Artificial Intelligence: Search Part 3: Objective optimization

Thomas Trappenberg

January 16, 2009

Based on the slides provided by Russell and Norvig, Chapter 4, Section 3-4

Outline

- Hill-climbing
- Simulated annealing
- $\diamondsuit\,$ More formally on local search in continuous spaces

Iterative improvement algorithms

In many optimization problems, **path** is irrelevant; the goal state itself is the solution

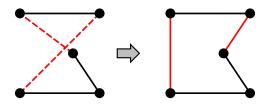
Then state space = set of "complete" configurations; find **optimal** configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

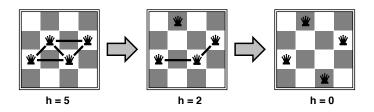


Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts



Almost always solves n-queens problems almost instantaneously for very large n, e.g., n = 1 *million*

Hill-climbing (or gradient ascent/descent)

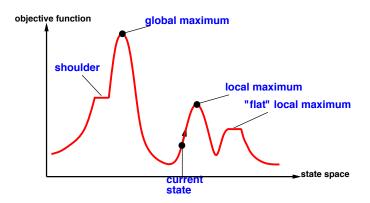
"Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING( problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem]) loop do neighbor ← a highest-valued successor of current if VALUE[neighbor] ≤ VALUE[current] then return STATE[current] current ← neighbor end
```

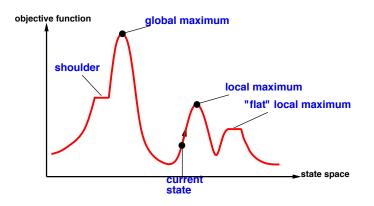
Hill-climbing contd.

Useful to consider state space landscape



Hill-climbing contd.

Useful to consider state space landscape



Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders Sloop on flat maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps
  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
       T \leftarrow schedule[t]
       if T = 0 then return current
       next ← a randomly selected successor of current
       \Delta E \leftarrow VALUE[next] - VALUE[current]
       if \Delta E > 0 then current \leftarrow next
       else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}\gg 1$ for small T

Is this necessarily an interesting guarantee

Devised by Metropolis et al., 1953, for physical process modelling Widely used in VLSI layout, airline scheduling, etc.

Continuous state spaces

Suppose we want to site three airports in Romania:

- 6-D state space defined by $(x_1, y_2), (x_2, y_2), (x_3, y_3)$
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm \delta$ change in each coordinate

Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., with one city). Newton–Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f/\partial x_i \partial x_j$

