose amongst.
Suppose you’ve trained a learning algorithm and it gives poor generalization
error. What do you do next? Use fewer features? More features? Get more
data? Implement a different learning algorithm? Some of these options are
clearly costly, so it would be nice if we had a rough idea of which ones are
likely to work in which situations. Consider the following:

• If your model has high bias, it is too simple. It doesn’t fit the structure
already there in the data. In this case, you want to make your model
more complex, perhaps by adding more features or using deeper decision
trees.

• If your model has high variance, it is too complex. It fits the ideosyn-
cratic properties of the data, and doesn’t generalize well. In these cases,
you want to simplify your hypothesis (e.g. by removing features) or get
more data.

Keeping this advice in mind may well save you from wasting six months
collecting more data when the problem is high bias, or six months designing
new features when the problem is high variance.

How do you actually tell if your problem is bias or variance? You can do
so by checking how different the training and test error are. The simplest
way to do this is to simply compare the training and test errors given all
of your data. If they are very different, your model is likely to be high
variance, while if they are almost the same, your model is likely to be high
bias. Alternatively, we can also plot the training and test error as a function
of the number of training examples. In other words, we train our classifier
only on the first 100 examples, then on only the first 200, and so on. Figure 6
shows a cartoon of what such plots might look like if your model is high bias
or high variance. If the training and test errors appear to have asymptoted,
your model is high bias, while if they are still steadily changing, your model
is high variance. (Ask yourself: why does the training error increase as you
add more examples?)

More generally, it is impossible to give a general recipe for applying a
given machine learning algorithm to any arbitrary problem, since so much
depends on particular properties of the problem, such as the amount of data
available, the kind of structure in the data, and the noisiness of the data.
There is no substitute for a careful analysis of the particular case to determine
where the learning algorithm is having trouble.
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Figure 6: Cartoon examples showing how the training and test error might
vary with the number of training examples. (a) A model with high bias. (b)
A model with high variance.

Actually, this is a special case of a general rule of thumb for building
complex AI systems in general. Broadly speaking, there are two ways to
approach any problem:

1. Think for a long time about the best way to solve the problem, and then
implement it.

2. Implement something quick and dirty to begin with, and then iteratively
improve on it as you carefully analyze the deficiencies at each stage.

The second option is often preferable. It is not always a good way to do
machine learning research, but it is a good way to get a real-world system
working. You almost never know in advance what will go wrong, and un-
expected turns can ruin the best-laid plans. You don’t know if your model
will turn out to be high bias or high variance. Therefore, you don’t know in
advance whether you should spend time collecting more data or implement-
ing new and better features. Rather, you should build a prototype, check
whether the problem is bias or variance, and fix it.

This is analogous to the idea of premature optimization in software engi-
neering. It is hard to predict in advance which part of your code will be the
bottleneck. If you try to guess, you will just waste time optimizing sections
which make up only a small portion of the running time, and add useless
clutter to your code.

Here are some more examples (which you may possibly encounter at some
point in your lives) of situations where this rule applies:

• Object recognition. Is the problem that your classifier has a hard time
recognizing clocks? Mugs? Or is the problem related to tracking objects,
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rather than identifying them? Is running time a problem? It is hard to
predict any of these factors in advance.

• Robot dog. Does it fall over when it moves its legs? Does its body collide
with the terrain? Is the planning algorithm too slow? Is it unable to
move its leg from one point to another without hitting a rock?

Build the system first — that will tell you which part of the task is the hard
part, and you will know where to focus your attention.

4 Bagged decision trees

We said it’s hard to predict in advance whether an algorithm will have a
problem with bias or variance, but in fact, single decision tree classifiers
famously have a problem with high variance. Why? Recall that models tend
to have a problem with variance if their behavior varies wildly depending on
the training set. It turns out that our information gain criterion for choosing
decision tree split nodes tends to have a lot of “close calls,” and because
of this, differences in the training data can cause much different trees to be
learned.

As we will see shortly, it is possible to reduce the variance of decision
trees by training many models on a series of different training sets, and then
somehow averaging these models together. In general, algorithms which try
to improve performance by averaging different models together are known as
ensemble methods.

As an intuition for why averaging models should reduce variance, recall
the comparisons in Figure 3. We saw that, even though the individual fourth-
degree polynomials showed high variance, when we averaged the hypotheses
learned from 50,000 different training sets, we got an excellent fit. This is,
of course, slightly misleading, because we will never have enough data to
generate 50,000 different training sets IID. If we did, we could also improve
performace (relative to the individual hypotheses) by combining the 50,000
training sets into one big training set and learning a single hypothesis on the
combination. In fact, in the case of linear regression, it turns out we can’t
do better than simply using all of our training data as one big training set.
But surprisingly, in the case of decision trees, we can do better.

A particularly good ensemble method for decision trees is called bagging.
Suppose we have a training set Strain with m examples. We generate a
series of B random training sets by sampling m elements from Strain with
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relpacement (meaning an example may be chosen multiple times). More
formally, we use the following procedure:

For b = 1, . . . , B,

For i = 1, . . . , m, choose (x̂(i), ŷ(i)) ∈ {(x(1), y(1)), . . . , (x(m), y(m))}
randomly.

Learn hb using {(x̂(1), ŷ(1)), . . . , (x̂(m), ŷ(m))}.

The final hypothesis h(x) will be the average of the B learned hypotheses,
h(x) = 1

B

∑B

b=1 hb(x).

4.1 Boosting

We just showed how to reduce the variance of decision trees by averaging
models learned on random training sets. But we can do even better by
systematically choosing the series of training sets to include the “hardest”
examples. More specifically, each decision tree is trained on a training set
which emphasizes the examples the previous tree got wrong. This general
strategy is known as boosting, and the particular algorithm we present is
AdaBoost, or Adaptive Boost. AdaBoost is done as follows:

Initialize D1(1) = D1(2) = · · · = D1(m) = 1
m

.

For b = 1, . . . , B,

For i = 1, . . . , m,

Choose (x̂(i), ŷ(i)) ∈ {(x(1), y(1)), . . . , (x(m), y(m))} randomly, where
the probability of choosing the ith instance is Db(i).

Learn hb using {(x̂(1), ŷ(1)), . . . , (x̂(m), ŷ(m))}.

Define εb =
∑m

i=1 Db(i)1{hb(x
(i)) 6= y(i)}.

Set αb = 1
2
log 1−εb

εb

.

Set

Db+1(i) =

{

Db(i)e
−αb

z
if hb(x

(i)) = y(i)

Db(i)e
αb

z
if hb(x

(i)) 6= y(i)
,

where z is a normalization constant chosen so
∑m

i=1 Db+1(i) = 1.
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The final hypothesis is given by h(x) =
∑B

b=1 hb(x) αb
P

B

t=1
αt

.

Boosted decision trees are often regarded as one of the best supervised
learning algorithms. They are often used with depth-limited decision trees1,
and the number of decision trees is often very large, on the order of tens of
thousands.

There is a remarkable theoretical result about AdaBoost: if each tree is
a “weak learner”, in that it does slightly better than random chance on a
given data set (say it achieves 51% accuracy), the algorithm as a whole will
approach zero training error as B approaches ∞.

1Sometimes, the depth is limited to 1, so that the decision tree just tests a single feature
of the root node, and then makes its prediction. These very small decision trees are also
called decision stumps.
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Generative Learning algorithms
So far, we’ve mainly been talking about learning algorithms that model
p(y|x; θ), the conditional distribution of y given x. For instance, logistic
regression modeled p(y|x; θ) as hθ(x) = g(θT x) where g is the sigmoid func-
tion. In these notes, we’ll talk about a different type of learning algorithm.

Consider a classification problem in which we want to learn to distinguish
between elephants (y = 1) and dogs (y = 0), based on some features of
an animal. Given a training set, an algorithm like logistic regression or
the perceptron algorithm (basically) tries to find a straight line—that is, a
decision boundary—that separates the elephants and dogs. Then, to classify
a new animal as either an elephant or a dog, it checks on which side of the
decision boundary it falls, and makes its prediction accordingly.

Here’s a different approach. First, looking at elephants, we can build a
model of what elephants look like. Then, looking at dogs, we can build a
separate model of what dogs look like. Finally, to classify a new animal, we
can match the new animal against the elephant model, and match it against
the dog model, to see whether the new animal looks more like the elephants
or more like the dogs we had seen in the training set.

Algorithms that try to learn p(y|x) directly (such as logistic regression),
or algorithms that try to learn mappings directly from the space of inputs X
to the labels {0, 1}, (such as the perceptron algorithm) are called discrim-
inative learning algorithms. Here, we’ll talk about algorithms that instead
try to model p(x|y) (and p(y)). These algorithms are called generative
learning algorithms. For instance, if y indicates whether a example is a dog
(0) or an elephant (1), then p(x|y = 0) models the distribution of dogs’
features, and p(x|y = 1) models the distribution of elephants’ features.

After modeling p(y) (called the class priors) and p(x|y), our algorithm

1
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can then use Bayes rule to derive the posterior distribution on y given x:

p(y|x) =
p(x|y)p(y)

p(x)
.

Here, the denominator is given by p(x) = p(x|y = 1)p(y = 1) + p(x|y =
0)p(y = 0) (you should be able to verify that this is true from the standard
properties of probabilities), and thus can also be expressed in terms of the
quantities p(x|y) and p(y) that we’ve learned. Actually, if were calculating
p(y|x) in order to make a prediction, then we don’t actually need to calculate
the denominator, since

arg max
y

p(y|x) = arg max
y

p(x|y)p(y)

p(x)

= arg max
y

p(x|y)p(y).

1 Gaussian discriminant analysis

The first generative learning algorithm that we’ll look at is Gaussian discrim-
inant analysis (GDA). In this model, we’ll assume that p(x|y) is distributed
according to a multivariate normal distribution. Lets talk briefly about the
properties of multivariate normal distributions before moving on to the GDA
model itself.

1.1 The multivariate normal distribution

The multivariate normal distribution in n-dimensions, also called the multi-
variate Gaussian distribution, is parameterized by a mean vector µ ∈ R

n

and a covariance matrix Σ ∈ R
n×n, where Σ ≥ 0 is symmetric and positive

semi-definite. Also written “N (µ, Σ)”, its density is given by:

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

In the equation above, “|Σ|” denotes the determinant of the matrix Σ.
For a random variable X distributed N (µ, Σ), the mean is (unsurpris-

ingly,) given by µ:

E[X] =

∫

x

x p(x; µ, Σ)dx = µ

The covariance of a vector-valued random variable Z is defined as Cov(Z) =
E[(Z − E[Z])(Z − E[Z])T ]. This generalizes the notion of the variance of a
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real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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Here’s one last set of examples generated by varying Σ:
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The plots above used, respectively,

Σ =

[

1 -0.5
-0.5 1

]

; Σ =

[

1 -0.8
-0.8 1

]

; .Σ =

[

3 0.8
0.8 1

]

.

From the leftmost and middle figures, we see that by decreasing the diagonal
elements of the covariance matrix, the density now becomes “compressed”
again, but in the opposite direction. Lastly, as we vary the parameters, more
generally the contours will form ellipses (the rightmost figure showing an
example).

As our last set of examples, fixing Σ = I, by varying µ, we can also move
the mean of the density around.
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The figures above were generated using Σ = I, and respectively

µ =

[

1
0

]

; µ =

[

-0.5
0

]

; µ =

[

-1
-1.5

]

.
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1.2 The Gaussian Discriminant Analysis model

When we have a classification problem in which the input features x are
continuous-valued random variables, we can then use the Gaussian Discrim-
inant Analysis (GDA) model, which models p(x|y) using a multivariate nor-
mal distribution. The model is:

y ∼ Bernoulli(φ)

x|y = 0 ∼ N (µ0, Σ)

x|y = 1 ∼ N (µ1, Σ)

Writing out the distributions, this is:

p(y) = φy(1 − φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ0)

T Σ−1(x − µ0)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ1)

T Σ−1(x − µ1)

)

Here, the parameters of our model are φ, Σ, µ0 and µ1. (Note that while
there’re two different mean vectors µ0 and µ1, this model is usually applied
using only one covariance matrix Σ.) The log-likelihood of the data is given
by

`(φ, µ0, µ1, Σ) = log
m
∏

i=1

p(x(i), y(i); φ, µ0, µ1, Σ)

= log
m
∏

i=1

p(x(i)|y(i); µ0, µ1, Σ)p(y(i); φ).
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By maximizing ` with respect to the parameters, we find the maximum like-
lihood estimate of the parameters (see problem set 1) to be:

φ =
1

m

m
∑

i=1

1{y(i) = 1}

µ0 =

∑m

i=1 1{y(i) = 0}x(i)

∑m

i=1 1{y(i) = 0}

µ1 =

∑m

i=1 1{y(i) = 1}x(i)

∑m

i=1 1{y(i) = 1}

Σ =
1

m

m
∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T .

Pictorially, what the algorithm is doing can be seen in as follows:

−2 −1 0 1 2 3 4 5 6 7
−7

−6

−5

−4

−3

−2

−1

0

1

Shown in the figure are the training set, as well as the contours of the
two Gaussian distributions that have been fit to the data in each of the
two classes. Note that the two Gaussians have contours that are the same
shape and orientation, since they share a covariance matrix Σ, but they have
different means µ0 and µ1. Also shown in the figure is the straight line
giving the decision boundary at which p(y = 1|x) = 0.5. On one side of
the boundary, we’ll predict y = 1 to be the most likely outcome, and on the
other side, we’ll predict y = 0.

1.3 Discussion: GDA and logistic regression

The GDA model has an interesting relationship to logistic regression. If we
view the quantity p(y = 1|x; φ, µ0, µ1, Σ) as a function of x, we’ll find that it
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can be expressed in the form

p(y = 1|x; φ, Σ, µ0, µ1) =
1

1 + exp(−θT x)
,

where θ is some appropriate function of φ, Σ, µ0, µ1.
1 This is exactly the form

that logistic regression—a discriminative algorithm—used to model p(y =
1|x).

When would we prefer one model over another? GDA and logistic regres-
sion will, in general, give different decision boundaries when trained on the
same dataset. Which is better?

We just argued that if p(x|y) is multivariate gaussian (with shared Σ),
then p(y|x) necessarily follows a logistic function. The converse, however,
is not true; i.e., p(y|x) being a logistic function does not imply p(x|y) is
multivariate gaussian. This shows that GDA makes stronger modeling as-
sumptions about the data than does logistic regression. It turns out that
when these modeling assumptions are correct, then GDA will find better fits
to the data, and is a better model. Specifically, when p(x|y) is indeed gaus-
sian (with shared Σ), then GDA is asymptotically efficient. Informally,
this means that in the limit of very large training sets (large m), there is no
algorithm that is strictly better than GDA (in terms of, say, how accurately
they estimate p(y|x)). In particular, it can be shown that in this setting,
GDA will be a better algorithm than logistic regression; and more generally,
even for small training set sizes, we would generally expect GDA to better.

In contrast, by making significantly weaker assumptions, logistic regres-
sion is also more robust and less sensitive to incorrect modeling assumptions.
There are many different sets of assumptions that would lead to p(y|x) taking
the form of a logistic function. For example, if x|y = 0 ∼ Poisson(λ0), and
x|y = 1 ∼ Poisson(λ1), then p(y|x) will be logistic. Logistic regression will
also work well on Poisson data like this. But if we were to use GDA on such
data—and fit Gaussian distributions to such non-Gaussian data—then the
results will be less predictable, and GDA may (or may not) do well.

To summarize: GDA makes stronger modeling assumptions, and is more
data efficient (i.e., requires less training data to learn “well”) when the mod-
eling assumptions are correct or at least approximately correct. Logistic
regression makes weaker assumptions, and is significantly more robust to
deviations from modeling assumptions. Specifically, when the data is in-
deed non-Gaussian, then in the limit of large datasets, logistic regression will

1This uses the convention of redefining the x
(i)’s on the right-hand-side to be n + 1-

dimensional vectors by adding the extra coordinate x
(i)

0
= 1; see problem set 1.
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almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Lets now
talk about a different learning algorithm in which the xi’s are discrete-valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Lets say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =























1
0
0
...
1
...
0























a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the
number of words modeled and hence reducing our computational and space requirements,
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feature vector is called the vocabulary, so the dimension of x is equal to
the size of the vocabulary.

Having chosen our feature vector, we now want to build a discriminative
model. So, we have to model p(x|y). But if we have, say, a vocabulary of
50000 words, then x ∈ {0, 1}50000 (x is a 50000-dimensional vector of 0’s and
1’s), and if we were to model x explicitly with a multinomial distribution over
the 250000 possible outcomes, then we’d end up with a (250000−1)-dimensional
parameter vector. This is clearly too many parameters.

To model p(x|y), we will therefore make a very strong assumption. We will
assume that the xi’s are conditionally independent given y. This assumption
is called the Naive Bayes (NB) assumption, and the resulting algorithm is
called the Naive Bayes classifier. For instance, if y = 1 means spam email;
“buy” is word 2087 and “price” is word 39831; then we are assuming that if
I tell you y = 1 (that a particular piece of email is spam), then knowledge
of x2087 (knowledge of whether “buy” appears in the message) will have no
effect on your beliefs about the value of x39831 (whether “price” appears).
More formally, this can be written p(x2087|y) = p(x2087|y, x39831). (Note that
this is not the same as saying that x2087 and x39831 are independent, which
would have been written “p(x2087) = p(x2087|x39831)”; rather, we are only
assuming that x2087 and x39831 are conditionally independent given y.)

We now have:

p(x1, . . . , x50000|y)

= p(x1|y)p(x2|y, x1)p(x3|y, x1, x2) · · · p(x50000|y, x1, . . . , x49999)

= p(x1|y)p(x2|y)p(x3|y) · · · p(x50000|y)

=
n
∏

i=1

p(xi|y)

The first equality simply follows from the usual properties of probabilities,
and the second equality used the NB assumption. We note that even though
the Naive Bayes assumption is an extremely strong assumptions, the resulting
algorithm works well on many problems.

Our model is parameterized by φi|y=1 = p(xi = 1|y = 1), φi|y=0 = p(xi =
1|y = 0), and φy = p(y = 1). As usual, given a training set {(x(i), y(i)); i =

this also has the advantage of allowing us to model/include as a feature many words
that may appear in your email (such as “cs229”) but that you won’t find in a dictionary.
Sometimes (as in the homework), we also exclude the very high frequency words (which
will be words like “the,” “of,” “and,”; these high frequency, “content free” words are called
stop words) since they occur in so many documents and do little to indicate whether an
email is spam or non-spam.
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1, . . . ,m}, we can write down the joint likelihood of the data:

L(φy, φi|y=0, φi|y=1) =
m
∏

i=1

p(x(i), y(i)).

Maximizing this with respect to φy, φi|y=0 and φi|y=1 gives the maximum
likelihood estimates:

φj|y=1 =

∑m

i=1 1{x(i)
j = 1 ∧ y(i) = 1}

∑m

i=1 1{y(i) = 1}

φj|y=0 =

∑m

i=1 1{x(i)
j = 1 ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0}

φy =

∑m

i=1 1{y(i) = 1}
m

In the equations above, the “∧” symbol means “and.” The parameters have
a very natural interpretation. For instance, φj|y=1 is just the fraction of the
spam (y = 1) emails in which word j does appear.

Having fit all these parameters, to make a prediction on a new example
with features x, we then simply calculate

p(y = 1|x) =
p(x|y = 1)p(y = 1)

p(x)

=
(
∏n

i=1 p(xi|y = 1)) p(y = 1)

(
∏n

i=1 p(xi|y = 1)) p(y = 1) + (
∏n

i=1 p(xi|y = 0)) p(y = 0)
,

and pick whichever class has the higher posterior probability.
Lastly, we note that while we have developed the Naive Bayes algorithm

mainly for the case of problems where the features xi are binary-valued, the
generalization to where xi can take values in {1, 2, . . . , ki} is straightforward.
Here, we would simply model p(xi|y) as multinomial rather than as Bernoulli.
Indeed, even if some original input attribute (say, the living area of a house,
as in our earlier example) were continuous valued, it is quite common to
discretize it—that is, turn it into a small set of discrete values—and apply
Naive Bayes. For instance, if we use some feature xi to represent living area,
we might discretize the continuous values as follows:

Living area (sq. feet) < 400 400-800 800-1200 1200-1600 >1600
xi 1 2 3 4 5

Thus, for a house with living area 890 square feet, we would set the value
of the corresponding feature xi to 3. We can then apply the Naive Bayes
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algorithm, and model p(xi|y) with a multinomial distribution, as described
previously. When the original, continuous-valued attributes are not well-
modeled by a multivariate normal distribution, discretizing the features and
using Naive Bayes (instead of GDA) will often result in a better classifier.

2.1 Laplace smoothing

The Naive Bayes algorithm as we have described it will work fairly well
for many problems, but there is a simple change that makes it work much
better, especially for text classification. Lets briefly discuss a problem with
the algorithm in its current form, and then talk about how we can fix it.

Consider spam/email classification, and lets suppose that, after complet-
ing CS229 and having done excellent work on the project, you decide around
June 2003 to submit the work you did to the NIPS conference for publication.
(NIPS is one of the top machine learning conferences, and the deadline for
submitting a paper is typically in late June or early July.) Because you end
up discussing the conference in your emails, you also start getting messages
with the word “nips” in it. But this is your first NIPS paper, and until this
time, you had not previously seen any emails containing the word “nips”;
in particular “nips” did not ever appear in your training set of spam/non-
spam emails. Assuming that “nips” was the 35000th word in the dictionary,
your Naive Bayes spam filter therefore had picked its maximum likelihood
estimates of the parameters φ35000|y to be

φ35000|y=1 =

∑m

i=1 1{x(i)
35000 = 1 ∧ y(i) = 1}

∑m

i=1 1{y(i) = 1} = 0

φ35000|y=0 =

∑m

i=1 1{x(i)
35000 = 1 ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0} = 0

I.e., because it has never seen “nips” before in either spam or non-spam
training examples, it thinks the probability of seeing it in either type of email
is zero. Hence, when trying to decide if one of these messages containing
“nips” is spam, it calculates the class posterior probabilities, and obtains

p(y = 1|x) =

∏n

i=1 p(xi|y = 1)p(y = 1)
∏n

i=1 p(xi|y = 1)p(y = 1) +
∏n

i=1 p(xi|y = 0)p(y = 0)

=
0

0
.

This is because each of the terms “
∏n

i=1 p(xi|y)” includes a term p(x35000|y) =
0 that is multiplied into it. Hence, our algorithm obtains 0/0, and doesn’t
know how to make a prediction.
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Stating the problem more broadly, it is statistically a bad idea to estimate
the probability of some event to be zero just because you haven’t seen it be-
fore in your finite training set. Take the problem of estimating the mean of
a multinomial random variable z taking values in {1, . . . , k}. We can param-
eterize our multinomial with φi = p(z = i). Given a set of m independent
observations {z(1), . . . , z(m)}, the maximum likelihood estimates are given by

φj =

∑m

i=1 1{z(i) = j}
m

.

As we saw previously, if we were to use these maximum likelihood estimates,
then some of the φj’s might end up as zero, which was a problem. To avoid
this, we can use Laplace smoothing, which replaces the above estimate
with

φj =

∑m

i=1 1{z(i) = j} + 1

m + k
.

Here, we’ve added 1 to the numerator, and k to the denominator. Note that
∑k

j=1 φj = 1 still holds (check this yourself!), which is a desirable property
since the φj’s are estimates for probabilities that we know must sum to 1.
Also, φj 6= 0 for all values of j, solving our problem of probabilities being
estimated as zero. Under certain (arguably quite strong) conditions, it can
be shown that the Laplace smoothing actually gives the optimal estimator
of the φj’s.

Returning to our Naive Bayes classifier, with Laplace smoothing, we
therefore obtain the following estimates of the parameters:

φj|y=1 =

∑m

i=1 1{x(i)
j = 1 ∧ y(i) = 1} + 1

∑m

i=1 1{y(i) = 1} + 2

φj|y=0 =

∑m

i=1 1{x(i)
j = 1 ∧ y(i) = 0} + 1

∑m

i=1 1{y(i) = 0} + 2

(In practice, it usually doesn’t matter much whether we apply Laplace smooth-
ing to φy or not, since we will typically have a fair fraction each of spam and
non-spam messages, so φy will be a reasonable estimate of p(y = 1) and will
be quite far from 0 anyway.)

2.2 Event models for text classification

To close off our discussion of generative learning algorithms, lets talk about
one more model that is specifically for text classification. While Naive Bayes
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as we’ve presented it will work well for many classification problems, for text
classification, there is a related model that does even better.

In the specific context of text classification, Naive Bayes as presented uses
the what’s called the multi-variate Bernoulli event model. In this model,
we assumed that the way an email is generated is that first it is randomly
determined (according to the class priors p(y)) whether a spammer or non-
spammer will send you your next message. Then, the person sending the
email runs through the dictionary, deciding whether to include each word i
in that email independently and according to the probabilities p(xi = 1|y) =
φi|y. Thus, the probability of a message was given by p(y)

∏n

i=1 p(xi|y).
Here’s a different model, called the multinomial event model. To de-

scribe this model, we will use a different notation and set of features for
representing emails. We let xi denote the identity of the i-th word in the
email. Thus, xi is now an integer taking values in {1, . . . , |V |}, where |V |
is the size of our vocabulary (dictionary). An email of n words is now rep-
resented by a vector (x1, x2, . . . , xn) of length n; note that n can vary for
different documents. For instance, if an email starts with “A NIPS . . . ,”
then x1 = 1 (“a” is the first word in the dictionary), and x2 = 35000 (if
“nips” is the 35000th word in the dictionary).

In the multinomial event model, we assume that the way an email is
generated is via a random process in which spam/non-spam is first deter-
mined (according to p(y)) as before. Then, the sender of the email writes the
email by first generating x1 from some multinomial distribution over words
(p(x1|y)). Next, the second word x2 is chosen independently of x1 but from
the same multinomial distribution, and similarly for x3, x4, and so on, until
all n words of the email have been generated. Thus, the overall probability of
a message is given by p(y)

∏n

i=1 p(xi|y). Note that this formula looks like the
one we had earlier for the probability of a message under the multi-variate
Bernoulli event model, but that the terms in the formula now mean very dif-
ferent things. In particular xi|y is now a multinomial, rather than a Bernoulli
distribution.

The parameters for our new model are φy = p(y) as before, φi|y=1 =
p(xj = i|y = 1) (for any j) and φi|y=0 = p(xj = i|y = 0). Note that we have
assumed that p(xj|y) is the same for all values of j (i.e., that the distribution
according to which a word is generated does not depend on its position j
within the email).

If we are given a training set {(x(i), y(i)); i = 1, . . . ,m} where x(i) =

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni

) (here, ni is the number of words in the i-training example),
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the likelihood of the data is given by

L(φ, φi|y=0, φi|y=1) =
m
∏

i=1

p(x(i), y(i))

=
m
∏

i=1

(

ni
∏

j=1

p(x
(i)
j |y; φi|y=0, φi|y=1)

)

p(y(i); φy).

Maximizing this yields the maximum likelihood estimates of the parameters:

φk|y=1 =

∑m

i=1

∑ni

j=1 1{x(i)
j = k ∧ y(i) = 1}

∑m

i=1 1{y(i) = 1}ni

φk|y=0 =

∑m

i=1

∑ni

j=1 1{x(i)
j = k ∧ y(i) = 0}

∑m

i=1 1{y(i) = 0}ni

φy =

∑m

i=1 1{y(i) = 1}
m

.

If we were to apply Laplace smoothing (which needed in practice for good
performance) when estimating φk|y=0 and φk|y=1, we add 1 to the numerators
and |V | to the denominators, and obtain:

φk|y=1 =

∑m

i=1

∑ni

j=1 1{x(i)
j = k ∧ y(i) = 1} + 1

∑m

i=1 1{y(i) = 1}ni + |V |

φk|y=0 =

∑m

i=1

∑ni

j=1 1{x(i)
j = k ∧ y(i) = 0} + 1

∑m

i=1 1{y(i) = 0}ni + |V | .

While not necessarily the very best classification algorithm, the Naive Bayes
classifier often works surprisingly well. It is often also a very good “first thing
to try,” given its simplicity and ease of implementation.
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The k-means clustering algorithm

In the clustering problem, we are given a training set {x(1), . . . , x(m)}, and
want to group the data into a few cohesive “clusters.” Here, x(i) ∈ R

n

as usual; but no labels y(i) are given. So, this is an unsupervised learning
problem.

The k-means clustering algorithm is as follows:

1. Initialize cluster centroids µ1, µ2, . . . , µk ∈ R
n randomly.

2. Repeat until convergence: {

For every i, set
c(i) := arg min

j

||x(i)
− µj||

2.

For each j, set

µj :=

∑

m

i=1 1{c(i) = j}x(i)

∑

m

i=1 1{c(i) = j}
.

}

In the algorithm above, k (a parameter of the algorithm) is the number
of clusters we want to find; and the cluster centroids µj represent our current
guesses for the positions of the centers of the clusters. To initialize the cluster
centroids (in step 1 of the algorithm above), we could choose k training
examples randomly, and set the cluster centroids to be equal to the values of
these k examples. (Other initialization methods are also possible.)

The inner-loop of the algorithm repeatedly carries out two steps: (i)
“Assigning” each training example x(i) to the closest cluster centroid µj, and
(ii) Moving each cluster centroid µj to the mean of the points assigned to it.
Figure 1 shows an illustration of running k-means.

1
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(a) (b) (c)

(d) (e) (f)

Figure 1: K-means algorithm. Training examples are shown as dots, and
cluster centroids are shown as crosses. (a) Original dataset. (b) Random ini-
tial cluster centroids (in this instance, not chosen to be equal to two training
examples). (c-f) Illustration of running two iterations of k-means. In each
iteration, we assign each training example to the closest cluster centroid
(shown by “painting” the training examples the same color as the cluster
centroid to which is assigned); then we move each cluster centroid to the
mean of the points assigned to it. (Best viewed in color.) Images courtesy
Michael Jordan.

Is the k-means algorithm guaranteed to converge? Yes it is, in a certain
sense. In particular, let us define the distortion function to be:

J(c, µ) =
m

∑

i=1

||x(i)
− µ

c(i)||
2

Thus, J measures the sum of squared distances between each training exam-
ple x(i) and the cluster centroid µ

c(i) to which it has been assigned. It can
be shown that k-means is exactly coordinate descent on J . Specifically, the
inner-loop of k-means repeatedly minimizes J with respect to c while holding
µ fixed, and then minimizes J with respect to µ while holding c fixed. Thus,
J must monotonically decrease, and the value of J must converge. (Usu-
ally, this implies that c and µ will converge too. In theory, it is possible for
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k-means to oscillate between a few different clusterings—i.e., a few different
values for c and/or µ—that have exactly the same value of J , but this almost
never happens in practice.)

