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ABSTRACT 
Neural networks, provide a basis for studying various 
aspect of human learning and cognitive development in a 
seemingly ‘psychologically plausible’ manner.  We present 
a ‘hybrid’ neural network architecture comprising two 
Kohonen maps interrelated by Hebbian connections to 
perform a neural network based simulation of the 
development of a ‘concept memory’, ‘word lexicon’ and 
‘concept lexicalisation’ in an unsupervised learning 
environment using realistic psycholinguistic data.  The 
results of the simulation demonstrate how neural networks, 
incorporating unsupervised learning mechanisms, can 
indeed simulate the learning of categories amongst 
children. The work demonstrates the efficacy of neural 
networks towards providing some insights into the elusive 
mechanisms that lead to the emergence of human 
categories and an explication of inherent conceptual 
categories. 
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Hybrid Architecture, Category Learning 
 
1.0  INTRODUCTION 
Neural Networks is a research discipline with the agenda to 
(a) understand the nature of human intelligence by 
simulating aspects of human behaviour; (b) incorporate 
‘human-like’ intelligence within computer systems; and (c) 
provide a conceptualisation of the mind.  These objectives 
are addressed by a highly parallel architecture comprising 
simple processing units that facilitates massive co-operative 
computation among these processing units.  The processing 
units are provided with a variety of 'stimuli' and by 
communicating with each other they 'respond' in a manner 
that mimics aspects of human behaviour.  The key notions 
in neural networks include learning: learning from being 
instructed by a 'tutor' in a supervised manner or learning on 
its own through observation and deduction in an 
unsupervised fashion. 
 
The emergence of neural networks has provided scientists, 
both in computer science and psychology, an alternative 
framework for understanding the intricate and elusive 
tenets of human cognition; and a case can be made that this 
new class of information processing models construe 

cognition not as involving symbol manipulation, rather 
neural networks focus on causal processes that facilitate the 
excitation and inhibition of simple, highly interconnected 
processing units.  Such a methodological position makes 
neural networks a prime candidate for modelling human 
cognition -- researchers recommend neural networks as a 
set of general principles, primitives, structures and 
approach that appears to provide a computatonal 
framework that is both psychologically and neurologically 
plausible [1].  In fact, the argument is extended further by 
arguing neural networks to be seen as a vehicle for 
operationalising cognitive development theories [2].  
  
One important aspect of cogntive development is the 
emergence or learning of conceptual categories amongst 
humans, in particular developing children.  Human learning 
of categories is a fairly indirect affair. Many categories that 
humans learn in real life are acquired in observational 
conditions in an autonomous learning environment that 
does not involve any feedback from a ‘tutor’.  In neural 
network terms this would have clear parallels with the 
unsupervised mode of learning as opposed to the 
supervised mode of learning based on feedback from a 
‘tutor’.  If one believes that categories are a means of 
making sense of the environment then the argument goes 
that some aspects of learning about the environment should 
be unsupervised because humans, or more appropriately 
developing children, must invent their own categories for 
describing the environment as they perceive it.  
 
The question we ask in this paper is how are categories 
learnt by humans? Indeed how one goes on to investigate 
how categories are learnt?  There is no direct evidence. The 
only evidence that shows children have in fact learnt some 
categories is when they talk about groups of animals, 
groups of people, sets of toys, edible items, furniture and so 
forth. Child language researchers would argue that when 
children learn language, they appear to learn concepts first, 
or more precisely categories of concepts. Futhermore, the 
learnt concepts have been lexicalised - meaning that the 
child has not only learnt about concepts and categories of 
concepts but has also learnt to name them and articulate 
about them.  
 



The lexicalisation of concepts, then, is a phenomenon 
which has to be simulated within the scope of neural 
networks in order to evaluate whether neural models can 
indeed simulate human learning and that the models 
demonstrate the emergence of categories during learning. 
This task would require the learning of concepts and 
associated words. We believe that such a study would 
provide students of human learning an operational 
framework where data and theory can be tested. 
 
This paper describes neural network based simulations 
involvings the learning of concepts and the learning of 
associated words and furthermore discusses how one can 
use a ‘hybrid’ neural architecture to interrelate concepts 
and words, i.e., to simulate lexicalisation of concepts.  In 
architectural terms, we present a ‘hybrid’ neural network 
architecture comprising two Kohonen maps and a Hebbian 
connection network.  Note that Kohonen maps and Hebbian 
connections are both instances of unsupervised learning 
and we show how unsupervised learning algorithms can 
indeed learn categories by using realistic child language 
development.  We believe that development of language 
involves continuous interaction of the child with the 
environment which in turn leads to the unsupervised 
'invention' of categories.  In neural network terms 
environmental influence, in terms of 'perceptual' and 'audio' 
(phonetic) stimuli, during learning is demonstrated by the 
adaptability of the 'plastic' structure of the neural networks 
to account for information received from the environment.  
In passing, we would like to note here that not much work 
has been undertaken on the learning of categories using 
unsupervised learning neural networks.  
 

