
1

An Idiot’s guide to Support vector
machines (SVMs)

R. Berwick, Village Idiot

SVMs: A New
Generation of Learning Algorithms

• Pre 1980:
– Almost all learning methods learned linear decision surfaces.
– Linear learning methods have nice theoretical properties

• 1980’s
– Decision trees and NNs allowed efficient learning of non-

linear decision surfaces
– Little theoretical basis and all suffer from local minima

• 1990’s
– Efficient learning algorithms for non-linear functions based

on computational learning theory developed
– Nice theoretical properties.

2

Key Ideas

• Two independent developments within last
decade
– Computational learning theory
– New efficient separability of non-linear

functions that use “kernel functions”
• The resulting learning algorithm is an

optimization algorithm rather than a greedy
search.

Statistical Learning Theory

• Systems can be mathematically described as
a system that
– Receives data (observations) as input and
– Outputs a function that can be used to predict

some features of future data.
• Statistical learning theory models this as a

function estimation problem
• Generalization Performance (accuracy in

labeling test data) is measured

3

Organization

• Basic idea of support vector machines
– Optimal hyperplane for linearly separable

patterns
– Extend to patterns that are not linearly

separable by transformations of original data to
map into new space – Kernel function

• SVM algorithm for pattern recognition

Unique Features of SVM’s and
Kernel Methods

• Are explicitly based on a theoretical model of
learning

• Come with theoretical guarantees about their
performance

• Have a modular design that allows one to
separately implement and design their
components

• Are not affected by local minima
• Do not suffer from the curse of dimensionality

4

Support Vectors

• Support vectors are the data points that lie
closest to the decision surface

• They are the most difficult to classify
• They have direct bearing on the optimum

location of the decision surface
• We can show that the optimal hyperplane

stems from the function class with the lowest
“capacity” (VC dimension).

Recall: Which Hyperplane?

• In general, lots of possible
solutions for a,b,c.

• Support Vector Machine
(SVM) finds an optimal
solution. (wrt what cost?)

5

Support Vector Machine (SVM)
Support vectors

Maximize
margin

• SVMs maximize the margin
around the separating
hyperplane.

• The decision function is
fully specified by a subset
of training samples, the
support vectors.

• Quadratic programming
problem

• Text classification method
du jour

Separation by Hyperplanes

• Assume linear separability for now:
– in 2 dimensions, can separate by a line
– in higher dimensions, need hyperplanes

• Can find separating hyperplane by linear
programming (e.g. perceptron):
– separator can be expressed as ax + by = c

6

Linear Programming / Perceptron

Find a,b,c, such that
ax + by ! c for red points
ax + by " c for green points.

Which Hyperplane?

In general, lots of possible
solutions for a,b,c.

7

Which Hyperplane?

• Lots of possible solutions for a,b,c.
• Some methods find a separating hyperplane,

but not the optimal one (e.g., perceptron)
• Most methods find an optimal separating

hyperplane
• Which points should influence optimality?

– All points
• Linear regression
• Naïve Bayes

– Only “difficult points” close to decision
boundary

• Support vector machines
• Logistic regression (kind of)

Support Vectors again for linearly
separable case

• Support vectors are the elements of the
training set that would change the position of
the dividing hyper plane if removed.

• Support vectors are the critical elements of
the training set

• The problem of finding the optimal hyper
plane is an optimization problem and can be
solved by optimization techniques (use
Lagrange multipliers to get into a form that
can be solved analytically).

8

X

X

X X

X

X

Support Vectors: Input vectors for which

w0
Tx + b0 = 1 or w0

Tx + b0 = -1

#0

d+

d-

Definitions
Define the hyperplane H such that:
xi•w+b ! +1 when yi =+1
xi•w+b " -1 when yi =-1

d+ = the shortest distance to the closest positive point

d- = the shortest distance to the closest negative point

The margin of a separating hyperplane is d+ + d-.