The distortion function J is a non-convex function, and so coordinate
descent on J is not guaranteed to converge to the global minimum. In other
words, k-means can be susceptible to local optima. Very often k-means will
work fine and come up with very good clusterings despite this. But if you
are worried about getting stuck in bad local minima, one common thing to
do is run k-means many times (using different random initial values for the
cluster centroids µj). Then, out of all the different clusterings found, pick
the one that gives the lowest distortion J(c, µ).
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Mixtures of Gaussians and the EM algorithm

In this set of notes, we discuss the EM (Expectation-Maximization) for den-
sity estimation.

Suppose that we are given a training set {x(1), . . . , x(m)} as usual. Since
we are in the unsupervised learning setting, these points do not come with
any labels.

We wish to model the data by specifying a joint distribution p(x(i), z(i)) =
p(x(i)|z(i))p(z(i)). Here, z(i) ∼ Multinomial(φ) (where φj ≥ 0,

∑

k

j=1 φj = 1,

and the parameter φj gives p(z(i) = j),), and x(i)|z(i) = j ∼ N (µj, Σj). We
let k denote the number of values that the z(i)’s can take on. Thus, our
model posits that each x(i) was generated by randomly choosing z(i) from
{1, . . . , k}, and then x(i) was drawn from one of k Gaussians depeneding on
z(i). This is called the mixture of Gaussians model. Also, note that the
z(i)’s are latent random variables, meaning that they’re hidden/unobserved.
This is what will make our estimation problem difficult.

The parameters of our model are thus φ, φ and Σ. To estimate them, we
can write down the likelihood of our data:

ℓ(φ, µ, Σ) =
m

∑

i=1

log p(x(i); φ, µ, Σ)

=
m

∑

i=1

log
k

∑

z(i)=1

p(x(i)
|z(i); µ, Σ)p(z(i); φ).

However, if we set to zero the derivatives of this formula with respect to
the parameters and try to solve, we’ll find that it is not possible to find the
maximum likelihood estimates of the parameters in closed form. (Try this
yourself at home.)

The random variables z(i) indicate which of the k Gaussians each x(i)

had come from. Note that if we knew what the z(i)’s were, the maximum

1
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likelihood problem would have been easy. Specifically, we could then write
down the likelihood as

ℓ(φ, µ, Σ) =
m

∑

i=1

log p(x(i)
|z(i); µ, Σ) + log p(z(i); φ).

Maximizing this with respect to φ, µ and Σ gives the parameters:

φj =
1

m

m
∑

i=1

1{z(i) = j},

µj =

∑

m

i=1 1{z(i) = j}x(i)

∑

m

i=1 1{z(i) = j}
,

Σj =

∑

m

i=1 1{z(i) = j}(x(i) − µj)(x
(i) − µj)

T

∑

m

i=1 1{z(i) = j}
.

Indeed, we see that if the z(i)’s were known, then maximum likelihood
estimation becomes nearly identical to what we had when estimating the
parameters of the Gaussian discriminant analysis model, except that here
the z(i)’s playing the role of the class labels.1

However, in our density estimation problem, the z(i)’s are not known.
What can we do?

The EM algorithm is an iterative algorithm that has two main steps.
Applied to our problem, in the E-step, it tries to “guess” the values of the
z(i)’s. In the M-step, it updates the parameters of our model based on our
guesses. Since in the M-step we are pretending that the guesses in the first
part were correct, the maximization becomes easy. Here’s the algorithm:

Repeat until convergence: {

(E-step) For each i, j, set

w
(i)
j

:= p(z(i) = j|x(i); φ, µ, Σ)

1There are other minor differences in the formulas here from what we’d obtained in
PS1 with Gaussian discriminant analysis, first because we’ve generalized the z

(i)’s to be
multinomial rather than Bernoulli, and second because here we are using a different Σj

for each Gaussian.
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(M-step) Update the parameters:

φj :=
1

m

m
∑

i=1

w
(i)
j

,

µj :=

∑

m

i=1 w
(i)
j

x(i)

∑

m

i=1 w
(i)
j

,

Σj :=

∑

m

i=1 w
(i)
j

(x(i) − µj)(x
(i) − µj)

T

∑

m

i=1 w
(i)
j

}

In the E-step, we calculate the posterior probability of our parameters
the z(i)’s, given the x(i) and using the current setting of our parameters. I.e.,
using Bayes rule, we obtain:

p(z(i) = j|x(i); φ, µ, Σ) =
p(x(i)|z(i) = j; µ, Σ)p(z(i) = j; φ)

∑

k

l=1 p(x(i)|z(i) = l; µ, Σ)p(z(i) = l; φ)

Here, p(x(i)|z(i) = j; µ, Σ) is given by evaluating the density of a Gaussian
with mean µj and covariance Σj at x(i); p(z(i) = j; φ) is given by φj, and so

on. The values w
(i)
j

calculated in the E-step represent our “soft” guesses2 for

the values of z(i).
Also, you should contrast the updates in the M-step with the formulas we

had when the z(i)’s were known exactly. They are identical, except that in-
stead of the indicator functions “1{z(i) = j}” indicating from which Gaussian

each datapoint had come, we now instead have the w
(i)
j

’s.
The EM-algorithm is also reminiscent of the K-means clustering algo-

rithm, except that instead of the “hard” cluster assignments c(i), we instead

have the “soft” assignments w
(i)
j

. Similar to K-means, it is also susceptible
to local optima, so reinitializing at several different initial parameters may
be a good idea.

It’s clear that the EM algorithm has a very natural interpretation of
repeatedly trying to guess the unknown z(i)’s; but how did it come about,
and can we make any guarantees about it, such as regarding its convergence?
In the next set of notes, we will describe a more general view of EM, one

2The term “soft” refers to our guesses being probabilities and taking values in [0, 1]; in
contrast, a “hard” guess is one that represents a single best guess (such as taking values
in {0, 1} or {1, . . . , k}).
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that will allow us to easily apply it to other estimation problems in which
there are also latent variables, and which will allow us to give a convergence
guarantee.
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Part IX

The EM algorithm
In the previous set of notes, we talked about the EM algorithm as applied to
fitting a mixture of Gaussians. In this set of notes, we give a broader view
of the EM algorithm, and show how it can be applied to a large family of
estimation problems with latent variables. We begin our discussion with a
very useful result called Jensen’s inequality

1 Jensen’s inequality

Let f be a function whose domain is the set of real numbers. Recall that
f is a convex function if f ′′(x) ≥ 0 (for all x ∈ R). In the case of f taking
vector-valued inputs, this is generalized to the condition that its hessian H
is positive semi-definite (H ≥ 0). If f ′′(x) > 0 for all x, then we say f is
strictly convex (in the vector-valued case, the corresponding statement is
that H must be strictly positive semi-definite, written H > 0). Jensen’s
inequality can then be stated as follows:

Theorem. Let f be a convex function, and let X be a random variable.
Then:

E[f(X)] ≥ f(EX).

Moreover, if f is strictly convex, then E[f(X)] = f(EX) holds true if and
only if X = E[X] with probability 1 (i.e., if X is a constant).

Recall our convention of occasionally dropping the parentheses when writ-
ing expectations, so in the theorem above, f(EX) = f(E[X]).

For an interpretation of the theorem, consider the figure below.

1
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a E[X] b

f(a)

f(b)

f(EX)

E[f(X)]

f

Here, f is a convex function shown by the solid line. Also, X is a random
variable that has a 0.5 chance of taking the value a, and a 0.5 chance of
taking the value b (indicated on the x-axis). Thus, the expected value of X
is given by the midpoint between a and b.

We also see the values f(a), f(b) and f(E[X]) indicated on the y-axis.
Moreover, the value E[f(X)] is now the midpoint on the y-axis between f(a)
and f(b). From our example, we see that because f is convex, it must be the
case that E[f(X)] ≥ f(EX).

Incidentally, quite a lot of people have trouble remembering which way
the inequality goes, and remembering a picture like this is a good way to
quickly figure out the answer.
Remark. Recall that f is [strictly] concave if and only if −f is [strictly]
convex (i.e., f ′′(x) ≤ 0 or H ≤ 0). Jensen’s inequality also holds for concave
functions f , but with the direction of all the inequalities reversed (E[f(X)] ≤
f(EX), etc.).

2 The EM algorithm

Suppose we have an estimation problem in which we have a training set
{x(1), . . . , x(m)} consisting of m independent examples. We wish to fit the
parameters of a model p(x, z) to the data, where the likelihood is given by

`(θ) =
m

∑

i=1

log p(x; θ)

=
m

∑

i=1

log
∑

z

p(x, z; θ).
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But, explicitly finding the maximum likelihood estimates of the parameters θ
may be hard. Here, the z(i)’s are the latent random variables; and it is often
the case that if the z(i)’s were observed, then maximum likelihood estimation
would be easy.

In such a setting, the EM algorithm gives an efficient method for max-
imum likelihood estimation. Maximizing `(θ) explicitly might be difficult,
and our strategy will be to instead repeatedly construct a lower-bound on `
(E-step), and then optimize that lower-bound (M-step).

For each i, let Qi be some distribution over the z’s (
∑

z Qi(z) = 1, Qi(z) ≥
0). Consider the following:1

∑

i

log p(x(i); θ) =
∑

i

log
∑

z(i)

p(x(i), z(i); θ) (1)

=
∑

i

log
∑

z(i)

Qi(z
(i))

p(x(i), z(i); θ)

Qi(z(i))
(2)

≥
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
(3)

The last step of this derivation used Jensen’s inequality. Specifically, f(x) =
log x is a concave function, since f ′′(x) = −1/x2 < 0 over its domain x ∈ R

+.
Also, the term

∑

z(i)

Qi(z
(i))

[

p(x(i), z(i); θ)

Qi(z(i))

]

in the summation is just an expectation of the quantity
[

p(x(i), z(i); θ)/Qi(z
(i))

]

with respect to z(i) drawn according to the distribution given by Qi. By
Jensen’s inequality, we have

f

(

Ez(i)∼Qi

[

p(x(i), z(i); θ)

Qi(z(i))

])

≥ Ez(i)∼Qi

[

f

(

p(x(i), z(i); θ)

Qi(z(i))

)]

,

where the “z(i) ∼ Qi” subscripts above indicate that the expectations are
with respect to z(i) drawn from Qi. This allowed us to go from Equation (2)
to Equation (3).

Now, for any set of distributions Qi, the formula (3) gives a lower-bound
on `(θ). There’re many possible choices for the Qi’s. Which should we
choose? Well, if we have some current guess θ of the parameters, it seems

1If z were continuous, then Qi would be a density, and the summations over z in our
discussion are replaced with integrals over z.
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natural to try to make the lower-bound tight at that value of θ. I.e., we’ll
make the inequality above hold with equality at our particular value of θ.
(We’ll see later how this enables us to prove that `(θ) increases monotonically
with successsive iterations of EM.)

To make the bound tight for a particular value of θ, we need for the step
involving Jensen’s inequality in our derivation above to hold with equality.
For this to be true, we know it is sufficient that that the expectation be taken
over a “constant”-valued random variable. I.e., we require that

p(x(i), z(i); θ)

Qi(z(i))
= c

for some constant c that does not depend on z(i). This is easily accomplished
by choosing

Qi(z
(i)) ∝ p(x(i), z(i); θ).

Actually, since we know
∑

z Qi(z
(i)) = 1 (because it is a distribution), this

further tells us that

Qi(z
(i)) =

p(x(i), z(i); θ)
∑

z p(x(i), z; θ)

=
p(x(i), z(i); θ)

p(x(i); θ)

= p(z(i)|x(i); θ)

Thus, we simply set the Qi’s to be the posterior distribution of the z(i)’s
given x(i) and the setting of the parameters θ.

Now, for this choice of the Qi’s, Equation (3) gives a lower-bound on the
loglikelihood ` that we’re trying to maximize. This is the E-step. In the
M-step of the algorithm, we then maximize our formula in Equation (3) with
respect to the parameters to obtain a new setting of the θ’s. Repeatedly
carrying out these two steps gives us the EM algorithm, which is as follows:

Repeat until convergence {

(E-step) For each i, set

Qi(z
(i)) := p(z(i)|x(i); θ).

(M-step) Set

θ := arg max
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
.
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}

How we we know if this algorithm will converge? Well, suppose θ(t)

and θ(t+1) are the parameters from two successive iterations of EM. We will
now prove that `(θ(t)) ≤ `(θ(t+1)), which shows EM always monotonically
improves the log-likelihood. The key to showing this result lies in our choice
of the Qi’s. Specifically, on the iteration of EM in which the parameters had
started out as θ(t), we would have chosen Q

(t)
i (z(i)) := p(z(i)|x(i); θ(t)). We

saw earlier that this choice ensures that Jensen’s inequality, as applied to get
Equation (3), holds with equality, and hence

`(θ(t)) =
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

.

The parameters θ(t+1) are then obtained by maximizing the right hand side
of the equation above. Thus,

`(θ(t+1)) ≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t+1))

Q
(t)
i (z(i))

(4)

≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

(5)

= `(θ(t)) (6)

This first inequality comes from the fact that

`(θ) ≥
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

holds for any values of Qi and θ, and in particular holds for Qi = Q
(t)
i ,

θ = θ(t+1). To get Equation (5), we used the fact that θ(t+1) is chosen
explicitly to be

arg max
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
,

and thus this formula evaluated at θ(t+1) must be equal to or larger than the
same formula evaluated at θ(t). Finally, the step used to get (6) was shown

earlier, and follows from Q
(t)
i having been chosen to make Jensen’s inequality

hold with equality at θ(t).
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Hence, EM causes the likelihood to converge monotonically. In our de-
scription of the EM algorithm, we said we’d run it until convergence. Given
the result that we just showed, one reasonable convergence test would be
to check if the increase in `(θ) between successive iterations is smaller than
some tolerance parameter, and to declare convergence if EM is improving
`(θ) too slowly.

Remark. If we define

J(Q, θ) =
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
,

the we know `(θ) ≥ J(Q, θ) from our previous derivation. The EM can also
be viewed a coordinate ascent on J , in which the E-step maximizes it with
respect to Q (check this yourself), and the M-step maximizes it with respect
to θ.

3 Mixture of Gaussians revisited

Armed with our general definition of the EM algorithm, lets go back to our
old example of fitting the parameters φ, µ and Σ in a mixture of Gaussians.
For the sake of brevity, we carry out the derivations for the M-step updates
only for φ and µj, and leave the updates for Σj as an exercise for the reader.

The E-step is easy. Following our algorithm derivation above, we simply
calculate

w
(i)
j = Qi(z

(i) = j) = P (z(i) = j|x(i); φ, µ, Σ).