2.0 INTRODUCTION TO NEURAL NETWORKS 
Neural networks attempt to mimic the neural structure of 
the brain albeit rather simplistically in that a neural network 
comprises a large number of computationally simple 
processing units. The processing units are highly 
interconnected through plastic connections.  The 
‘plasticity’ in the architecture of a neural network is 
introduced with the help of varying connection weights that 
can change over time and with experience.  Basically, the 
connection weight determines the effect of the incoming 
input on the activation level of the unit. The configuration 
of the neural network dynamically adapts to the 
environment as a consequence of ‘learning’.  Put simply, 
learning in neural networks can be envisaged as the 
problem of finding a set of connection weights which allow 
the neural network to store experiential knowledge and to 
exploit it to simulate the desired behaviour.  One can then 
argue that neural networks have a 'natural' propensity for 
storing experiential knowledge which is acquired and 
retained through 'training' or 'learning' as opposed to 
explicit programming.  
 
Typical explanations of neural network learning begin with 
statements like “learning would involve relatively enduring 

changes in a system of given architecture that results from 
its interaction with the environment.  The most obvious 
form of learning is adjustment in the weights of 
connections” [2: pg. 270] 
 
Neural networks learning algorithms are broadly classified 
into two main categories: supervised learning and 
unsupervised learning. Supervised learning algorithms 
require an input pattern along with a desired output pattern.  
The learning algorithm typically computes the difference 
between the desired output of the network to its actual 
output, i.e. an error value..  The computed error is then 
used to modify the interconnections between the units. Best 
exemplars of supervised learning are perceptrons and 
backpropagation networks.  Unsupervised learning a 
lgorithms relate to the so-called ‘self-organising’ networks.  
Here, the neural network is presented only with a series of 
input patterns and is given no information or feedback at all 
about its performance or desired output.  Kohonen maps [3] 
are amongst one of the best examples of this class of neural 
networks and are particularly useful for organising and 
categorising complex, multidimensional information. 
 

3.0 A ‘HYBRID’ NEURAL NETWORK 
ARCHITECTURE 

A psychologically plausible simulation of category learning 
involves the simulation of three distinct, yet highly 
interrelated, psychological activities – (i) the development 
of concepts, (ii) the learning of words and (iii) the 
lexicalisation of concepts – associating concepts with 
corresponding words.  These activities can be further 
distinguished by the existence of a variety of input patterns, 
representation schemes, outputs and the underlying 
processing requirements.  
 
To perform a realistic simulation of human category 
learning we propose a ‘hybrid’ neural architecture that 
synthesises three individual neural networks: (1) Concept 
Memory- characterising children’s ‘semantic store’ where 
the acquired conceptual knowledge (i.e. concepts) is stored; 
(2) Word Lexicon - characterising children’s ‘phonological 
store’ where words corresponding to concepts are stored; 
and (3) Naming Connection Network - storing associative 
relationships between concepts and their lexical labels, i.e. 
names.  For our purpose, a ‘hybrid’ neural network 
integrates in a principled manner a number of neural 
networks, where each neural network simulates a particular 
psychological activity.  The efficacy of hybrid neural 
network architecture originates from the architectural and 
functional synthesis of the neural networks and a co-
operation between the constituent neural networks yields 
the overall objectives of the simulation. 
 
The choice of appropriate neural networks for each activity, 
and more so how these neural networks are to be 
synthesised to form a hybrid architecture, is far from 
universal and formal.  However, our choice of neural 
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networks for simulating each activity is guided by 
psychological observations pertaining to the task. 
Furthermore, in order to maintain psychological plausibility 
we base our selection of the neural networks, from the wide 
range of available neural network classifications, 
architectures and learning algorithms, on the following 
criterion: (a) type of data to be learnt, (b) input data 
representation formalism, (c) explication of output and (d) 
learning strategy involved.  
 
Psychological evidence suggests that all three activities that 
are to be simulated involve an unsupervised mode of 
learning.  For that matter we have chosen an unsupervised 
learning neural network – the so-called Kohonen maps [3] 
for simulating the development of the concept memory and 
the learning of words.  Kohonen maps employ a ‘self-
organising’ algorithm for learning; in fact the efficacy of 
Kohonen maps is further extended by the fact that the 
learning algorithm segregates the input space into distinct 
regions or ‘topological maps’, where each region may 
contain similar patterns – the so-called automatic 
categorisation of patterns.   
 
Development of naming connections is also to be simulated 
by using an unsupervised learning algorithm – Hebbian 
connections that are regarded to be the simplest algorithm 
for learning associations between two entities. 
Architecturally, the naming connection network connects 
all the output units in the concept memory with all the 
output units in the word lexicon.  Appropriately weighted 
Hebbian connections, termed as ‘naming connections’, 
establish a relationship between a concept in the concept 
memory with its corresponding lexical label, i.e. word, in 
the word lexicon.  These Hebbian connections are used to 
spread the activations from one Kohonen map to another 
such that a localised activity pattern in either Kohonen map 
will cause a corresponding localised activity pattern on the 
other Kohonen map, and this would be the basis of concept 
lexicalisation. Table 1 gives the architectural specifcations 
of the three neural networks to be used for the simulation 
with detailed description to follow in the forthcoming 
discussion. 
 