H

H1 and H2 are the planes:
H1: xi•w+b = +1
H2: xi•w+b = -1
The points on the planes
H1 and H2 are the
Support Vectors

H1

H2

9

Moving a support vector
moves the decision
boundary

Moving the other vectors
has no effect

The algorithm to generate the weights proceeds in such a way that
only the support vectors determine the weights and thus the boundary

Maximizing the margin

d+

d-

We want a classifier with as big margin as possible.

Recall the distance from a point(x0,y0) to a line:
Ax+By+c = 0 is|A x0 +B y0 +c|/sqrt(A2+B2)

The distance between H and H1 is:
|w•x+b|/||w||=1/||w||

The distance between H1 and H2 is: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the
condition that there are no datapoints between H1 and H2:
xi•w+b ! +1 when yi =+1
xi•w+b " -1 when yi =-1 Can be combined into yi(xi•w) ! 1

H1

H2
H

10

We now must solve a quadratic
programming problem

• Problem is: minimize ||w||, s.t. discrimination
boundary is obeyed, i.e., min f(x) s.t. g(x)=0,
where
f: ½ ||w||2 and
g: yi(xi•w)-b = 1 or [yi(xi•w)-b] - 1 =0

This is a constrained optimization problem
Solved by Lagrangian multipler method

paraboloid 2-x2-2y2

flatten

Intuition: intersection of two functions at a
tangent point.

11

flattened paraboloid 2-x2-2y2 with superimposed constraint
x2 +y2 = 1

flattened paraboloid f: 2-x2-2y2=0 with superimposed
constraint g: x +y = 1

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f

12

flattened paraboloid f: 2-x2-2y2=0 with superimposed constraint g:
x +y = 1; at tangent solution p, gradient vectors of f,g are parallel
(no possible move to incr f that also keeps you in region g)

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f

Two constraints

1. Parallel normal constraint (= gradient constraint
on f, g solution is a max)

2. G(x)=0 (solution is on the constraint line)

We now recast these by combining f, g as the
Lagrangian

13

Redescribing these conditions

• Want to look for solution point p where

• Or, combining these two as the Langrangian L &
requiring derivative of L be zero:

() ()
() 0

f p g p
g x

$% & %
&

(,) () ()
(,) 0

L x f x g x
x
$ $
$
& '

% &

How Langrangian solves constrained
optimization

(,) () () where
(,) 0

L x f x g x
x
$ $
$
& '

% &
Partial derivatives wrt x recover the parallel normal
constraint
Partial derivatives wrt $ recover the g(x,y)=0

In general, (,) () ()i ii
L x f x g x$ $& ()

14

In general

(,) () () a function of variables

 for the ' , for the . Differentiating gives equations, each
 set to 0. The eqns differentiated wrt each give the gradient conditions;
the

i ii

i

L x f x g x n m

n x s m n m
n x

* *

*

& ((

(
)

 eqns differentiated wrt each recover the constraints i im g*

Gradient max of f
constraint condition g

In our case, f(x): ½|| w||2 ; g(x): yi(w.xi +b)-1=0 so Lagrangian is

L= ½|| w||2 - +*i[yi(w.xi +b)-1]

Lagrangian Formulation

• In the SVM problem the Lagrangian is

• From the derivatives = 0 we get

, -21
2

1 1

0,

l l

P i i i i
i i

i

L y b

i

* *

*
& &

. ' / ((

! 0

))w x w

1 1
, 0

l l

i i i i i
i i

y y* *
& &

& &))w x

15

The Lagrangian trick
Reformulate the optimization problem:
A ”trick” often used in optimization is to do an Lagrangian
formulation of the problem.The constraints will be replaced
by constraints on the Lagrangian multipliers and the training
data will occur only as dot products.

Gives us the task:
Max L =)*i – ½)*i*jxi•xj,
Subject to:

w =)*iyixi

)*iyi = 0

What we need to see: xiand xj (input vectors) appear only in the form
of dot product – we will soon see why that is important.