Here, “Qi(z
(i) = j)” denotes the probability of z(i) taking the value j under

the distribution Qi.
Next, in the M-step, we need to maximize, with respect to our parameters

φ, µ, Σ, the quantity

m
∑

i=1

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); φ, µ, Σ)

Qi(z(i))

=
m

∑

i=1

k
∑

j=1

Qi(z
(i) = j) log

p(x(i)|z(i) = j; µ, Σ)p(z(i) = j; φ)

Qi(z(i) = j)

=
m

∑

i=1

k
∑

j=1

w
(i)
j log

1
(2π)n/2|Σj |1/2 exp

(

−1
2
(x(i) − µj)

T Σ−1
j (x(i) − µj)

)

· φj

w
(i)
j
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Lets maximize this with respect to µl. If we take the derivative with respect
to µl, we find

∇µl

m
∑

i=1

k
∑

j=1

w
(i)
j log

1
(2π)n/2|Σj |1/2 exp

(

−1
2
(x(i) − µj)

T Σ−1
j (x(i) − µj)

)

· φj

w
(i)
j

= −∇µl

m
∑

i=1

k
∑

j=1

w
(i)
j

1

2
(x(i) − µj)

T Σ−1
j (x(i) − µj)

=
1

2

m
∑

i=1

w
(i)
l ∇µl

2µT
l Σ−1

l x(i) − µT
l Σ−1

l µl

=
m

∑

i=1

w
(i)
l

(

Σ−1
l x(i) − Σ−1

l µl

)

Setting this to zero and solving for µl therefore yields the update rule

µl :=

∑m

i=1 w
(i)
l x(i)

∑m

i=1 w
(i)
l

,

which was what we had in the previous set of notes.
Lets do one more example, and derive the M-step update for the param-

eters φj. Grouping together only the terms that depend on φj, we find that
we need to maximize

m
∑

i=1

k
∑

j=1

w
(i)
j log φj.

However, there is an additional constraint that the φj’s sum to 1, since they
represent the probabilities φj = p(z(i) = j; φ). To deal with the constraint

that
∑k

j=1 φj = 1, we construct the Lagrangian

L(φ) =
m

∑

i=1

k
∑

j=1

w
(i)
j log φj + β(

k
∑

j=1

φj − 1),

where β is the Lagrange multiplier.2 Taking derivatives, we find

∂

∂φj

L(φ) =
m

∑

i=1

w
(i)
j

φj

+ 1

2We don’t need to worry about the constraint that φj ≥ 0, because as we’ll shortly see,
the solution we’ll find from this derivation will automatically satisfy that anyway.
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Setting this to zero and solving, we get

φj =

∑m

i=1 w
(i)
j

−β

I.e., φj ∝
∑m

i=1 w
(i)
j . Using the constraint that

∑

j φj = 1, we easily find

that −β =
∑m

i=1

∑k

j=1 w
(i)
j =

∑m

i=1 1 = m. (This used the fact that w
(i)
j =

Qi(z
(i) = j), and since probabilities sum to 1,

∑

j w
(i)
j = 1.) We therefore

have our M-step updates for the parameters φj:

φj :=
1

m

m
∑

i=1

w
(i)
j .

The derivation for the M-step updates to Σj are also entirely straightfor-
ward.
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Reinforcement learning I

In supervised learning, we had a training set {(x(1), y(1)), . . . , (x(m), y(m))}
for which we had the “right answer” y(i) for every instace x(i). For example,
supervised learning algorithms would learn to drive by predicting the actions
of an expert human driver. In this set of notes, we’ll talk about a different
setting called reinforcement learning, where we don’t know the right an-
swers ahead of time; we only know a “reward function” which tells us the
goodness of particular states. (For instance, we might believe that a state
where the helicopter is in the air is better than one where it is lying in bits
and pieces on the ground.)

In detail, we specify a reward function mapping states of the world to
real numbers. The algorithm’s goal is to find a sequence of actions which
maximizes this reward function over time. This temporal component means
the algorithm does not simply have to make a one shot decision. For instance,
the helicopter must choose actions which not only allow it to stay in the air
at this exact moment, but which also keep it stable enough that it can remain
in the air continually.

If the world were completely deterministic, it would be easy to maximize
such a reward function using techniques from our lectures on search. How-
ever, in many robotics systems, the dynamics are stochastic, in that the
same action doesn’t always lead to the exact same result every time. For
instance, telling a robot to move one meter forward could typically result in
it moving anywhere between 95 and 105 cm forward, due to factors such as
slippage of the wheels. Even a small amount of randomness would cause big
problems for the deterministic search algorithms we covered earlier in the
course.

We will take an approach where we “reward” the robot for desired out-
comes and “punish” it for undesired ones. One challenge faced by rein-
forcement learning is the credit assignment problem. Upon reaching a

1
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position with negative reward, it may not be obvious which previous action
had caused that negative reward. For instance, suppose you are driving and
you crash your car. Chances are, you slammed on your breaks shortly before
the crash. You wouldn’t want to conclude from this that it’s a bad idea to
ever step on the breaks again. Rather, the crash was probably due to an
action you chose much earlier, such as your decision to go 90 MPH down the
highway.

In these notes, we present the standard reinforcement learning formalism,
known as the Markov decision process (MDP). MDPs allow us to model
the (stochastic) dynamics of the world as well as the desired outcomes. As
we will see, within this formalism, we can tractably compute the optimal
behaviors which maximize the reward function over time.

1 Markov Decision Processes (MDPs)

An MDP is a 5-tuple (S, A, {Psa}, γ, R), where

• S is the set of states

• A is the set of actions

• Psa gives the state transition probabilities for state s and action a.
If we are in state s, then for any state s′, Psa(s

′) gives the probability
that taking action a will cause us to transition to state s′. Since Psa is
a probability distribution,

∑

s′
Psa(s

′) = 1 and Psa(s
′) ≥ 0 for all s ∈ S

and a ∈ A.

• γ is a real-valued discount factor in the interval 0 ≤ γ < 1 telling us
how much we value rewards right now relative to rewards in the future.

• R : S 7→ R is the reward function, which measures the desirability of
being in each state.

Consider, for instance, the following example from our class textbook,
shown in Figure 1 (a). The world is a 4 × 3 grid, with one obstacle, giving
a total of 11 states. There are four possible actions the robot can take,
corresponding to moving in each of the four compass directions, labeled
{N, S, E, W}. However, the motion dynamics are noisy, and so if the robot
tries to move in a particular direction, there is a 10% chance of it instead
moving in the direction 90◦ to the left, and a 10% chance of it moving in the
direction 90◦ to the right. If the robot’s direction of motion causes it to move
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(a) (b)

Figure 1: (a) An example MDP, taken from Russell & Norvig. The initial
location of the robot is given by R. (b) The optimal policy for the MDP, for
γ = 0.99.

into a wall, it simply bounces off and stays put in its current square. For
instance, if the robot is in square below the obstacle, trying to move down
will result in a 10% chance of moving left, a 10% chance of moving right, and
an 80% chance of staying put.

Its goal is to wind up in the upper right corner, so that square is assigned
a reward of +1. We don’t want it to land in the square below, so that square
is assigned a reward of −1. As soon as the robot enters one of these two
squares, the MDP is over and no more moves are made.1 We also don’t
want the robot to dawdle too long, and so all other states are assigned a
small negative reward of −0.04 (perhaps corresponding to fuel or battery
consumption). Assigning a small negative reward to all states is a common
method for preventing a robot from sitting idle.

Let’s now define a little more formally how an MDP works. We begin in
some state s0. At each (discrete) time t, we are in some state st, we choose
some action at, and a successor st+1 is drawn according to the transition
probabilities, i.e. st+1 ∼ Pstat

. This process generates an infinite sequence
of states s0, s1, s2, . . .. The total payoff is defined as a weighted sum of the
rewards for the states in this sequence:

R(s0) + γR(s1) + γ2R(s2) + · · · .

The contribution of each state to the total payoff is weighted by γt, which
decreases exponentially quickly with t. Such a weighting is known as dis-
counting. In a financial application, the discount factor γ has a natural
interpretation as the time value of money. A dollar today is worth more

1To treat this more formally, you can imagine that both of these states transition with
probability 1 to a “zero-cost absorbing state.” This is a state which transitions to itself
with probability 1 and has no associated reward.
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than a dollar a year from now, because of the interest rate—a dollar placed
in a bank will earn you back slightly more than a dollar in a year’s time.
Small values of γ imply a very fast decay of the value of the rewards per unit
time, and hence mean we will be shortsighted. Large values of γ (e.g. very
close to 1) mean we will try to maximize our expected payoff long into the
future.

We said above that we have to choose an action at each time instant.
More specifically, our goal is to find a policy π which assigns an action to
every state, i.e. π : S 7→ A. At each time t, we will choose the action which π

assigns the current state, at = π(st). If we take actions in an MDP following
the actions specified by a policy π, then we say that we are executing policy
π in the MDP.

We are interested in computing the optimal policy of the MDP. Before we
define the optimal policy, we need some preliminary definitions. First, define
the value function of a policy π to be a function which takes a state s and
returns the expected total payoff if we start at s. More formally, V π : S 7→ R,
where

V π(s) = E
[

R(s0) + γR(s1) + γ2R(s2) + · · ·
∣

∣ π, s0 = s
]

.

We can’t compute V π(s) directly from this definition, however, because it is
a sum of an infinite number of terms. What we will do instead is to define
V π(s) recursively in terms of V π(s′) for all states s′. This will give a system
of linear equations which can be solved. This is called Bellman’s equation
for V π.

V π(s) = E
[

R(s0) + γR(s1) + γ2R(s2) + · · ·
∣

∣ π, s0 = s
]

= E
[

R(s0) + γ
(

R(s1) + γR(s2) + γ2R(s3) + · · ·
)

∣

∣ π, s0 = s
]

= R(s) + γE
[

R(s1) + γR(s2) + γ2R(s3) + · · ·
∣

∣ π, s0 = s
]

= R(s) + γ
∑

s′∈S

Psπ(s)(s
′) E

[

R(s1) + γR(s2) + γR(s3) + · · ·
∣

∣ π, s1 = s′
]

= R(s) + γ
∑

s′∈S

Psπ(s)(s
′) V π(s′) (1)

This is a system of linear equations, where the variables are the values of
V π(s) for the different states s. If n is the number of states, there are n

equations with n unknowns. Such a system can be solved in closed form
using standard techniques. In the equation above, R(s) is sometimes also
called the immediate reward.

Now, for a given state s, we can define the optimal value of s, denoted
V ⋆(s), as the largest expected total payoff starting from s which can be
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achieved by any policy:
V ⋆(s) = max

π

V π(s).

We don’t want to compute V ⋆(s) directly from this definition (i.e., by enu-
merating all policies). Instead, we will make use of a version of Bellman’s
equation for V ⋆:

V ⋆(s) = R(s) + max
a

γ
∑

s′

Psa(s
′)V ⋆(s′). (2)

You should convince yourself that Bellman’s equation must hold true for the
optimal values V ⋆. The converse is more subtle. You’ll have a chance to
prove, in Problem Set 2, that V ⋆ is uniquely defined by Bellman’s equation.

Now, rather than define the optimal policy directly, we define a particular
policy π⋆, which will turn out to be the optimal policy. Define π⋆ to be the
policy which looks the best according to V ⋆, i.e.

π⋆(s) = arg max
a

∑

s′

Psa(s
′)V ⋆(s′).

It’s a fact, which we won’t prove, that

V ⋆(s) = V π
⋆

(s).

(Make sure you understand all the notation used here.) In other words, π⋆

is the optimal policy, or the one which achieves the highest expected total
payoff for each state.

Figure 1 (b) shows the optimal policy for the grid world.

2 Solving MDPs

We have just defined our goal as finding the optimal policy π⋆, and now we
introduce algorithms to do that.

2.1 Value iteration

We gave a formula for computing the optimal policy π⋆ in terms of the
optimal value function V ⋆, so one way to proceed is to compute the optimal
value V ⋆(s) for each state s, and then use V ⋆ to get π⋆. Value iteration
is an iterative algorithm which essentially changes the equality in Bellman’s
equation (Equation 2) into an update rule.

Specifically, value iteration works as follows:
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Figure 2: An example of value iteration applied to our MDP, for γ = 0.999.

Initialize V (s) = 0 for all states s.

Repeat until convergence:

For every state s ∈ S, update

V (s) := R(s) + maxa γ
∑

s′∈S
Psa(s

′)V (s′)

This procedure will gradually cause V (s) to converge to the optimal value
function V ⋆(s). An example is shown in Figure 2.

Notice that our above definition is ambiguous. Suppose it’s time to up-
date a state s on the ith pass through all of the states, and for some other
state s′, V (s′) has already been updated on the ith pass. Which value of V (s′)
do we use: the one from the i−1st pass, or the one which was newly assigned
on the ith pass? It turns out that both versions give a correct algorithm.
Using the value from the i − 1st pass is known as synchronous updates,
while using the value from the ith pass is known as asynchronous updates.

Somtimes it’s convenient to think of V a vector, where the jth component
of V corresponds to V (sj). In the synchronous updates version of value
iteration, we sometimes refer to one pass through all of the states as the
Bellman operator B. In this notation, each pass through the states can
be written as V := B(V ).

2.2 Policy iteration

Policy iteration is another algorithm based on a similar intuition. Policy
iteration also uses the Bellman equations as update rules in an iterative
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Figure 3: An example of policy iteration applied to our MDP, for γ = 0.99.

algorithm, but does so in a slightly different way. In policy iteration, we
alternate between computing the expected total payoff function V π for a
given policy and choosing a new policy π based on our current estimate of
the value of each state. Our estimate V (s′) is taken to be the actual expected
total payoff for state s′ under the policy π, as computed by solving the system
of linear equations.

Policy iteration can be written as follows:

Initialize π randomly.

Repeat until convergence:

Let V := V π. (In other words, compute V π from (1).)

Let π(s) := arg maxa

∑

s′∈S
Psa(s

′)V (s′)

In a finite number of iterations, V will converge to V ⋆, and π will converge
to π⋆. An example is shown in Figure 3.

What are the advantages and disadvantages of policy iteration relative
to value iteration? The advantage is that, rather than using its previous
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(possibly very inaccurate) estimate of the value of a particular state s, it
actually computes the exact value of the state relative to some policy π.
Hence, if the current policy is somewhat similar to the optimal one, then
V should be very accurate. In practice, policy iteration takes many fewer
iterations to converge than value iteration.2 On the other hand, it’s much
more expensive to compute one iteration of policy iteration than one iteration
of value iteration. For each update, value iteration only requires taking a
maximum of a set of numbers, while policy iteration requires solving a set
of linear equations. Therefore, policy iteration is perhaps most effective
in domains with a small number of states, and value iteration for larger
problems.

2It is still an open problem to find good bounds for the number of iterations required
for policy iteration to converge. The best known bound is exponential in the number of
states, but there are no known examples which actually take exponentially long.



CS221 Lecture notes #9

Reinforcement learning II
So far, we have considered reinforcement learning using the framework of dis-
crete MDPs. In particular, we assumed a finite state space. We now discuss
ways to handle problems where the state space is continuous. Specifically,
we discuss two general methods for solving continuous MDPs. The first,
based on discretization, will approximate the continuous value function in
terms of a value function defined on a discrete set of points drawn from the
continuous space. The second, called fitted value iteration, will compute an
approximation to the value function using an iterative learning algorithm.
Fitted value iteration will allow us to scale MDP algorithms to much larger
numbers of dimensions than would be possible using discretization.

1 Discretization

Suppose you want to apply reinforcement learning to driving a car. Let’s say
we model the state of the car as the vector

st =





xt

yt

θt



 ∈ R
3,

where xt and yt give the location of the car at time t, and θ gives its orien-
tation. Assume for now that we have a finite set of actions A (e.g. turn left,
step on the breaks, etc.).1 We suppose we have a simulator which takes a
state-action pair (st, at) for time t and returns a state st+1 for time t + 1. In

1In some problems, we can have continuous actions also. For instance, when driving,
we can control how much to turn left, how strongly to step on the brakes, and so on.
But for most problems, A has only a small number of degrees of freedom, and so it’s not
hard to discretize. For instance, we might realistically model the state of a car as a vector

1
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other words, it will sample st+1 from the distribution Pstat
. We treat the sim-

ulator as a black box which takes a state-action pair and returns a successor
state:

In some cases, we have a good model of the physics, and therefore we
can determine the transition probabilities Pstat

through physical simulation.
Often, however, it’s hard to construct a good physical model a priori. In
these cases, the simulator itself has to be learned.

