An Idiot's guide to Support vector machines (SVMs)

R. Berwick, Village Idiot

SVMs: A New Generation of Learning Algorithms

- Pre 1980:
 - Almost all learning methods learned linear decision surfaces.
 - Linear learning methods have nice theoretical properties
- 1980's
 - Decision trees and NNs allowed efficient learning of nonlinear decision surfaces
 - Little theoretical basis and all suffer from local minima
- 1990's
 - Efficient learning algorithms for non-linear functions based on computational learning theory developed
 - Nice theoretical properties.

Key Ideas

- Two independent developments within last decade
 - Computational learning theory
 - New efficient separability of non-linear functions that use "kernel functions"
- The resulting learning algorithm is an optimization algorithm rather than a greedy search.

Organization

- Basic idea of support vector machines
 - Optimal hyperplane for linearly separable patterns
 - Extend to patterns that are <u>not</u> linearly separable by transformations of original data to map into new space – <u>Kernel function</u>
- SVM algorithm for pattern recognition

Unique Features of SVM's and Kernel Methods

- Are explicitly based on a theoretical model of learning
- Come with theoretical guarantees about their performance
- Have a modular design that allows one to separately implement and design their components
- Are not affected by local minima
- Do not suffer from the curse of dimensionality

How Langrangian solves constrained optimization

 $L(x, \lambda) = f(x) - \lambda g(x)$ where $\nabla(x, \lambda) = 0$

Partial derivatives wrt *x* recover the parallel normal constraint

Partial derivatives wrt λ recover the g(x,y)=0

In general,

$$L(x,\lambda) = f(x) + \sum_{i} \lambda_{i} g_{i}(x)$$

Inner products

Why should inner product kernels be involved in pattern recognition?

-- Intuition is that they provide some measure of similarity

-- cf Inner product in 2D between 2 vectors of unit length returns the cosine of the angle between them.

e.g. $\underline{\mathbf{x}} = [1, 0]^{\mathrm{T}}, \ \underline{\mathbf{y}} = [0, 1]^{\mathrm{T}}$

I.e. if they are parallel inner product is 1

 $\underline{\mathbf{x}}^{\mathrm{T}} \, \underline{\mathbf{x}} = \underline{\mathbf{x}} . \underline{\mathbf{x}} = 1$

If they are perpendicular inner product is 0

 $\underline{\mathbf{x}}^{\mathrm{T}} \, \underline{\mathbf{y}} = \underline{\mathbf{x}} . \underline{\mathbf{y}} = \mathbf{0}$

But...are we done???

Examples for Non Linear SVMs

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^{p}$$
$$K(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2\sigma^{2}}\right\}$$
$$K(\mathbf{x}, \mathbf{y}) = \tanh\left(\kappa \mathbf{x} \cdot \mathbf{y} - \delta\right)$$

1st is polynomial (includes x•x as special case)
2nd is radial basis function (gaussians)
3rd is sigmoid (neural net activation function)

Inner Product Kernels		
Type of Support Vector Machine	Inner Product Kernel K(x,x _i), I = 1, 2,, N	Comments
Polynomial learning machine	$(\mathbf{x}^{\mathrm{T}}\mathbf{x}_{\mathrm{i}}+1)^{\mathrm{p}}$	Power p is specified apriori by the user
Radial-basis function network	$\exp(1/(2\sigma^2) \mathbf{x}-\mathbf{x}_i ^2)$	The width σ^2 is specified apriori
Two layer perceptron	$tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1

40004 (4310 27878 05753 35460 A4209 1011813485726303226414186 6359720299299722510046701 3084111591010615+06103631 FIGURE 10.8 1064111030475262001979966 Examples of ZIP code image, and seg-8912056168557131427955460 mented and normalized numerals from 2018730187112993089970984 the testing set. (Source: Reprinted with 0109707597331972015519055 permission from Y. Le Cun, et al., "Backpropagation Applied to Hand-107551825182814358010943 written Zip Code Recognition," Neu-ral Computation, 1:541-551, 1989. 1787521655460354603546055 18235108303047520439401 ©1989 The MIT Press.)