Table 1: Architectural specifications of the hybrid neural 

network architecture 
Activity Input layer Output Layer 

Development of 
Concept Memory 
(Kohonen Map) 

20 units  121 units  
 

Development of 
Word Lexicon 
(Kohonen Map) 

5 units  121 units  

Development of 
Naming Connections  
(Hebbian Connection 
Network) 

121 units  121 units 

Now that we have specified the constituent neural networks 
we present a synthesis of these neural networks to realise 

our ‘hybrid’ neural network architecture (see Fig. 1) to 
carry out the simulations.  A simulation model development 
framework for the synthesis of various neural networks to 
yield a conglomerate’ neural network architecture has been 
proposed by Abidi [4, 5, 6, 7].  Here, the integration of the 
concept memory, word lexicon and the naming connection 
network is in line with the modular (or hybrid) 
architectrure approach proposed in detail by Abidi [4, 5, 6, 
7].  
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Fig. 1: The ‘hybrid’ simulation architecture:A synthesis of 

two Kohonen maps via Hebbian connections 
 

4.0 A SIMULATION OF THE DEVELOPMENT 
OF THE 'CONCEPT MEMORY' 

In neural network terms, children's concept memory where 
the acquired conceptual knowledge is 'stored', can be 
characterised by (a) the concept representation scheme, (b) 
the organisation of stored concepts, (c) the means for 
learning new concepts. Assuming that the child must take 
some initiative during concept development, we regard the 
learning of new concepts as an unsupervised process, 
whereby children appear to detect the salient 'semantic 
features' of an concept without any guidance.  The storage 
of concepts is effected by categorising them on the basis of 
perceived semantic features. We have simulated the 
development of a 'concept memory', i.e., the learning of 42 
'concepts' using a 121 unit Kohonen map.  The 42 concepts 
being learnt were selected from the 50-60 concepts reported 
in child language literature [8]. 
 
Previous simulations of the development of concepts were 
conducted in a supervised learning environment [9, 10, 11]; 
a concept was learnt by repetitively associating its semantic 
feature based representation with the concept’s lexical 
label.  Categorisation was achieved by merely learning the 
label of the category to which it belonged.  We have some 
disaggrements with this strategy to learn concepts as it 
seems more as a case of ‘rote learning’.  We elaborate 
below our simulation of the development of the concept 
memory together with the discussion on the emergence of 
conceptual categories. 
 



4.1 A Neural Network Inspired Concept 
Representation Scheme 

Represenation of natural conepts in a neural network 
formalism is of prime importance and demands a fine 
balance between psychological plausability and neural 
network pragmatism.  To represent concepts in a neural 
network environment we have adopted the conventional 
'semantic feature' based formalism which describes the 
similarities and differences between various concepts that 
leads to the definition of categories.  Each concept in our 
representation scheme is represented by a 20-dimensional 
'semantic feature vector' [12] comprising two types of 
features: 'defining features' - determining a category 
structure, and 'individual features' - distinguishing 
individual concepts within a category.  We discuss below 
how these defining and individual features are used to 
construct a semantic feature vector for representing a 
concept. 
 
The defining features of concepts are based on an 'object-
oriented' taxonomy suggested by Katherine Nelson [13]. 
Nelson's 'semantic structure' classifies or categorises 
'objects' and 'non-objects' at a considerable level of detail, 
enabling us to determine the category of the object/non-
object concept in consideration.   
 
Children's possession of a variety of concepts, differing 
from one another in terms of salient features, suggests that 
a category level abstraction alone may not suffice to 
represent children's concepts.  We argue that 'individual 
features' unique to a concept help discriminate one concept 
from other concepts having the same 'defining features'.  
For instance, children are believed to distinguish various 
objects by observing aspects such as 'size', 'shape', 'colour' 
and even, at times, their 'function'.  For that matter, the 
individual features derive from a taxonomy of children's 
concepts suggested by Bloom [8], comprising concepts 
belonging to seven different categories: objects, agents, 
events, states, locations, prepositions and 'function words'.  
 
To conclude, our semantic feature vector encodes two types 
of information: super-ordinate category information 
(defining features) and specific information (individual 
features).  Table 2 illustrates the semantic feature vectors 
for some exemplar concepts using in our simulation. 
 

4.2  Description of the Simulation  
The simulation of the development of the concept memory 
is carried out in an iterative manner, such that in each 
iteration a different concept is presented to the concept 
memory [14].  The repeated presentation of the concepts 
over a number of iterations is analogous to the child's 
increased appreciation and knowledge of the concept over a 
period of time.  Presentation of individual concepts in a 
random order ensures that the 'learning' taking place is not 
biased and does not reflect a predefined course of 
development. 