Sometimes, the simulator is deterministic, in that it will always return
the same state st+1 for a particular state-action pair (st, at). Sometimes, the
simulator is stochastic, where st+1 is a random function of st and at.

Say we have a continuous state space S. One way to apply the techniques
from the previous set of notes is to discretize S to obtain a discrete set of
states S̄ = {s̄(1), s̄(2), . . . , s̄(n)}. For instance, we might choose to break up
the continuous state space S into boxes and let S̄ have one discrete state
s̄(i) for each of these boxes. We will refer to this method as simple grid
discretization. This is not necessarily the best approach for many problems,
but it is simple to implement, and is often good enough. In these notes, s

will always denote a state in the original continous state, and s̄ will denote
one of the discrete states.

After discretizing our continuous space, we typically need to estimate the
transition probabilities Ps̄a(s̄

′). We do this by taking a lot of samples and
estimating Ps̄a(s̄

′) as the proportion of times we landed in discrete state s̄′

after taking action a in some continuous state associated with discrete state
s̄. More formally, we use the algorithm shown in Figure 1.

We also need to estimate the reward function for our discretized MDP.
This can be done analogously to how we estimate the transition probabilities.
Specifically, we take a large number of samples from S, and then for each
discrete state s̄, we take R(s̄) to be the mean value of R(s) for all of our
samples s which were associated with s̄.

s ∈ R
6 = (x, y, θ, ẋ, ẏ, θ̇) giving the location and orientation, and the rate of change of

each. The set of actions, however, can be given as a vector in R
2. Therefore, we will focus

our attention on dealing with continuous state spaces, and assume the set of actions is
discrete.
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For i = 1 to k,

Sample st randomly from the continuous state space S.

For each action a ∈ A,

“Try” action a from state st. In other words, let st+1 be the
state returned by the simulator when given state st and action
at.

Find the discrete states s̄t and s̄t+1 associated with the contin-
uous states st and st+1.

Estimate

Ps̄ta
(s̄t+1) =

# times action a in state s̄t caused a transition to state s̄t+1

# times we tried action a in state s̄t

.

Figure 1: An algorithm for estimating the transition probabilities in a dis-
cretized space.

This process gives us the complete specification of a discrete MDP, which
we can then solve using the techniques such as value iteration of policy it-
eration. This will give us the optimal value function V ⋆(s̄) and the optimal
policy π⋆(s̄) for the discrete problem. How do we use this to choose a policy
for the original continuous problem? If we want to choose an action at for a
given continuous state st, we can map st to the corresponding discrete state
s̄t and choose the action at = π⋆(s̄t).

Formulating a problem as a continuous MDP has several advantages over
the motion planning algorithms presented earlier in this course. Specifically,
it can handle cases that deterministic motion planning methods can’t, includ-
ing nonholonomic motion and stochasticity. As a consequence of its being
able to handle nonholonomic problems, it can also account for the dynam-
ics of the problem. In other words, it can account for the rates of change
of the different variables. For instance, in the notes on motion planning, we
represented the configuration of a helicopter as a vector in R

6, with three
dimensions for the location of the helicopter and three dimensions for its
orientation. In the MDP framework, we can represent the state as a vector
in R

12 which also includes the rate of change of each of these variables. This
means a state where the helicopter is flying steadily in the air will be treated
as distinct from one where it is plummeting towards the ground.
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(a) (b)

Figure 2: (a) An example of simple grid discretization applied to a real-
valued function on the interval [0, 1]. (b) A close-up with the edge width h

and error ε labeled.

2 Linear interpolation

Previously, we introduced a simple algorithm for discretizing a continuous
state space. We supposed we had a function which would assign each contin-
uous state s to some discrete state s̄. The value we assign to s would simply
be the value of s̄. For the moment, let’s restrict ourselves to one-dimensional
state spaces, and consider the more general problem of discretizing some
real-valued function f : R 7→ R on the interval [0, 1]. What does simple
discretization look like when applied to this problem? We would partition
[0, 1] into some discrete set of intervals. We then approximate the value of
f in these intervals as being constant, to get an approximation f̄ that is
piecewise constant. An example is shown in Figure 2a. In the sequel, we
will use h to denote the width of each of the intervals. (E.g., if you discretize
[0, 1] into n discrete intervals, then we would have h = 1/n.)

How good is this approximation? Clearly, this will depend how finely we
discretize the input domain. I.e., it will depend on how small h is. We are
specifically interested in the problem of how well f̄ approximates f as h → 0
(i.e., in the limit of finer and finer discretizations). Figure 2b shows a close-
up view of f and its approximation f̄ . If the function f has approximately
gradient m in this region, then it is possible to show that the maximum error
of the approximation is given by

ε ≈
h

2
m = O(mh).

This big-O notation is in the limit of h → 0. The error, therefore, decreases



5

(a) (b)

Figure 3: An example of the difference between the two kinds of grid dis-
cretization, using a configuration space from our motion planning lecture.
(a) The kind of discretization where the space is divided into “boxes.” (b)
The kind of discretization where we lay down a lattice of grid points in the
state space. This is the kind of discretization we will be using.

linearly with the density at which the points are sampled.2 If you want
your answer to be 10 times as accurate, you need to sample 10 times as
many points. This problem gets worse when we add more dimensions; in
three dimensions, sampling 10 times more finely requires 103 times as many
samples. Hence, we would need to choose 1000 times as many points to get
one more significant digit accuracy.

Fortunately, we can do better than this with relatively little additional
computational cost. Rather than approximate f with a piecewise constant
function, we will use a piecewise linear approximation. To explain this,
we will need to take a different view of discretization. Previously, we talked
about discretization in terms of splitting up the state space into a number
of “boxes.” We then associated each of the “boxes” with a value. This
is illustrated in Figure 3a. However, we will now take a different view of
discretization in which we lay down a lattice of grid points in the state space.
We will then associate each of the lattice points with a value. This is shown
in Figure 3b. Sometimes, the “boxes” view leads to much more natural
algorithms, and sometimes the “lattice” view does. If you’re ever choosing
some discretization for a problem, remember this picture, and make sure to
choose the most appropriate one for your problem.

In detail, lets again consider the case of discretizing a function f over

2You are probably used to big-O notation where n → ∞. Here, the big-O notation
represents the limit as h → 0. More formally, g1(h) = O(g2(h)) if for any constant c > 0,
there exists some constant d such that g1(h) ≤ cg2(h) whenver 0 < h < d.
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(a) (b)

Figure 4: (a) An example of linear interpolation applied to a real-valued
function on the interval [0, 1]. (b) A close-up with the edge width h and
error ε labeled.

[0, 1]. Suppose we choose n + 1 lattice points, at locations

x̄(0) =
0

n
, x̄(1) =

1

n
, . . . , x̄(n) =

n

n
.

If we are trying to approximate f(x) for some x ∈ R, let x(−) denote the
nearest lattice point to the left of x, and x(+) the nearest one to the right
of x. We then interpolate between the values f(x(−)) and f(x(+)). More

formally, let α = x−x
(−)

x(+)
−x(−)

denote the fraction of the space between x(−) and

x(+) which lies to the left of x. Then we approximate

f̄(x) = (1 − α)f(x(−)) + αf(x(+)).

This process is known as linear interpolation, and it is illustrated in Fig-
ure 4a. Visually, it certainly looks like a better appproximation than our
piecewise constant one.

How accurate is linear interpolation? As before, we check how fast ε

decreases as h → 0. It turns out that the error decreases quadratically
with h, i.e., ε = O(h2). The precise statement of this result is somewhat
technical, but it suffices to say linear interpolation gives significantly better
results than piecewise constant approximations. Put the other way, with
linear interpolation, the number of grid points we need is roughly the square

root of what we would need with piecewise constant approximations.

2.1 Value iteration updates

Still limiting ourselves to the 1-dimensional case, we’re going to show how
to apply value iteration when we use linear interpolation on our discretized
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points.
Suppose our state space S is an interval in R, and we have discretized it

into a grid of n points s̄(1), . . . , s̄(n). We will explicitly determine the value
function V (s̄) at the grid points, and then compute V (s) with linear inter-

polation everywhere else. If s is between s̄(i) and s̄(i+1), and α = s−s̄
(i)

s̄(i+1)
−s̄(i)

,
we define

V (s) = (1 − α)V (s̄(i)) + αV (s̄(i+1)).

We will approximately solve for V (s̄(i)) for each lattice point s̄(i) using
value iteration. Assume for simplicity that our simulator is deterministic,
i.e., there is some function δ : S × A 7→ S which gives us the resulting state
s′ whenever we feed a state-action pair (s, a) into the simulator. In this case,
we do the following:

Initialize V (s̄(i)) = 0 for all grid points s̄(i).

Repeat until convergence:

For each grid point s̄(i):

For each action a ∈ A:

Let s′
a

= δ(s̄(i), a).

Compute V (s′
a
) via linear interpolation.

Set V (s̄(i)) := R(s̄(i)) + γ maxa V (s′
a
).

As with ordinary value iteration, this will converge, giving us the (approxi-
mate) optimal policy V ⋆. We can choose our policy as:

π⋆(s) = arg max
a

V ⋆(δ(s, a)).

Essentially, we are using our simulator to do one-step lookahead to see which
action takes us to the state with the highest value.

We just assumed the simulator was deterministic. If the simulator is
stochastic, then rather than choosing a single point s′ = δ(s̄(i), a), we sample
k successor states, and use the average value of these successor states in the
update rule. Finally, to choose an action at for a given continuous state st,
we run the simulator k times for each action a to get k points s′

a1, . . . , s
′

ak
.

We choose:

π⋆(s) = arg max
a

1

k

k
∑

i=1

V ⋆(s′
ai

).
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(a) (b)

Figure 5: (a) An example of a discretized MDP. We are trying to estimate the
value of state s based on the values assigned to our lattice points s̄(1), . . . , s̄(4).
(b) How to apply bilinear interpolation to this MDP. First, the value function
is interpolated between s̄(1) and s̄(2) to get V12, and between s̄(3) and s̄(4) to
get V34. Then we interpolate between V12 and V34 to get V (s).

3 Multilinear interpolation

We now describe the generalization of linear interpolation to higher dimen-
sional state spaces. Suppose now that we have a two-dimensional continuous
state space S, which we have discretized into a grid as shown in Figure 5a.
Assume we somehow have a value function V defined on all of the grid points.
How do we compute V (s)? Notice first that we can’t simply use piecewise
linear interpolation. The values of V at our four grid points s̄(1), . . . , s̄(4)

have to be specified with four real numbers. On the other hand, if we tried
to predict V (s) with a linear function, e.g.

V (s) = θ0 + θ1s1 + θ2s2,

we only have three degrees of freedom to specify V . Hence, we can’t always
come up with a linear function which matches V at each of the four grid
points s̄(1), . . . , s̄(4).

Instead, we will use bilinear interpolation, as demonstrated in Figures
5b and 6. First, we interpolate linearly between s̄(1) and s̄(2) to get V12. Sim-
ilarly, we compute V34 by interpolating s̄(3) and s̄(4). Finally, we interpolate
between V12 and V34 to get V (s).

It might seem funny to interpolate in the x direction before interpolating
in the y direction. Does this give preference to one coordinate over the other?
Actually, it turns out that we get the same result no matter which coordinate
we interpolate first. We can show this by taking our definition of bilinear
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Figure 6: An example of bilinear interpolation of the value function between
four lattice points s̄(1), . . . , s̄(4).

interpolation and expanding out the polynomial in terms of α and β:

V (s) = (1 − β)
(

(1 − α)V (s̄(1)) + αV (s̄(2))
)

+β
(

(1 − α)V (s̄(3)) + αV (s̄(4))
)

= (1 − α)(1 − β)V (s̄(1)) + α(1 − β)V (s̄(2))

+(1 − α)βV (s̄(3)) + αβV (s̄(4)). (1)

In other words, the weights of the points to the left of s are proportional to
1 − α, while the weights of the points to the right of s are proportional to
α. The same is true for the vertical direction. Clearly, if we had begun by
interpolating vertically rather than horizontally, we would have arrived at
the same formula.

Let’s stop to think briefly about what it means for a function to be
bilinear. Our function V (s), as computed by the polynomial (1), is linear in
each coordinate of s taken individually. In other words, as we move s directly
north, our value function changes linearly. However, V (s) is not linear in s.
As s moves from one corner s̄(3) to the opposite corner s̄(2), V (s) clearly
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changes nonlinearly. A function which is linear in each of its inputs taken
separately is called bilinear.

Our example was in two dimensions, but if we apply the exact same
technique in higher dimensional spaces, we get multilinear interpolation.

4 Fitted value iteration

Unfortunately, both of the methods we described above (simple grid dis-
cretization and multilinear interpolation) suffer from exponential growth in
the problem size as the number of dimensions is increased. (We saw ex-
actly the same problem with the discretization techniques we introduced in
our motion planning lecture.) In reinforcement learning, this exponential
growth is often referred to as the curse of dimensionality. Simple grid
discretization works well in 3 dimensions, is sometimes OK in 4 dimensions,
and occasionally works in 6 dimensions with much luck and effort. With
multilinear interpolation, we can buy ourselves a couple extra dimensions; it
sometimes works in 6 dimensions, but only rarely in 7 or 8.

But in our supervised learning lectures, we used algorithms which per-
formed well for hundreds or thousands of dimensions. Linear regression was
able to handle large numbers of dimensions because its hypotheses were re-
stricted to be linear functions of the inputs. This suggests learning a value
function which is a linear function of some predefined set of features. More
formally, suppose we have a feature map φ : S 7→ R

n, which associates with
each state s a feature vector φ(s) ∈ R

n. For instance, if our state space is
one dimensional, and we want to approximate our value function as a cubic
polynomial, we might use the feature vector

φ(s) =





s

s2

s3



 .

Or, if our state space is n-dimensional, we might simply choose as our feature
map the identity function φ(s) = s.

We will use the value function approximation, and approximate the
value function V as a linear function of the feature vector φ(s), i.e.

V (s) = Vθ(s) = θT φ(s) =
n

∑

i=1

θiφi(s).
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Note that this is completely analogous to linear regression, where our hy-
potheses hθ were linear functions of the input variables xi:

hθ(x) = θT x =

n
∑

i=1

θixi.

We can learn the weights θ using another variant of value iteration called
fitted value iteration. If our simulator is deterministic, the algorithm is
as shown in Figure 7.

Eventually, we will find a linear approximation Vθ to the optimal value
function. Unlike the previous algorithms we presented, fitted value iteration
is not guaranteed to converge, but in practice, it will usually converge or
approximately converge. As with multilinear interpolation, we can then find
the optimal policy with

π⋆

θ
(s) = arg max

a

V ⋆

θ
(δ(s, a)).

If the simulator is stochastic, then when setting y(i), we must estimate the
expected value of the successor state by sampling successor states from the
simulator and taking the average. Given a continuous state s, for each action
a, we run the simulator k times for each action a to get k points s′

a1, . . . , s
′

ak
.

We choose:

π⋆(s) = arg max
a

1

k

k
∑

i=1

V ⋆(s′
ai

).
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Initialize θ = 0.