The Dual problem

• Original problem: fix value of f and find *
• New problem: Fix the values of *, and solve the

(now unconstrained) problem max L(*, x)
• Ie, get a solution for each *, f*(*)
• Now minimize this over the space of *
• Kuhn-Tucker theorem: this is equivalent to

original problem

16

At a solution p

• The the constraint line g and the contour lines of f
must be tangent

• If they are tangent, their gradient vectors
(perpindiculars) are parallel

• Gradient of g must be 0 – I.e., steepest ascent & so
perpendicular to f

• Gradient of f must also be in the same direction as
g

Inner products

The task:
Max L =)*i – ½)*i*jxi•xj,
Subject to:

w =)*iyixi

)*iyi = 0

Inner product

17

Why should inner product kernels be involved in pattern
recognition?

-- Intuition is that they provide some measure of similarity

-- cf Inner product in 2D between 2 vectors of unit length
returns the cosine of the angle between them.

e.g. x = [1, 0]T , y = [0, 1]T

I.e. if they are parallel inner product is 1

xT x = x.x = 1

If they are perpendicular inner product is 0

xT y = x.y = 0

Inner products

But…are we done???

18

Not Linearly Separable

Find a line that penalizes
points on “the wrong side”.

x x
x

x
x

x x

1 (o)

X F

1

1 (x)

1 (x)

1 (x)

1 (x)

1 (x)

1 (x)

1 (x)
1 (o)

1 (o)

1 (o)

1 (o)

1 (o)
1 (o)

o
o

o

o o

o

Transformation to separate

19

Non Linear SVMs

a b

, -, - , -2x a x b x a b x ab' ' & ' ((

2 32 ,x x x!

• The idea is to gain linearly separation by
mapping the data to a higher dimensional space
– The following set can’t be separated by a linear

function, but can be separated by a quadratic one

– So if we map
we gain linear separation

Problems with linear SVM

=-1
=+1

What if the decision function is not linear? What transform would separate these?

20

Ans: polar coordinates!
Non-linear SVM 1

The Kernel trick

=-1
=+1

Imagine a function 4 that maps the data into another space:
4=Rd56

=-1
=+1

Remember the function we want to optimize: Ldual =)*i – ½)*i*jxi•xj,
xi and xj as a dot product. We will have 4(xi) • 4(xj) in the non-linear case.
If there is a ”kernel function” K such as K(xi,xj) = 4(xi) • 4(xj), we
do not need to know 4 explicitly. One example:

Rd 6

4

We’ve already seen a nonlinear
transform…

• What is it???

• tanh(70xTxi + 71)

21

Examples for Non Linear SVMs

, - , -, 1 pK & / (x y x y

, - 2 32

22, expK 8
'& ' x yx y

, - , -, tanhK 9 :& / 'x y x y

1st is polynomial (includes x•x as special case)
2nd is radial basis function (gaussians)
3rd is sigmoid (neural net activation function)

Inner Product Kernels

Mercer’s theorem is
satisfied only for some
values of 70 and 71

tanh(70xTxi + 71)Two layer perceptron

The width 82 is
specified apriori

exp(1/(282)||x-xi||2)Radial-basis function
network

Power p is specified
apriori by the user

(xTxi + 1)pPolynomial learning
machine

CommentsInner Product Kernel
K(x,xi), I = 1, 2, …, N

Type of Support Vector
Machine

22

Non-linear svm2
The function we end up optimizing is:
Max Ld =)*i – ½)*i*jK(xi•xj),

Subject to:
w =)*iyixi

)*iyi = 0

Another kernel example: The polynomial kernel
K(xi,xj) = (xi•xj + 1)p, where p is a tunable parameter.
Evaluating K only require one addition and one exponentiation
more than the original dot product.

Examples for Non Linear SVMs 2 –
Gaussian Kernel

Gaussian

Linear

23

Nonlinear rbf kernel

Admiral’s delight w/ difft kernel
functions

24

Overfitting by SVM

Building an SVM Classifier

• Now we know how to build a separator for
two linearly separable classes

• What about classes whose exemplary
examples are not linearly separable?

25