 
 
Table 2: Semantic feature vectors for concepts - 'dad', 

'mum', and 'dog'. The defining features are given in 
bold type-face. 

 
Concept  
Instance 

Defining 
Features 

Individual Features 

dad object - 
animate - 
people - 
specific 

agents, human, human-beings,  
not self, familiar, does cares,  
is kin, male, large, has name 

    [1,1,1,1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1] 
mum object - 

animate - 
people - 
specific 

agents, human, human-beings,  
not self, familiar, does cares,  
is kin, female, large, has name 

    [1,1,1,1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1] 
dog object - 

animate - 
animal - 
generic 

agents, non-human, animal, 
 is indoor, furry coat, 
unfamiliar,  
no distinct colour, has distinct, 
sound, medium, no name 

    [1,1,0,0, 1, 0, 1, 1, 1, 0, 0, 1 , 0, 0] 
 
At the start of the simulation of the development of the 
concept memory, the Kohonen map implementing the 
concept memory is initialised with random weight vectots.  
This ensures that the concept memory does not contains 
any a priori  knowledge.  This claim is validated by noting 
that potentially close concepts are mapped quite sparsely, 
indicating the absence of any prior categories. (see Fig. 2a). 
 
Kohonen map’s learning can be quantified in terms of two 
parameters - (i) activation level (ACT) of the desired 
concept's unit when retrieved and (ii) the 'Euclidean 
Distance' (ED) between the desired concepts' unit and the 
most highly active unit.  In fact, as learning progresses, the 
ED is minimised by the self-organisation mechanism 
inherent in Kohonen map learning algorithm, whereas at 
the same time the activation level of the desired concept's 
unit increases.  A concept is deemed to be learnt when the 
activation level of its representative (or image) unit higher 
that all other units (approaching unity), and its ED is the 
lowest (close to zero).  
 
In order to describe this complex simulation involving 42 
concepts, we discuss the learning profile of just four 
concepts-'dog', 'juice', 'dad' and 'cow' out of the 42 concepts 
to be learnt. The learning period spanned 8000 iterations.  
To provide a learning profile we noted the amount of 
learning achieved after intervals of 500 iterations by taking 
a snapshot of the evolving concept memory. The learning 
profile of the concept memory is given in Table 3. 
 
Table 3 shows that at the very first iteration, the ED 
between the (random) weight vector of all the units and the 
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input stimulus is computed. The unit that has the minimal 
distance to the stimulus is 'assigned' the stimulus label.  
Subsequent iterations involve the computation of the ED 
and the reassigning of concepts to the units. After 500 
iterations when the stimulus 'dog' was presented to the 
concept memory, it retrieved the concept 'pig' - the 
Kohonen map has not yet learnt to discriminate between a 
'dog' and a 'pig' and can easily confuse the two. This 
'confused' behaviour of the Kohonen map can be explained 
as follows: the semantic feature representations of both 
concepts - 'pig' and 'dog', share a number of features.  The 
retrieval of the proximate concept 'pig' instead of the 
concept 'dog' clearly indicates that, at this stage, the 
Kohonen map has acquired an understanding of a category 
structure, i.e., the defining features have been learnt. 
However, the Kohonen map is still not able to discriminate 
amongst the individual features of the concepts 'dog' and 
'pig' (since both concepts belong to the same category) and 
therefore confuses the stimulus 'dog' with the relatively 
close concept 'pig'.   
 
At the end of 1000 iterations, the stimulus 'dog' retrieves 
the unit labelled 'dog', but the value of the ED is quite large 
(0.372) and the  activation level is  negative (-0.29): this 
retrieval may yet turn out to be a 'fluke'. This is justified at 
the end of 1500 and 2000 iterations; the Kohonen map now 
confuses the concept 'dog' with 'duck'. But after 2500 
iterations, one sees a positive activation and a reduction of 
the ED in the learning profile for the concept 'dog'. 
Subsequent iterations do show that the network is 
becoming more 'stable' in its response to the stimulus 'dog'. 
At iteration 4000, the criteria for adequate learning have 
been satisfied, i.e., the activation level has approached 
unity and the ED has decreased to zero. 
 
