Artificial Intelligence: Search Part 2: Heuristic search

Thomas Trappenberg

January 16, 2009

Based on the slides provided by Russell and Norvig, Chapter 4, Section 1-2,(4)

Outline

- ♦ Best-first search
- ♦ A* search
- ♦ Heuristics

Review: Tree search

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node ← REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node fringe ← INSERTALL(EXPAND(node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
- ⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases: greedy search A* search

Romania with step costs in km

to Bucharest Arad 366 Bucharest Craiova

0 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj 244 Mehadia 241 Neamt 234 Oradea 380 Pitesti 98 Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Properties of greedy search

 $\begin{tabular}{ll} \hline \textbf{Complete} & \textbf{No-can get stuck in loops, e.g.,} \\ \hline \textbf{lasi} & \rightarrow \textbf{Neamt} & \rightarrow \textbf{lasi} & \rightarrow \textbf{Neamt} & \rightarrow \\ \hline \textbf{Complete in finite space with repeated-state checking} \\ \hline \end{tabular}$

<u>Time</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Optimal No

A* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

- $g(n) = \cos t$ so far to reach n
- h(n) = estimated cost to goal from n
- f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A*

A* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u> Exponential in [relative error in $h \times$ length of soln.]

Space Keeps all nodes in memory

Optimal Yes—cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \leq c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S) = 6}{h_2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14}$$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to **any adjacent square**, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as *k* searches run in parallel! Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Genetic algorithms

= stochastic local beam search + generate successors from **pairs** of states

Genetic algorithms contd.

GAs require states encoded as strings (GPs use)

Crossover helps iff substrings are meaningful components

GAs \neq evolution: e.g., real genes encode replication machinery!

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

incomplete and not always optimal

A* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems