
Artificial Intelligence: Search
Part 1: Uninformed graph search

Thomas Trappenberg

January 8, 2009

Based on the slides provided by Russell and Norvig, Chapter 3

Search outline

♦ Part 1: Uninformed search (tree search, graph search, etc)

♦ Part 2: Heuristic search (A*, etc)

♦ Part 3 Optimization search algorithms (gradient decent, GA, etc)

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state⇔ set of real states

(Abstract) action⇔ complex combination of real actions
e.g., “Halifax→ Hawaii” represents a complex set

of possible routes, detours, rest stops, anticipatory emotional,
etc.
(Abstract) solution⇔

set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: integer locations of tiles (ignore intermediate positions)
actions: move blank left, right, up, down (ignore unjamming etc.)
goal test: = goal state (given)
path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The EXPAND function creates new nodes, filling in the various fields
and using the SUCCESSORFN of the problem to create the
corresponding states.

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be∞)

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Properties of breadth-first search

Complete Yes (if b is finite)

Time 1 + b + b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space O(bd+1) (keeps every node in memory)

Optimal Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete Yes, if step cost ≥ ε

Time # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

where C∗ is the cost of the optimal solution

Space # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

Optimal Yes—nodes expanded in increasing order of g(n)

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Properties of depth-first search

Complete No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space O(bm), i.e., linear space!

Optimal No

Depth-limited search

= depth-first search with depth limit l ,
i.e., nodes at depth l have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do

result←RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth← 0 to∞ do
result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

end

Iterative deepening search l = 0

Limit = 0 A A

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Properties of iterative deepening search

Complete Yes

Time (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space O(bd)

Optimal Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 bdC

∗/εe bm bl bd

Space bd+1 bdC
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

Repeated states

Failure to detect repeated states can turn a linear problem into an
exponential one!

A

B

C

D

A

BB

CCCC

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)

end

More search algorithms

bi-directional search, ...

see http://en.wikipedia.org/wiki/Graph traversal

Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