Table 3: Learning profile showing the development of 

concepts - 'juice', 'dad' and 'cow'.  RU indicates the 
'Retrieved Unit' in response to a specific concept 

 

Iteration  
 

Dog 
RU 

Juice 
RU 

‘Dad 
RU 

Cow 
RU 

1 - 500 pig -- dad cow 
501 - 1000 dog juice mum horse 
1001-1500 duck juice mum horse 
1501-2000 duck juice mum horse 
2001-2500 dog juice mum 

dad 
cow 
horse 

2501-3000 dog -- dad 
mum 

cow 
horse 

3001-3500 dog -- dad 
mum 

cow 
horse 

3501-4000 dog cokie dad 
mum 

cow 
-- 

4001-4500 dog juice dad cow 
4501-5000 dog juice dad cow 
5001-5500 dog juice dad cow 
5501-6000 dog juice dad cow 
6001-8000 dog juice dad cow 

 
The learning profile for the other three concepts - 'juice', 
'dad' and 'cow' follow a similar trend as noted in the 
development of the concept 'dog'.  Note that for the 
concepts 'dad' and 'cow' during the iteration range 2000-
4000 (shaded grey in Table 3) an interesting behaviour is 
observed.  When presented with the semantic feature vector 
for the concept 'dad', two concepts are retrieved: the 
concept 'dad' and another close concept - 'mum'.  This 
rather atypical behaviour predicates the fact that the 
Kohonen map is not able to differentiate between close 
concepts in a category. The retrieval of all the close 
concepts clearly indicates that at this stage the Kohonen 
map has learnt a category structure and is exploiting this 
information when deciding what concepts are to be 
retrieved.   
 
Fig. 2b shows the organisation of the concept memory after 
a learning session of 8000 iterations, where each concept is 
represented by a unique unit. It is interesting to compare 
how the concept memory has originated from the randomly 
initialised concept memory, shown in Fig. 2a. 
 

5.0 A SIMULATION OF THE DEVELOPMENT 
OF THE 'WORD LEXICON' 

One significant manifestation of the development of 
language amongst children is their ability to comprehend 
and produce spoken language.  One can model this aspect 
of language development by arguing that children can 
analyse acoustic input in terms of its constituent phonemes. 
The ability to 'spot' words in continuous speech can be 
compared with the development of the so-called 'similarity 
neighbourhoods'. -- “a set of words that differ from a given 
target by a phoneme substitution, addition or deletion” [15: 
pg. 207].  The concept of similarity neighbourhood relates 
to the fact that similar sounding 'words' would be 
represented in a cluster or 'category'.  For instance, the 



similarity neighbourhood for the word pit would include 
the words bit, pot, pig, spit, and it, amongst others.  
 
From a neural network standpoint, then, one can argue that, 
given phonetic input to a Kohonen map (the so-called word 
lexicon), the output from it construes to be a set of words 
corresponding to different phonetic inputs.  Also, the 
organisation of these words in the word lexicon predicates 
a discrimination of phonetic information leading to a 
'similarity neighbourhood'  that seem analogous to the 
categorisation of the word lexicon, which results as a 

consequence of the temporal organisation of phonetic 
information. 
 
For the development of the word lexicon, we ‘train’ a 121 
unit Kohonen map to initially learn and then to recognise 
'words' given their phonetic representation. The phonetic 
representation of each word is taken from the Oxford 
Advanced Learner's Dictionary. To represent words, we 
have devised an encoding scheme which assigns each 
phoneme a numerical value within the range of 0 -1. 
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Fig.2: (a) The concept memory before learning. (b) The concept memory after learning.  The concept memory is divided 
into seven broad concept categories - objects, agents, locations, attributes, prepositions, events and function words 

 
The phonemic representation for a word, i.e. its 'phonemic 
feature vector', is formed by concatenating the encoded 
value of its constituent phonemes in a vector notation.  For 
illustration purposes, the phonemic feature vector for some 
words is given in Table 4. 
 
Table 4: Phonemic representation of words in terms of a 

phonemic feature vector 
Word Phonemic Feature Vector 
dog [0.45, 0.60, 0.65, 0.0, 0.0] 
bag [0.25, 0.40, 0.65, 0.0, 0.0] 
pig [0.15, 0.20, 0.65, 0.0, 0.0] 
dad [0.45, 0.40, 0.45, 0.0, 0.0] 

 
The simulation of the developing word lexicon is 
performed in a similar manner to that of the developing 
concept memory. Starting with a random Kohonen map, 
phonemic feature vectors of words are presented in a 
random order.  The learning profile of the word lexicon 
follows a similar trend as that of the concept memory, and 
again the criteria is the activation level approaching unity 
and the ED being reduced to zero. 
 

Fig. 3a shows the initially random word lexicon, whereas 
Fig. 3b shows the word lexicon after the learning session.  
In Fig. 3b it can be seen how the word lexicon has evolved 
from a random organisation of words to an ordered 
organisation that reflects categorisation of words on the 
basis of the length of the phonemic feature vectors. Again, 
like we did for the learnt concept memory, we have marked 
regions of the Kohonen map that store words of similar 
phonetic lengths. It is these regions that resemble the 
'categories' or 'similarity neighbourhoods' argued by 
researchers [15]. Note that the 'learnt' word lexicon clearly 
discriminates words on the basis of their phonetic content, 
and also within categories similar sounding words are 
stored in proximity, for instance note that the similar 
sounding words - 'bag', 'dog', 'pig', 'big', 'dad' and 'duck' are 
stored close to each other. 
 