Sample a set of states s̄(1), s̄(2), . . . , s̄(m) randomly from S.

Repeat until convergence:

For i = 1 to m:

Set x(i) = φ(s̄(i)).

Set

y(i) = R(s̄(i)) + max
a

V (s(i)
a

)

= R(s̄(i)) + max
a

θT φ(s(i)
a

),

where s
(i)
a = δ(s̄(i), a).

Choose

θ := arg min
θ

1

2

m
∑

i=1

(Vθ(s̄
(i)) − y(i))2

= arg min
θ

1

2

m
∑

i=1

(θT x(i)
− y(i))2

Figure 7: Fitted value iteration algorithm.
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Bayesian networks

1 Probability Review

This material on Bayesian networks (Bayes nets) will rely heavily on several
concepts from probability theory, and here we give a very brief review of these
concepts. For more complete coverage, see Chapter 13 of the class textbook.

Although the Bayes net framework can accommodate continuous random
variables, we will limit ourselves to discrete random variables X which can
take on a finite set of values x1, . . . , xd. In general, we will use uppercase
letters to denote random variables and lowercase letters to denote the values
those variables may take on. The probability that X takes the value x will
be denoted P(X = x), or when there is no risk of ambiguity, P(x). The joint
distribution over n random variables X1, . . . , Xn encodes the probability of
a particular assignment to all of the variables, i.e. P(X1 = x1, . . . , Xn = xn),
or simply P(x1, . . . , xn).

The conditional probability that a random variable X takes on the
value x given some other random variable Y takes on the value y is written
P(x | y), and is defined as:

P(x | y) =
P(x, y)

P(y)
.

More generally, for a set of random variables X1, . . . , Xm and Y1, . . . , Yn, we
can write:

P(x1, . . . , xm | y1, . . . , yn) =
P(x1, . . . , xm, y1, . . . , yn)

P(y1, . . . , yn)
.

We will use bold letters to denote sets of random variables and the values
they might take. If X = {X1, . . . , Xm} and Y = {Y1, . . . , Yn}, we can rewrite

1
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this definition as:

P(x | y) =
P(x,y)

P(y)
.

We refer to the quantity P(Y = y) as the marginal probability of Y
when we want to emphasize that we are ignoring X. If we are given the joint
distribution over two sets of random variables X and Y, and x and y denote
joint assignments to X and Y, we can retrieve the marginal probability of
Y by marginalizing over all of the possible assignments to X, i.e.,

P(y) =
∑

x

P(x,y).

By plugging this equation into our definition of conditional probability,
we get Bayes’ Rule:

P(x | y) =
P(x,y)

∑

x
′ P(x′,y)

.

Two sets of random variables X and Y are independent if

P(x,y) = P(x)P(y).

By dividing both sides through by P(y), we see that this definition is equiv-
alent to

P(x | y) = P(x).

More generally, we say two sets of random variables X and Y are condi-
tionally independent given a third set of random variables Z if

P(x,y | z) = P(x | z)P(y | z),

or equivalently,
P(x | y, z) = P(x | z).

Finally, it is worth noting the chain rule for joint probabilities. If X
and Y are two sets of random variables, we can simply multiply both sides
by P(y) in the definition of conditional probability to find that

P(x,y) = P(x | y)P(y).

If we apply this formula repeatedly, we find that for any sets of random
variables X1, . . . ,Xn,

P(x1, . . . ,xn) =
n

∏

i=1

P(xi | x1, . . . ,xi−1).
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2 Motivation

When we studied constraint satisfaction problems and propositional satisfi-
ability, we assumed we had a set of “hard” constraints on the world. The
CSP formalism only distinguished between those assignments to variables
which were possible and those which were impossible. However, we’re often
interested in cases where many assignments are possible, but only a subset
of them are likely. For instance, imagine you are a doctor, and a patient
comes to you with a cough, a sneeze, and red eyes. One possibility is that
the patient has the flu; this would account for all three symptoms. Another
possibility is that the patient simultaneously has the flu (which accounts for
the sneezing), lung cancer (which accounts for the cough), and a corneal ulcer
(which accounts for the red eyes). Strictly speaking, both of these possibil-
ities are consistent with our observations of the patient’s symptoms. The
latter situation is clearly unlikely, however, and we want to be able to treat
the two differently. In order to do this, we need a way to encode uncertainty.

We will do this by giving a probability distribution over all possible states
of the world. In our medical diagnosis problem, suppose we represent the
state of the world with three binary random variables: flu (F ), allergy (A),
and sinus (S). We say F takes the value f if the patient has the flu, and it
takes the value f̄ otherwise. We can represent the joint distribution over
these three variables with a table of 8 numbers, each one representing the
probability of a certain assignment to the three variables. For now, we assume
no restrictions on the joint distribution other than that the probabilities sum
to 1.

F A S
f a s 0.027
f a s̄ 0.003
f ā s 0.162
f ā s̄ 0.108
f̄ a s 0.014
f̄ a s̄ 0.056
f̄ ā s 0.0063
f̄ ā s̄ 0.6237

With a joint distribution such as the one given above, we can answer
any query about the domain. More specifically, we can answer any ques-
tion about the probability of a particular assignment to one set of variables,
possibly conditioned on the values of other variables. For example, suppose
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we’re interested in the probability that the patient has the flu (F = f) given
that he has sinus trouble (S = s). To do this, we apply Bayes’ Rule:

P(f | s) =
P(f, s)

P(f, s) + P(f̄ , s)
.

Note that we use P(f | s) as a shorthand for P(F = f | S = s), the probability
that F takes the value f given that S takes the value s. To find P(f, s), we
add up the entries from the table which are consistent with that assignment,
i.e.

P(f, s) = 0.027 + 0.162 = 0.184.

Similarly,
P(f̄ , s) = 0.014 + 0.0063 = 0.0203.

By plugging these numbers into Bayes’ Rule, we get:

P(f | s) =
0.184

0.184 + 0.0203
= 0.903.

Therefore, we can conclude that the probability that the patient has the flu
is about 90%.

Explicitly specifying the joint assignment in a table works for tiny ex-
amples such as the one above, but it doesn’t scale because the size of the
representation grows exponentially in the number of variables. Not only
does this make actually computing the answers to queries very difficult, but
a full joint distribution is unintuitive and hard for humans to specify exactly.
Bayesian networks provide a compact and more computationally tractable
way to represent joint distributions.

3 Bayesian network definition

A Bayesian network (Bayes net) is a directed acyclic graph, where nodes
correspond to random variables and edges correspond to direct influence of
one variable on another. Each node is associated with a conditional prob-
ability table (CPT) which gives the probability that the corresponding
variable takes on a particular value given the values of its parents. For in-
stance, we might use the following network to represent our medical diagnosis
example:
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Intuitively, this encodes the information that sinus problems depend di-
rectly on having a flu or allergies. The CPTs might be:

P(F ):
f f̄

0.3 0.7
P(A):

a ā

0.1 0.9

P(S | F, A):

s s̄

f a 0.9 0.1
f ā 0.6 0.4
f̄ a 0.2 0.8
f̄ ā 0.01 0.99

For example, this indicates that the probability of having allergies is 10%
and the probability of having sinus trouble if one has allergies but not the
flu is 20%.

Now let’s turn to a more complicated example. Suppose an alarm is
installed in your home, and the alarm (A) can be set off by an earthquake
(E) or a burglar (B). If the alarm goes off, it might cause your neighbor to
call (C). Finally, if there is an earthquake, it might be reported on the radio
(R). All in all, we have five binary random variables: A, E, B, C, and R.
We will represent this domain with the following Bayes net:

The burglary variable can be either true or false, but it isn’t “caused” by
any other variable in the network. The same goes for the earthquake. The
alarm depends on whether or not there is an earthquake, and whether or not
there is a burglary. The neighbor’s call depends on the alarm, and the radio
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depends on the earthquake. The parents of a node, intuitively, are the only
things which directly influence that node.

We’ll annotate this graph with the following probability distributions:

• P(B) — the prior probability of a burglary.

• P(E) — the prior probability of an earthquake.

• P(A | B, E) — the probability of the alarm going off under any of the
relevant circumstances: (b1, e1), (b1, e0), (b0, e1), (b0, e0).

• P(C | A) — the probability of the neighbor’s call for each value of A.

• P(R | E) — the probability of the radio reporting an earthquake given
each value of E.

In particular, here are our CPTs:

P(B):
b0 b1

0.99 0.01
P(E):

e0 e1

0.995 0.005

P(A | B, E):

a0 a1

b0 e0 0.999 0.001
b0 e1 0.7 0.3
b1 e0 0.2 0.8
b1 e1 0.05 0.95

P(R | E):
r0 r1

e0 0.99999 0.00001
e1 0.65 0.35

P(C | A):
c0 c1

a0 0.95 0.05
a1 0.3 0.7

Now, suppose we are given the state (b1, e0, a1, c1, e0). What is the prob-
ability of this exact state? We define it as follows:

P(b1, e0, a1, c1, e0) = P(b1)P(e0)P(a1
| b1, e0)P(c1

| a1)P(r0
| e0)

= 0.1× 0.995× 0.8× 0.7× 0.99999

= 0.05572.

We just multiplied together the corresponding entries of all of our conditional
probability tables.

We can state this definition for general Bayesian networks as follows.
Each node Xi associated with a CPT P(Xi | Parents(Xi)) which specifies
a distribution over Xi for each combination of values for Xi’s parents. A
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Bayesian network represents a joint probability distribution over its variables
X1, . . . , Xn via the chain rule for Bayes nets:

P(x1, . . . , xn) =

n
∏

i=1

P(xi | Parents(Xi)). (1)

Bayesian networks give us a compact way of specifying the joint distribu-
tion over a set of variables. In our alarm network, we have five variables, each
of which can take on one of two values. Therefore, explicitly representing the
joint distribution over these variables in a table would require specifying 32
entries. The only constraint is that they all sum to 1, and so we need to
specify 31 parameters. On the other hand, by representing the domain as a
Bayes net, we only need to specify 10 parameters: 1 for P(B), 1 for P(E), 4
for P(A | B, E), 2 for P(C | A), and 2 for P(R | E).

4 Reasoning patterns

We now discuss some particular kinds of queries we can pose using Bayes
nets. Suppose we have two subsets of variables: Q, the query, and E,
the evidence. We are interested in computing the probability of the query
given the evidence. (For instance, we might be interested in computing the
probability that there was a burglary (b1) given that our neighbor did not call
(c0). Then Q = {B} and E = {C}.) We have defined the joint probability
of all of the variables in terms of the CPT entries for each of the nodes in
the Bayes net. Therefore, in principle, we can answer this query by explicitly
writing out the full joint distribution in a table, and then marginalizing out
over all of the irrelevant variables. (We’ll discuss better methods later in
these notes.) In the example above, we can compute:

P(b1
| c0) =

P(b1, c0)

P(c0)

=

∑

a,e,r
P(b1, c0, a, e, r)

∑

a,e,r,b
P(c0, a, e, r, b)

We’ll now present some informal terms for various kinds of reasoning in
Bayes nets:

• Causal reasoning. What is the chance that we get a phone call from
our neighbor given that there was a burglary? In this case, the query is
“downstream” of the evidence.
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Figure 1: The alarm network. There are five nodes: E (earthquake), B (bur-
glary), A (alarm), C (neighbor’s call), and R (radio report of an earthquake).

• Diagnostic or evidential reasoning. Given that the alarm went off,
what is the chance that there was a burglary? Here, we are trying
to infer the probability of upstream events conditioned on downstream
events.

• Intercausal reasoning or explaining away. Suppose your neighbor
calls and informs you that your alarm went off. You are worried that
there was a burglary. Then, you hear on the radio that there was an
earthquake, and you’re relieved because you figure the earthquake prob-
ably set off the alarm. We say the earthquake explained away the alarm.
This is a very sophisticated form of reasoning, but we will see later that
it fits nicely into the Bayes net framework.

5 Bayesian network semantics

We have seen that Bayes nets give a compact way of representing the joint
distribution over a set of random variables. Specifying the full distribution
over the five binary variables in our alarm network (shown again in Figure
1) by listing all of the individual probabilities in a table required specifying
31 parameters. Specifying the CPT entries for a Bayes net required only 10
parameters. Clearly, since it has fewer parameters to set, the latter approach
can only specify a subset of the possible joint distributions over those five
variables. We will now formalize precisely which subset of the joint distribu-
tions are consistent with a given Bayes net structure.

We will see that a Bayes net is basically encoding conditional inde-
pendence assumptions about the variables in the network. Recall that we
have committed to the following joint distribution over variables in the alarm
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network:

P(B, E, A, C, R) = P(B)P(E)P(A | B, E)P(C | A)P(R | E),

or for the more general case, we have the chain rule for Bayes nets:

P(X1, . . . , Xn) =
n

∏

i=1

P(Xi | Parents(Xi)). (2)

Any distribution consistent with the Bayes net must factorize in this way.
In principle, we can find all of the conditional independencies in the net-
work simply by performing algebraic manipulations on this expression. For
instance, as an exercise, try to prove that B and E are independent in the
alarm network. It is clearly tedious to try to uncover all of the conditional
independencies through brute force algebraic manipulation. We will now
develop higher-level sufficient and necessary conditions for conditional inde-
pendence which allow us to read off conditional independencies directly from
the graph structure.

First, let us recall the definition of conditional independence: Let X, Y,
and Z be (not necessarily disjoint) sets of random variables. (Recall that we
use plaintext to denote random variables and their values, and boldface to
denote sets of random variables and their possible joint assignments.) We
define:

X is conditionally independent of Y given Z if P(x | y, z) = P(x | z)
for all assignments x, y, and z to X, Y, and Z.

Equivalently, X and Y are conditionally independent given Z if P(x,y | z) =
P(x | z)P(y | z). As a shorthand, we often write this as P(X,Y | Z) =
P(X | Z)P(Y | Z). We will also write I(X,Y | Z) to denote that X is
conditionally independent of Y given Z.

Before we proceed to precisely define necessary and sufficient conditions
for conditional independence, let us consider some simple cases. Figure 2
shows some examples where influence does or does not flow from one node
X to another node Y . Make sure you understand why influence does or does
not flow in each of these cases.

6 d-separation

Now we are going to formalize these intuitions. Suppose we have a three-
variable path X−Z−Y in our network. We say this path is active (influence
“flows” from X to Z through Y ) if one of the following holds:
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Figure 2: Some examples of conditional independence. In each of these
networks, white nodes are unobserved and black nodes are observed. When
influence flows from X to Y (i.e. X is not conditionally independent of Y

given the observed nodes), the graph is marked with a check. Otherwise, it
is marked with an X. (a) Knowing there was a burglary makes it more likely
that our neighbor calls. (b) Knowing our neighbor called makes it more likely
there was a burglary. (c) Knowing the alarm went off makes it more likely
that an earthquake will be reported on the radio. (d) Knowing there was
a burglary doesn’t tell us anything about whether there was an earthquake.
(e) Knowing there was an earthquake doesn’t tell us anything about whether
our neighbor calls, if we already know the alarm went off. (f) Knowing
an earthquake was announced on the radio doesn’t tell us anything about
whether the alarm went off, if we already know there was an earthquake.
(g) If we know the alarm went off, then knowing there was an earthquake
“explains away” the alarm, making it less likely there was a burglary. (h) If
we know our neighbor called, then knowing there was an earthquake explains
away the call, making it less likely there was a burglary.
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1. Z is not observed, and the graph structure is one of the following:

X → Z → Y, X ← Z → Y, or X ← Z ← Y.

