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Review: Tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe — INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion



Best-first search

Idea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search
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Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsip(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal



Greedy search example
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Greedy search example




Greedy search example




Properties of greedy search

Complete No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time O(b™), but a good heuristic can give dramatic improvement
Space O(b")—keeps all nodes in memory

Optimal No



A* search

Idea: avoid expanding paths that are already expensive
Evaluation function 7(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic

i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsin(n) never overestimates the actual road distance

Theorem: A* search is optimal



A* search example

366=0+366



A* search example

>

D
393=140+253 447=118+329 449=75+374



A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193



A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253



A* search example

447=118+329

449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253



A* search example

447=118+329

449=75+374

646=280+366

591=338+253 450=4

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193



Optimality of A*

A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour / has all nodes with f = f;, where f; < fi;




Properties of A*

Complete Yes, unless there are infinitely many nodes with f < f(G)
Time Exponential in [relative error in h x length of soln.]

Space Keeps all nodes in memory

Optimal Yes—cannot expand f;. ¢ until ; is finished

A* expands all nodes with 7(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*



Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')

If his consistent, we have

c(n,an’)
f(n) = g(n')+h(n') h(n)
= g(n)+c(n,a,n')+ h(n') )
> g(n)+ h(n)
= f(n)

l.e., (n) is nondecreasing along any path.



Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S)=6
ho(S) = 4+0+3+3+1+0+2+1 = 14




Dominance

If ho(n) > hy(n) for all n (both admissible)
then h> dominates h; and is better for search

Typical search costs:

d=14 IDS = 3,473,941 nodes
A*(hy) = 539 nodes
A*(hz) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(h2) = 1,641 nodes

Given any admissible heuristics h,, hp,
h(n) = max(ha(n), hp(n))

is also admissible and dominates h,, h,



Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h.(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem



Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193



Genetic algorithms

= stochastic local beam search + generate successors from pairs of
states

24748552 52411 32748552 32749p2
32752411 48552 [24752411] - 24752411
24415124 ] 20 26%~[32752411 [32752124} [ 37752124

32543213 | 11 14% 24415124 24415411 24415477

Fithess Selection Pairs Cross-Over




Genetic algorithms contd.

GAs require states encoded as strings (GPs use )

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!



Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed
problems