6.0  A SIMULATION OF THE DEVELOPMENT 
OF THE 'NAMING CONNECTIONS' – 
CONCEPT LEXICALISATION 

In child language literature, lexicalisation or 'naming' of 
concepts is regarded as the mapping of children's linguistic 
knowledge on to their conceptual knowledge [16,17].  
Lexicalisation of a concept can loosely be regarded as 
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either learning by instruction or learning from examples. 
We believe that there are at least two 'ostensive naming' 
situations that can be simulated by neural networks 
conducting 'unsupervised learning'. The first situation 
relates to the assignment of a word to a 'known concept' 
where the child has a concept of an object or event but 
lacks the appropriate word to express it. The second 
situation relates to the assignment of a word to a 'novel 
concept': The child hears a novel word referring to an novel 
object or event, then the child relates the novel word to the 
new concept.   
 

In both the above situations the child need to identify the 
category of the input concept and retrieve it from the 
concept memory. Also during word perception the demand 
on the child is to analyse the phonetic constituents of the 
word and retrieve the correct word, if present, from the 
word lexicon. The lexicalisation of concepts then is a viable 
simulation to further explicate and operationalise ‘learnt’ 
categories within the concept memory and word lexicon. 
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Fig. 3: (a) Word Lexicon before Learning. (b) Word Lexicon after learning. Words are arranged into four categories on the 
basis of their phonetic length, i.e. words constituting 2, 3, 4, and 5 phonemes 

 

6.1. Impetus for the Simulation Architecture 
We have simulated concept lexicalisation as the 
development of an association between a lexical label 
(word) with the corresponding concept. In a neural network 
parlance such an association would be achieved by learning 
associative naming connections between a concept unit in 
the concept memory with the corresponding word unit in 
the word lexicon.  Simulation of concept lexicalisation 
involves each unit in the concept memory to be connected, 
with varying connection strengths, to all units in the word 
lexicon and vice versa.  This establishes a many-many 
relationship between concept units and word units, as 
shown in Fig. 4.  
 

Word LexiconConcept Memory

Hebbian Connections

 

Fig. 4: Naming connections between the Concept Memory 
and the Word Lexicon. 

 
The naming connection network, simulating concept 
lexicalisation, employs Hebbian Learning which provides a 
simple mechanism for associating two units by weighted 
connections, where the strength of the connection is based 
on the activation levels of the two connecting units - the 
greater the collective activation level of the two units the 
stronger the ‘Hebbian conection’ between them.  The 
naming connection network, comprising two layers, 
employs the output layers of both the concept memory and 
the word lexicon which are then connected by 14641 (121 
* 121) Hebbian connections of varying strengths.  The 
‘learnt’ Hebbian connections provide a medium to tranmit 
the activation level of the output units of the concept 
memory to the output units of the word lexicon and vice 
versa.  The strength of the Hebbian connetion determines 
the amount of  activation received by the recipient output 
unit – the greater the connection weight between two units 
the magnified the activation level of the sending unit would 
be when it is received by the recipient unit.  
 



6.2. Simulation Scheme for Developing Naming 
Connections 

Two types of stimuli were used in this simulation: (1) a 
perceptual stimuli, i.e. a 20-dimensional semantic feature 
vector representing a concept, and (2) a phonemic stimuli, 
i.e. a 5-dimensional phonemic feature vector representing 
the corresponding word.  The entire training set comprises 
Bloom’s 42 concepts and words learnt earlier. 
 
The development of naming connections can be simulated 
in a developmental manner by simultaneously presenting a 
concept (the perceptual stimuli) to the concept memory and 
the corresponding word (phonemic stimuli) to the word 
lexicon.  Presentation of the respective stimuli to each 
Kohonen map results in a group of units to become highly 
active due to the information retrieval mechanisms 
employed by Kohonen maps.  Naming connections can 
then be established between these highly active units, in 
each Kohonen map, based on the Hebbian learning 
algorithm.  

Here we discuss the lexicalisation of the concept 'dog'.  
Consider an exemplar situation for concept lexicalisation: 
an adult points towards a 'dog' and utters the sentence ‘That 
is a dog’, thus both the verbal and perceptual stimuli 
corresponding to 'dog' are presented to the learner.almost at 
the same instance.  The information retrieval mechanism of 
the Kohonen maps ensures that the presentation of the 
perceptual stimuli to the concept memory forms a localised 
pattern of activity around the learnt 'dog' concept unit.  In 
this scenerio similar concepts are more activated than less 
similar concepts. In a similar manner, the presentation of 
the verbal stimuli 'dog' to the word lexicon results in the 
learnt word unit 'dog' acquiring the highest activation level.  
At this stage, we apply the Hebbian learning algorithm to 
establish inter-map naming connections amongst all units in 
both Kohonen maps.  The strength of the Hebbian 
connection established is proportional to the current 
activation of two connecting units. Therefore, a strong 
connection is established between the highly active concept 
and word units, i.e. the ‘dog’ concept and word units. 
 
