Artificial Intelligence: Search
Part 2: Heuristic search

Thomas Trappenberg

January 16, 2009

Based on the slides provided by Russell and Norvig, Chapter 4, Section 1-2,(4)

Outline

> Best-first search
{ A* search

{ Heuristics

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe — INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Romania with step costs in km

] Hirsova

86

Dobreta [

LI Craiova Eforie

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Tasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsip(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

366

Greedy search example

253

329

374

Greedy search example

Greedy search example

Properties of greedy search

Complete No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time O(b™), but a good heuristic can give dramatic improvement
Space O(b")—keeps all nodes in memory

Optimal No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function 7(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic

i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsin(n) never overestimates the actual road distance

Theorem: A* search is optimal

A* search example

366=0+366

A* search example

>

D
393=140+253 447=118+329 449=75+374

A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

A* search example

447=118+329

449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

A* search example

447=118+329

449=75+374

646=280+366

591=338+253 450=4

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

Optimality of A*

A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour / has all nodes with f = f;, where f; < fi;

Properties of A*

Complete Yes, unless there are infinitely many nodes with f < f(G)
Time Exponential in [relative error in h x length of soln.]

Space Keeps all nodes in memory

Optimal Yes—cannot expand f;. ¢ until ; is finished

A* expands all nodes with 7(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')

If his consistent, we have

c(n,an’)
f(n) = g(n')+h(n') h(n)
= g(n)+c(n,a,n')+ h(n'))
> g(n)+ h(n)
= f(n)

l.e., (n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S)=6
ho(S) = 4+0+3+3+1+0+2+1 = 14

Dominance

If ho(n) > hy(n) for all n (both admissible)
then h> dominates h; and is better for search

Typical search costs:

d=14 IDS = 3,473,941 nodes
A*(hy) = 539 nodes
A*(hz) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(h2) = 1,641 nodes

Given any admissible heuristics h,, hp,
h(n) = max(ha(n), hp(n))

is also admissible and dominates h,, h,

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h.(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Genetic algorithms

= stochastic local beam search + generate successors from pairs of
states

24748552 52411 32748552 32749p2
32752411 48552 [24752411] - 24752411
24415124] 20 26%~[32752411 [32752124} [37752124

32543213 | 11 14% 24415124 24415411 24415477

Fithess Selection Pairs Cross-Over

Genetic algorithms contd.

GAs require states encoded as strings (GPs use)

Crossover helps iff substrings are meaningful components

GAs # evolution: e.g., real genes encode replication machinery!

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed
problems