2. The graph structure is a V-structure (i.e. X → Z ← Y ) and Z, or
some descendant of Z, is observed.

Now let’s generalize this definition to longer paths. A path X1, X2, . . . , Xk

is active given a set of observed nodes Z if:

1. For any V-structure Xi → Xi+1 ← Xi+2, either the vertex Xi+1 is
observed, or some descendant of Xi+1 is observed.

2. No other node on the path is observed.

Two nodes X and Y are d-separated in a graph G given Z if there is
no active path between them in G. Note that we are defining d-separation
in terms of the graph structure, rather than the underlying distribution. To
connect the graph structure and the distribution, we will need the following
theorem, which we state without proof:

Theorem 6.1: Let P be a distribution that factors according to the Bayes

net structure given by the graph G. Suppose two nodes X and Y are d-

separated in G given a set of nodes Z. Then X and Y are conditionally

independent given Z.

Because of this theorem, we say d-separation is a sound mechanism
for inferring conditional independence. I.e., if two nodes X and Y are d-
separated, then they are necessarily conditionally independent given Z. It
turns out that d-separation is also an “almost complete” mechanism for in-
ferring conditional independence, in a sense that we now explain. If there is
an active path between two nodes X and Y given Z, does this mean X and
Y are necessarily conditionally dependent given Z? No, because we could
assign probabilities in the CPTs in such a way that X and Y happen to be
conditionally independent given Z. However, the following is true:

Theorem 6.2: If two nodes X and Y are not d-separated in G given

Z, there will be some choice of CPT entries such that X and Y are not

independent given Z.

Hence, in a limited sense, d-separation is also complete. With d-separation,
we can prove many statements about independencies directly from the graph
structure, rather than by directly manipulating the terms in the definition
(2).
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7 Bayes ball

We have just specified necessary and sufficient conditions for two random
variables X and Y being conditionally independent given some set of observed
variables Z. These conditions are useful in mathematical proofs about Bayes
nets. However, we are sometimes interested in computing, for a particular
graph, which variables are conditionally independent of which other variables.

We now present the Bayes ball algorithm, an efficient method for iden-
tifying all of the variables in the network which influence X.1 We discuss
the algorithm as if we were carrying it out by hand, but it is possible to
formalize Bayes ball as an efficient dynamic programming algorithm. We
imagine we have a ball which begins at node X, and which can travel any-
where that influence flows. If there is any way for the ball to travel from X

to Y , then X and Y are conditionally dependent given Z.2 Otherwise, they
are conditionally independent given Z.

Now let’s specify how the ball is allowed to bounce. We use the rules
shown in Figure 3. As before, we use white circles to denote unobserved
nodes and black circles to denote observed nodes. In cases where the ball
may pass through, we draw red arrows going both directions; in cases where
it cannot pass through, we draw arrows which turn around.

These rules have clear similarities with d-similarity. For instance, the
ball can pass through a path X → Z → Y if and only if Z is unobserved.
However, there is one subtle difference. Notice that the Bayes Ball rules
for V-structures say nothing about whether a descendant of the vertex is
observed; they only require knowing whether the particular nodes on the
path are observed. Consider the problem of showing that R is conditionally
dependent on B given C, as demonstrated in Figure 4. Using the properties
of d-separation, we find the active path marked in Figure 4(a). However,
the Bayes ball path will be the one given in Figure 4(b). Note that the
rule which allows the ball to “bounce” back up when it hits C is the one
for X → Z ← Y , where Z is observed, and X and Y are identical. (In
Bayes ball, unlike d-separation, we allow repeated nodes in the paths.) It is
this locality of the rules which allows Bayes ball to efficiently discover the
conditional dependencies in the graph.

1This algorithm was not covered in the class lectures, and the material in this section
is optional, and will not directly appear in CS221 homeworks/midterm/etc.

2More formally, there is some assignment to the CPT entries such that X and Y are
conditionally dependent given Z.
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Figure 3: Rules for Bayes ball. We use white circles to denote unobserved
nodes and black circles to denote observed nodes. In cases where the ball
may pass through, we draw red arrows going both directions; in cases where
it cannot pass through, we draw arrows which turn around.

(a) (b)

Figure 4: An example of the difference between d-separation and Bayes ball.
(a) The active path from R to B given C. (b) The path the Bayes ball takes
from R to B.
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8 Bayes net inference

Given a Bayes net structure of a domain, we often want to perform inference
on the Bayes net. Specifically, we might want to determine the conditional
probability P (q | e) that some query variable Q takes on a value q given that
another set of variables E, the evidence variables, has a joint assignment
e. We saw previously that we can, in principle, compute this conditional
probability by explicitly writing out the full joint distribution over all of the
variables in a big table, computing the entries using the chain rule for Bayes
nets

P(x1, . . . , xn) =
n

∏

i=1

P(xi | Parents(Xi)),

and then applying the definition of conditional probability,

P(q | e) =
P(q, e)

P(e)
.

However, the size of such a table would be exponential in the number of vari-
ables in the network, and therefore this algorithm is prohibitively expensive
for all but the smallest networks. We will show how to use the structure of
Bayes nets to perform inference more efficiently.

Suppose we have a two-variable Bayes net A → B, where A and B are
both binary random variables, and we want to compute the marginal prob-
ability of B, P(B). We can apply our formula for marginal probability:

P(b1) = P(a0)P(b1
| a0) + P(a1)P(b1

| a1). (3)

Each of the terms is just one of the entries in the CPTs for the Bayes net.
We can compute P (b0) similarly. Recall that we introduced a shorthand
notation where uppercase variables in an equation signify that the equation
must hold true for any value of the random variable. Using this notation, we
can rewrite (3) as:

P(B) = P(a0)P(B | a0) + P(a1)P(B | a1).

More generally, when A is not binary, we have:

P(B) =
∑

a

P(a)P(B | a0). (4)

If A and B can each take on k values, this sum can be computed in O(k2)
time (i.e. O(k) for each value in the domain of B).
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Now let’s consider a longer chain: A → B → C. We want to compute
P(C). If we knew the marginal distribution P(B), we could compute P(C)
in the same way as above:

P(C) =
∑

b

P(b)P(C | b).

But how do we get P(B)? We find it in the same way:

P(B) =
∑

a

P(a)P(B | a).

Therefore, finding P (C) only requires applying (4) twice. More generally,
given a chain X1, X2, . . . , Xn, we apply (4) n− 1 times. Therefore, the total
running time will be n − 1 times the running time for computing (4), or
O(nk2). By contrast, if we had tried to compute this sum the naive way
(by explicitly writing out the full joint distribution), we would have had to
produce a table with O(kn) entries. We have gone from exponential time to
linear time in the number of variables.

Let’s formalize this process. Suppose we have the chain Bayes net A →

B → C → D, and we want to compute P(D). By definition,

P(d) =
∑

a,b,c

P(a)P(b | a)P(c | b)P(d | c)

=
∑

c

∑

b

∑

a

P(a)P(b | a)P(c | b)P(d | c)

=
∑

c

P(d | c)
∑

b

P(c | b)
∑

a

P(a)P(b | a). (5)

Consider only the term
∑

a
P(a)P(b | a) in (5). The value of this term

depends on the value of B. Therefore, we can rewrite the term as a factor
f1(B), or a table of k numbers, one for each value of B. Specifically,

f1(b) =
∑

a

P(a)P(b | a).

In this particular case, f1(b) turns out to be the marginal probability of B =
b, but be aware that this won’t hold true in general. The factors we discuss

here will not always correspond to marginal or conditional probabilities, and
we won’t discuss their intuitive meaning any further. Once we have the factor
f1(B), we can plug it into (5):

P(d) =
∑

c

P(d | c)
∑

b

P(c | b)f1(b). (6)



16

Just as we did before, we can compute the sum
∑

b
P(c | b)f1(b) to get

another factor f2(C), containing one number for each value of c. Finally, we
plug f2(C) into (6) to get

P(d) =
∑

c

P(d | c)f2(c).

Let us consider one final example before we define variable elimination.
Suppose we are trying to predict whether our neighbor’s grass will be wet.
Assume we have the following Bayes net structure:

If it is cloudy, it is more likely to rain. If our neighbors see that it is not
cloudy, they are more likely to decide to turn on the sprinkler. Finally, either
rain or the sprinkler being on can explain the wet grass.

Like before, we can express P(W ) as follows:

P(w) =
∑

r,s,c

P(w, r, s, c)

=
∑

r,s,c

P(w | r, s)P(r | c)P(s | c)P(c)

=
∑

r,s

P(w | r, s)
∑

c

P(r | c)P(s | c)P(c).

Let’s first sum out the terms over C to get a factor f1(r, s), a table containing
one value for each pair (r, s). Then we compute:

P(w) =
∑

r,s

P(w | r, s)f1(r, s).

To summarize: the joint distribution of all of the variables in a Bayes
net is defined by the chain rule for that Bayes net. By judiciously choosing
subexpressions to compute first, we can avoid the exponential blowup that
would occur if we tried to write out the entire joint distribution in a table.
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8.1 Variable elimination

Now, let’s generalize what we did in these examples into the variable elim-
ination algorithm. Suppose we are trying to compute the marginal proba-
bility P(q) of a query variable q.3

Let X1, X2, . . . , Xm be an ordering of the non-query variables (i.e. the
variables other than q).

Consider the chain rule over the network structure:

∑

x1

∑

x2

· · ·
∑

xm

n
∏

j=1

P(xj | Parents(Xj)).

For i = 1, . . . , m:

Leave in the summation for Xi only the factors which mention Xi.

Multiply out all of these factors, getting a factor f that contains a
number for each of the possible joint assignments to the variables
mentioned, including Xi.

Sum out the factor f over Xi, getting a factor f ′ which contains a
number for each of the possible joint assignments, not including Xi.

Replace the sum
∑

xi

∏

· · · with the factor f ′.

Now let’s consider a more complex example of variable elimination. Con-
sider the following network:

3We stated earlier that we often want to compute P(q | E), the probability of the query
given the evidence. Here, we suppose we do this by computing P(q,E) and P(E), and
then taking the ratio. However, with small modifications, we can use variable elimination
to compute P(q | E) directly. This is often significantly faster than computing both P(E)
and P(q,E).
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Suppose we want to compute the probability of dyspnea. The joint distribu-
tion is defined as:

P(d1) =
∑

a,b,ℓ,t,x,s,v

P(v)P(t | v)P(s)P(ℓ | s)P(b | s)P(a | ℓ, t)P(x | t)P(d1
| l, b).

First, we eliminate V to get the factor

fv(t) =
∑

V

P(t | v)P(v).

For instance, if T can take on the values no, mild, or severe, fV will be a
factor with three numbers. In the next step, we eliminate S to get:

fS(b, c) =
∑

s

P(s)P(ℓ | s)P(b | s).

If bronchitis has 3 values (no, mild, and severe) and lung cancer has 4, this
gives a table of 12 numbers. We continue this process until we have eliminated
all of the variables in the network (besides D).

What is the running time of variable elimination? The inner loop requires
constructing a factor over some set of variables A, and then marginalizing
this factor with respect to one of the variables. The time required to do this
will be roughly linear in the size of the factor. For instance, if all of the
variables are binary and we produce a factor over four variables, that factor
will have 16 entries. Since the inner loop is executed once for each non-query
variable, the running time will be O(mkD), where m is the number of non-
query variables, k is the size of the largest domain of any variable, and D is
the largest number of variables mentioned in any factor produced by variable
elimination. This is exponential in k, but Bayes net inference is NP-hard,
and so (assuming P 6= NP ) the worst-case complexity will be exponential in
the size of the network, no matter what algorithm we use.4

Given that variable elimination’s running time is exponential in the size
of the largest factor, how large will the factors be in practice? As a rule of
thumb, Bayes nets which are tightly connected (in that there are many active
paths through which one variable influences another) will tend to produce
large intermediate factors. If the network is sparsely connected, the factors
will tend to remain small. Also, the size of the intermediate factors is heavily
dependent on the particular variable ordering we choose. Typically, we choose
the ordering by hand. Finding the best ordering is NP-hard in general, but
several heuristics work well in practice. You will see examples of this in
section.

4More specifically, the worst-case complexity is exponential in the number of CPT
entries needed to specify the joint distribution.
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Bayesian networks, continued

1 Applications

Bayes nets have been applied to a wide variety of problems, and here we out-
line just a few. An early example was PATHfinder, a system which diagnosed
pathologies in lymph nodes. The earliest versions of this system were based
on a system of formal rules, but later versions used Bayes nets. The first
Bayes net structure that was incorporated into PATHfinder is called Naive
Bayes. A Naive Bayes network for medical diagnosis has a single node D

which represents whether or not the patient has a particular disease, and all
of the other variables X1, X2, . . . , Xn are direct children of the disease node.
These variables represent symptoms, and we suppose that all symptoms are
independent given the presence or absence of the disease. Here is such a
network:

Applying our general definition of Bayes nets, the joint distribution over all
of the variables is given by:

P(D, X1, . . . , Xn) = P(D)

n
∏

i=1

P(Xi | D).

1
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This structure makes it easy to compute the conditional probability of a
disease given the presence or absence of each of the symptoms:

P(d1
| x1, . . . , xn) =

P(d1, x1, . . . , xn)

P(x1, . . . , xn)

=
P(d1, x1, . . . , xn)

P(d1, x1, . . . , xn) + P(d0, x1, . . . , xn)

=
P(d1)P(x1 | d1) · · ·P(xn | d1)

P(d1)P(x1 | d1) · · ·P(xn | d1) + P(d0)P(x1 | d0) · · ·P(xn | d0)

The conditional probability of a disease given its symptoms can, therefore,
be computed in linear time.

The next version of the PATHfinder network eliminated 10% of all of the
misdiagnoses of this network just by eliminating all of the CPT entries which
were assigned the value 0. No amount of evidence can make an event seem
possible if it had a prior probability of zero. More generally, unless an event
is absolutely impossible, it is usually a bad idea to assign it a CPT entry of
0 in a Bayes net.

Later, PATHfinder was expanded into a full Bayes net, which could take
into account not only symptoms, but other factors such as family history or
behavior, which could affect the prior probability of having a disease. The
overall results with this full Bayes net were equivalent to saving 1 life in 1000.

PATHfinder was shown to outperform human pathologists in many situ-
ations because:

• Bayes nets incorporate the prior probabilities of various diseases in a
principled way. Often, people have trouble precisely weighting prior
probabilities against the evidence. For example, psychology studies have
shown that human physicians tend to weight the prior probability less
than they should. Instead, they tend to focus on the probability of the
symptoms given the disease, thereby assigning high likelihoods to very
rare diseases.

• Bayes nets are better at incorporating all of the different pieces of evi-
dence available. Humans have a hard time keeping more than 7-9 pieces
of evidence in their heads at a time, while Bayes nets can easily consider
dozens of pieces of evidence.

With Bayes nets, one can also determine which further piece of evidence
would be most useful to observe, possibly taking into account that it may
cost different amounts to observe different variables. In medical diagnosis,
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this helps avoid unnecessary medical tests, thereby saving time and money,
and possible even sparing the patient from painful procedures.

As another example, Microsoft uses a Bayes net to diagnose printer errors.
Using a Bayes net rather than a set of hard-coded rules allows the system
to make good predictions even if the user chooses not to enter particular
information, such as the results of printing out a test page.

2 Parameter learning

We have discussed the semantics of Bayes nets and how to perform inference.
We now discuss how to come up with the Bayes net in the first place. There
are actually two problems: structure learning (determining the BN graph
structure) and parameter learning (assigning values to the CPT entries).
Typically, we specify a Bayes net structure by hand rather than use a learning
algorithm. There are various algorithms for learning Bayes net structures
from data, but it is far more common to hand-specify the graph structure,
and so we won’t discuss these algorithms here. Instead, we will focus on the
more important problem of parameter learning.

Let’s return to our earlier flu network example. Recall that we had three
random variables: flu (F ), allergy (A), and sinus trouble (S). The network
structure was as follows:

Suppose we have a database of patients, and we know the values of F , S, and
A for each of them. Then, we would estimate P(f 1) as the fraction of people
in this database who had the flu. To estimate P(s1 | f 1, a1), we would use
the fraction of people with the flu and allergies who had a sinus infection.1

Finally, it’s worth noting that the Naive Bayes network mentioned above
is often used as a supervised learning algorithm. More specifically, assume we
have n discrete-valued random variables X1, X2, . . . , Xn, and we are trying
to predict the value of a discrete-valued target variable Y . Suppose we have
a training set Strain = {(x(1), y(1)), . . . , (x(m), y(m))}. We apply the Naive
Bayes network structure:

1As an exercise, try to justify this method using maximum likelihood.
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We estimate all of the parameters for this network just as we did above.
Then, given a new example X = (X1, X2, . . . , Xn), we predict

arg max
y

P(y | x1, . . . , xn) = arg max
y

P(y, x1, . . . , xn)

P(x1, . . . , xn)

= arg max
y

P(y, x1, . . . , xn)

= arg max
y

P(y)
n

∏

i=1

P(xi | y). (1)

Finally, an implementation note. If we were to compute (1) directly,
we might have problems with numerical underflow, especially if any of the
probabilities are very small. Instead, we take the logarithm of each of the
terms, and choose as our prediction:

arg max
y

log P(y) +

n
∑

i=1

log P(xi | y).

This can be safely computed without numerical underflow.
Naive Bayes often does not perform as well as logistic regression or a

well-designed decision tree, but it is such a simple algorithm that it is worth
using in many cases.
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Hidden Markov Models
There is a number of algorithms that predate the growth Bayes nets, but
later became understood as a specific kind of Bayes net structure. Naive
Bayes is one example. Another example is the Hidden Markov Model
(HMM), a probabilistic model for representing variables that evolve over
time.

1 The robot localization problem

HMMs are widely used for a range of very different applications. But to
explain them, we’ll focus on the specif problem of robot localization. In this
problem, the robot has a map of its environment and a collection of sensors.
The robot’s belief about where it is can be represented as a probability
distribution over locations on the map. Initially the robot does not know
where it is. This can be represented by a uniform probability distribution.
As the robot begins to move around and collect observations, the distribution
will become peaked around locations that are consistent with the sensor
readings that the robot observes.

To make this more concrete, let’s consider a specific example, illustrated
in this figure:

1
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(Figure courtesy of Thrun, Burgard and Fox.)

In this example, the robot, shown in green, can only move in one di-
mension, along a hallway. The robot’s only sensor is a door detector, which
observes whether the robot is in front of a door or not. The robot does not
know where it is initially, but it does know that it is in the hallway and it has
a map of the hallway. Initially the robot’s beliefs about its location, shown
in red, is uniform distribution over all position in the entire hallway. It then
observes that it is in front of a door, causing the distribution representing its
belief to become peaked in front of the location of each of the doors on the
map. The robot then starts to move to the right. Because the robot knows
that it is moving, the peaks in its belief distribution move rightward as well.
The peaks flatten somewhat to represent uncertainty in exactly how far the
robot has moved. A little later, the door detector tells the robot again that
it is in front of a door. At this instant, only one of the three peaks is in front
of a door, so the other two become very unlikely. After this observation, the
robot’s belief distribution is sharply peaked at its true location.
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For a real robot, the situation is slightly more complicated. The robot
will have a two dimensional map of the building. Additionally, the robot will
have a collection of range-finding sensors that measure the distance from the
robot to obstacles in several directions simultaneously. These sensors may
be such sensors as sonar or lasers range scanners.

2 Hidden Markov Models for robot localiza-

tion

To formally model the problem described above, we will define a probability
distribution over the following random variables:

• St = state of the robot at time t. If the robot’s state is just a two-
dimensional location (x, y), we can discretize the state space using a
two-dimensional grid. (In the more general case, we may also wish to
model the robot’s orientation θ.)

• Ot = observation at time t. In our setting, Ot will be vector-valued. It
is the collection of all sensor measurements at time t.

We will also use the notation O1:t = {O1, . . . , Ot} to denote the set of all
observations up to time t. As before, we will use upper-case to denote random
variables, and lower-case to denote specific values that the random variables
take on.

Given a specific sequence of observations o1:t = {o1, . . . , ot} observed by
the robot, our goal will be to compute

B(st) = P (st|o1:t)

Our joint distribution over S1:T and O1:T will be defined using a Bayes
net with the following graph structure:

We also need to define the CPT for the Bayes net.

• P (S1) defines the distribution over where the robot is initially. Since we
have no information about where the robot will begin, we set this CPT
to the uniform distribution over all states.
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• P (St+1|st) defines how the robot moves from one state to another, and
is also referred to as the state transition distribution. Even though
when the algorithm is running, we don’t know precisely where the robot
is, the Bayes net structure allows us to model the robot’s movement
with rules of the form “If the robot were at precisely state s in time t,
then in time t + 1 the robot’s state would be distributed like this.” As
a simple example, this could encode a simple random walk: the robot
has a .2 chance of moving one cell to the left, .2 chance of moving one
cell to the right, and so on:

To make a more sophisticated model, we may also take into account
the action at that the robot took on step step t, and model the robot’s
motion from state to state as P (St+1|st, at). In this case the CPT could
encode the idea that if the robot chose to move west at time t, then state
st+1 will be one grid cell west of st with 90% probability. For example,
the distribution may look like this:

• P (Ot|st) is the probability of making a certain set of observations when
the robot is at a specific state, and is also called the observation distri-
bution. In our setup, the observations are the distance measurements
in different directions. Suppose that our robot has four distance sensors,
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pointed north, south, east and west. Then the measurements would be
Ot = {O

(1)
t

, O
(2)
t

, O
(3)
t

, O
(4)
t
}, corresponding to the reported distances to

the nearest wall in each of the four compass directions from the location
st:

Of course the sensors have some noise, so we model the idea that each
sensor returns approximately the true distance with a distribution that
looks like this:

0 Actual distance
o

t
(i)

P
(o

t(i)
 | 

s t)

0
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Additionally, because the sensor may sometimes fail entirely (or get a
random measurement corresponding to someone walking in front of the
robot, say), to get a better sensor model, we might also put a small
positive probability everywhere in the interval [0, dmax], where dmax is
the maximum range of the sensor:

0 Actual distance d max
o

t
(i)

P
(o

t(i)
 | 

s t)

0

If we assume that errors in the sensors are independent, then

P (Ot|st) = Π4
i=1P (O

(i)
t
|st).

3 Inference algorithms

3.1 Overview of the filtering algorithm

In order to estimate the robot’s location at time t, we need to compute
P (st|o1:t). We could do this using variable elimination, but it turns out that
this would be very inefficient. The first value we would compute would be
P (s1|o1). Next we would compute P (s2|o2, o1), then P (s3|o3, o2, o1) and so
on. Running a separate instance of variable elimination for each time step
repeats many computations unnecessarily. Further, at time t of the robots
life, to compute P (st|o1:t) from scratch this way would require O(t) time—
so the robot would run slower and slower as t grows. Instead, here we will
present a filtering algorithm that will allow us to use the beliefs from time
t to compute the beliefs for time t+1, without having to run inference along
the entire chain of variables at each time step.
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The following series of figures (also due to Thrun, Burgard, and Fox)
help to illustrate the algorithm at a high level. First, we initialize the robot’s
beliefs about its location to a uniform distribution:

Next, the robot takes a sensor reading and performs the observation up-
date. The observation update takes the information from the sensor reading
and incorporates it into the robot’s beliefs. Note that here, P (o1|s1) is plotted
as a function of s1, not of o1, since o1 is an observed, known quantity.

The robot then moves down the hallway. The next step in the filtering
algorithm is the dynamics update which takes account of this motion.
After the dynamics update, the beliefs reflect the information that the robot
has moved, but do not yet take any new sensor information into account:

Finally, we can perform another observation update to incorporate the new
sensor information:



8

3.2 Details of the filtering algorithm

In the derivation below, we will assume throughout that we are using a
discretized state representation. Thus, if s = (x, y) is the position of the
robot and we discretize the state space using a 10x10 grid, then st is a
random variable that can take on any of 100 different values corresponding
to the 100 different grid cells. (The case of s = (x, y, θ) discretized with a 3d
grid is also handled similarly.)

The first value we will need to compute is

B(s1) = P (s1|o1) =
P (s1, o1)

P (o1)
=

P (o1|s1)P (s1)

P (o1)

Note that both terms in the numerator can be obtained directly from the
CPTs of the Bayes net. Further, because the denominator is constant with
respect to s1, and we know that

∑

s1

B(s1) = 1

We don’t need to explicitly calculate P (o1). Instead, we can replace the
denominator with a constant alpha:

B(s1) = αP (o1|s1)P (s1)

We can solve for α by making sure that
∑

s1
B(s1) = 1.

Once we have our initial beliefs, B(St), we can perform the dynamics
update. In this step we compute B′(st+1), which represents our beliefs about
where the robot will be after it makes its movement between time steps t and
t + 1. B′(st+1) does not incorporate any information from ot+1 yet though.
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It turns out that B′(st+1) can be computed using only our beliefs from
time t and the transition model:

B′(st+1) = P (st+1|o1:t)

=
∑

st

P (st+1, st|o1:t)

=
∑

st

P (st+1|st, o1:t)P (st|o1:t)

=
∑

st

P (st+1|st)B(st)

In the last step above, we used the the independence assumption I(St+1, O1:t|St).
We can see that this assumption is implied by the d-separation properties of
the Bayes net structure for the Hidden Markov model. When we observe st,
there is no active path from t − 1 or earlier to t + 1:

After performing the dynamics update, we still need to use the new sensor
information from time t + 1 in the observation update. This update can be
computed efficiently using only the observation model and B′(st):

B(st+1) = P (st+1|o1:t, ot+1)

=
P (ot+1, st+1|o1:t)

P (ot+1|o1:t)

=
P (ot+1|st+1, o1:t)P (st+1|o1:t)

P (ot+1|o1:t)

=
P (ot+1|st+1)B

′(st+1)

P (ot+1|o1:t)

In most implementations, we again do not explicitly compute the denomi-
nator. Instead, we compute the numerator and normalize it to sum to 1, as
before. Also, note that in the final step above, we used again the d-separation
properties of the Bayes net to derive that P (ot+1|st+1, o1:t) = P (ot+1|st+1).

To summarize, the algorithm consists of repeatedly applying the two up-
date rules:
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Dynamics update:

B′(st+1) =
∑

st

P (st+1|st)B(st)

Observation update:

B(st+1) = αP (ot+1|st+1)|B
′(st+1)

where α is chosen such that
∑

st+1
B(st+1) = 1.

This is sometimes called the “filtering algorithm.” It is worth noting that
it applies to any problem that can be posed as an HMM, not only robot
localization. We will discuss other applications later. You should use this
algorithm for robot localization in programming assignment 4.

3.3 Particle filtering

3.3.1 Sampling

So far we have always discretized the state space. This may not always be
the most efficient approach. Suppose that we wanted to track the robot’s
orientation as well as its location. If the robot’s environment is a 5 meter
by 5 meter square room, we discretize its location into a square grid with
10 cm-wide cells, and we discretize its orientation into 5◦ bins, then it has a
50 × 50 × 360/5 = 180, 000 states.

The runtime of the filtering algorithm given above is quadratic in the
number of states (because of the dynamics update step), so large state spaces
can be problematic. We might also observe intuitively that most of the states
will have low probability, so the filtering algorithm will spend most of its time
reasoning about places that the robot is not at.

Both of these problems can be addressed by using a different way of rep-
resenting the state space. In reality, the robot’s state is continuous, but
representing a continuous distribution exactly is difficult if the distribution
has a complicated shape. Instead, we can represent it approximately. Dis-
cretization is only one way of approximating a continuous distribution. We
can also approximate it by representing it with a collection of samples (a set
of points drawn randomly from the distribution). Intuitively, the robot is
more likely to be in places with large numbers of samples, and less likely to
be in places with small numbers of samples.

Graphically, our original distribution might look like this:
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The discretized representation would look like this:

One possible collection of samples drawn from the continuous distribution
looks like this. Note that the samples cluster more tightly where the original
distribution had peaks:
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3.3.2 The particle filtering algorithm

The particle filtering algorithm uses samples to represent the distribu-
tion B(st). In the observation update, we update the set of samples by
re-sampling them with replacement in such a way that samples for locations
that are inconsistent with sensor readings are more likely not to be chosen,
while samples for locations that are consistent with the sensors readings are
more likely to be chosen, and perhaps chosen multiple times. In the dynam-
ics update, we apply the transition model to each sample to noisily update
its location.

The following figure illustrates the basic idea of the algorithm by repre-
senting samples with notches. During the observation updates, the height of
the notches indicates the probability of each sample being chosen during the
sampling with replacement:
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(Figure courtesy of Thrun, Burgard, and Fox.)

To make this more concrete, this is the algorithm for the inductive step
of the particle filter:

Input: B(st) represented as a set of samples B̂ = {s(1), s(2), . . . , s(m)}.

For i=1 to m

s′(i) = SampleDynamicsModel(s(i), at )
// B′(st) is now represented as a set of samples {s

′(1), s
′(2), . . . , s

′(m)}.
For i=1 to m
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w(i) = P (ot|s
(i))

B̂ = ∅

For i=1 to m

Sample i with probability proportional to w

Add s′(i) to B̂

// Output: B(st+1) represented as a set of samples B̂

We aren’t going to fully justify this algorithm mathematically in these
notes, but it does turn out to be the correct way to use samples to approxi-
mate B(st). The intuitive justification is that states for which w(i) is large are
more likely to be chosen, so we keep only the points for which the probability
of the observation was large.

To initialize the algorithm, if our initial belief over the state space is a
uniform distribution, then we would represent our initial beliefs via a set of
samples B̂ drawn from the uniform distribution over all states.

There are still two details of particle filtering that are significantly differ-
ent from the discrete filtering algorithm.

The first is that the dynamics model (written SampleDynamicsModel(s(i), at)
above) can’t just sample randomly from a discrete list of states; instead it
must be capable of outputting a continuous state. Usually this just means
adding random noise to a basic transformation. For example, if

st =

[

x

y

]

and at represents the action “move east,” then SampleDynamicsModel(s(i), at)
might return

st+1 =

[

x + 0.1
y

]

+ noise

The other issue is that we need some way of predicting the actual location
of the robot from a collection of samples. One way of doing this is to average
all the points in the sample together, and return the average of all the points’
positions as the estimated position of the robot. The variance (or “spread”)
of the sample also gives a measure of how confident the robot is in its estimate
of its position. Taking a simple average as above would work fine so long as
the distribution were unimodal (has only one peak). A more sophisticated
algorithm might find the region of state space with the most dense collection
of points, and then to average all the points in that region, and return that
as the estimated position of the robot.