Concept lexicalisation is carried out in an iterative manner, 
where in each iteration a concept-word pair is presented to 
the naming connection network and learning involves slight 
increments to the strength of the Hebbian connections 
between the concept and word units.  In this way, over a 
period of several iterations strong naming connections are 
established between concepts and their corresponding 
lexical labels (words). A concept is deemed to be 
lexicalised when a 'perceptual' stimuli representing a 
concept is presented at the concept memory and in response 
the lexical label - 'word' unit corresponding to the concept 
is highly active in the word lexicon. 
 
Table 5 presents the learning profile of the lexicalisation of 
four concepts - 'dog', 'cow', 'juice' and 'dad' which are 
represented in the 'learnt' word lexicon by units 76, 88, 55 

and 86, respectively (Recall that each unit in Kohonen map 
has been assigned a number in the range 1 - 121).  For 
instance, at iteration 500 the concept 'dog' is associated 
with unit 2 in the word lexicon.  This turns out to be an 
incorrect association since the actual word unit representing 
'dog' is 76. During subsequent iterations the neural network 
is again incorrectly associating the concept 'dog', first with 
word unit 36, and then later with word unit 114. It is only 
after 6000 iterations that the neural network has learnt to 
lexicalise the concept 'dog', as now the concept 'dog' is 
associated with word unit 76, which represents the word 
'dog'.  The learning profile for the other three concepts 
show a similar trend where first incorrect associations are 
established between concept and word units in the concept 
memory and word lexicon, respectively. However with 
increased experience the correct associations are eventually 
'learnt'.   
 
It may be noted (see Table 5) that during the lexicalisation 
of a particular concept, say 'dog', not only the concept 'dog' 
is associated with the word 'dog' but also other similar 
category members are associated with the word 'dog' 
though with a less strong connection. This ensures that a 
strong naming connection is established between the close 
category members and less strong naming connections exist 
among other not so close category members. 
Table 5: Learning profile for Concept Lexicalisation.  

Finally, the words dog, cow, juice and dad are 
represented by units numbered 76, 88, 55 and 86, 
respectively 
Iteration 

Range 
Dog  
RU 

Cow  
RU 

Juice 
RU 

Dad 
RU 

1 - 500 2 36 70 17 
501 - 1000 36 88 56 17 
1001-1500 36 88 56 17 
1501-2000 36 88 91 17 
2001-2500 114 88 91 17 
2501-3000 114 88 56 17 
3001-3500 114 88 56 17 
3501-4000 114 88 91 17 
4001-6000 114 88 91 119 
6001-6500 76 88 91 119 
6501-7000 76 88 91 119 
7001-7500 76 88 55 86 
7501-8000 76 88 55 86 

 

7.0 EXPLICATING THE EVIDENCES OF 
CATEGORY LEARNING – THE 
SIMULATION RESULTS 

The aim of the paper is to demonstate the emergence of 
human conceptual categories. Our assumption, which is 
psychologically motivated, is that it is best to investigate 
the emergence of categories at the onset of concept 
development as usually whilst learning new concepts 
humans distinguish and discrimate various concepts; 
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grouping and subgrouping of dynamicalaly concepts are 
made and periodically refined with time and with increased 
appreciation of existing concepts, thereby realising 
categories of similar concepts.  In the absence of any direct 
means to investiugate how categories are learnt we exploit 
our three ‘learnt’ neural networks – the concept memory, 
word lexicon and naming connection network to explicate 
the subtle evidences implicit category learning during the 
processes of concept development, word acquisition and 
concept lexicalisation.  We now explicate both direct and 
indirect (by exploiting the three neural networks) evidences 
of an underlying category structure that has been implicity 
learnt by the three neural networks during the simulations. 
 

7.1 'Automatic' Categorisation of Concepts  
The organisation of the concept units in the concept 
memory reveals that concepts that have close semantic 
feature representations are actually stored in proximity, 
thus forming a global organisation into conceptual regions 
or, more appropriately, 'categories' of concepts (see Fig. 
2b).  Effectively, self-organisation in Kohonen maps 
demarcates the possible input space into hierarchical sub-
areas which are then mapped on to the two-dimensional 
Kohonen map.  In Fig. 2b we have marked the Kohonen 
map to explicate the emergent categories of concepts. The 
reader may note that the right side of the concept memory 
accommodates concepts of the category 'agent', whilst 
'object' concepts are stored in the bottom left corner and 
similarly the 'location' category occupies the top left area of 
the concept memory. 
 
Note that the semantic feature representation of each 
concept is based on a hierarchical structure: 'defining 
features' (containing category information) and 'individual 
features' (distinguishing individual concepts). Whilst 
learning the concepts, the Kohonen map exploited the 
category information and collected concepts with similar 
'defining features'. These semantically close concepts were 
then stored in proximity to each other, resulting in clusters 
of concepts that resemble 'categories'. In this way the 
Kohonen map not only learnt the concepts, but also 
simulated an 'automatic categorisation' of the concepts.   
 
It is interesting to note that during learning the neural 
network was not provided any category information nor 
explicit definition of the semantic features and the possible 
relationships among them.  Nonetheless, the Kohonen map 
itself deduced the similarity among the 'defining features' of 
various concepts and 'automatically' created clusters or 
categories of close concepts.   
 

7.2 Local Organisation Inside a Category - Presence 
of Sub-Categories 

The same categorising principle which earlier formed 
global categories based on 'defining features' is again 
responsible for creating a local organisation or 'sub-

categories' of even closer concepts within a category. This 
local organisation is a manifestation of the similarities 
among the 'individual features' of various concepts 
belonging to the same category (see Fig. 2b). Put simply, 
the Kohonen map's learning algorithm analyses the finer 
distinctions in the semantic feature vector of concepts 
belonging to the same category and then organises close 
concepts in proximity. For instance, in Fig. 2b the agent 
category includes concepts dad, mum, Mary, and man that 
share a number of 'individual features' hence these concepts 
are stored in proximity to each other thus forming a sub-
category, say 'humans'. Also, within the same agent 
category, concepts for animals such as dog, pig, cow and 
horse are in proximity to each other, thus resembling 
another sub-category - 'animals'.  
 
Recall that a concept’s semantic feature vector encodes an 
implicit hierarchy; the 'defining features' determine the 
broad category and the 'individual features' distinguishes 
concepts within categories. It is interesting to note that the 
Kohonen map, whilst learning the concepts, was able to 
detect this implicit hierarchy in the feature representation of 
the concepts, thus instigating two categorisation activities: 
the 'defining features' were used to determine a broad 
category structure, whereas based, on the 'individual 
features', concepts belonging to the same category were 
locally categorised.  

7.3  Indirect Evidence of the Existence of Categories 
- Concept Generalisation 

Ward and Vela [18] have reported that the manner in which 
children generalise from a novel or partially visible 
category exemplar to other members of the category is 
influenced by children’s prior knowledge of previously 
learnt categories. 
 
To investigate the presence of categories within the concept 
memory we tested the generalisation capabilities of the 
'learnt' concept memory. This was achieved by presenting 
the concept memory with (a) an incomplete representation 
of a learnt concept and (b) a novel concept.  For case (a) we 
presented an incomplete semantic feature representation of 
the concept 'dog'. In response the Kohonen map completed 
the partial representation and correctly retrieved the 
concept 'dog'. For case (b) we presented a representation of 
a novel concept - 'cat'.  Again the 'learnt' Kohonen map 
determined the possible category of the novel concept, 
which is 'agents', and subsequently generalised the novel 
'cat' concept to the closest learnt concept 'dog' in the 
'animal' sub-category.   
 
It may be noted that, much as what Ward & Vela have 
suggested, during generalisation the concept memory first 
determined the appropriate conceptual category to which 
the novel or partially represented concept may belong.  
Then, from the candidate conceptual category one concept 
that was most similar to the novel concept was selected. 
 



7.4 Indirect Evidence of the Existence of Categories - 
Addition of New Concepts 

Child theorists have speculated that the categorisation of 
concepts helps in the learning of new concepts as the new 
concept can be perceived in terms of an existing concept. 
For instance, the child may identify a new concept 'cat' in 
terms of a known and similar concept 'dog', in that the new 
concept 'cat' shares features such as 'animal', 'has tail', 'has 
furry coat', 'roams in the house', 'is pet', etc. with the child’s 
existing concept of a 'dog'. 
 
Our neural network based concept memory verifies the 
existence of such a behaviour, as is illustrated when 
attempting to add a new concept 'cat' to the previously 
learnt concept memory (shown in Fig. 5).  It may be noted 
that the new concept 'cat' (shaded dark in Fig. 5) is learnt 
and mapped (in the areas corresponding to the category 
agent and the sub-category animals) in the immediate 
proximity of the concept 'dog'.  This indicates three things: 
(a) the learning mechanism is aware of the existence of an 
implicit category structure underlying the organisation of 
the concept memory, (b) the learning mechanism not only 
'automatically' determined the category of the new concept 
but also determined the sub-category to which it belonged, 
and (c) within the sub-category the concept 'cat' was placed 
next to the concept which bears greatest resemblance to it, 
i.e. the concept 'dog'. 
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Fig. 5: The concept memory with the newly added concept 
'cat'. The shaded area represents the sub-category 'animals' 

within the category 'agents'. 
 

7.5  Indirect Evidence of the Existence of Categories 
– Retrieval of a Concept-Word Pair 

Again, an indirect evidence of the presence of categories 
within the learnt concept memory and the word lexicon is 
available by simulating the retrieval of a word in response 
to a given concept.  Here, the naming connection network 
is used to demonstrate concept lexicalisation. 
 

Retrieval of a 'word' therefore involves an interaction 
among three neural networks - concept memory, naming 
connection network and word lexicon. The retrieval of a 
word in response to a concept is simulated by presenting a 
concept to the concept memory. This initiates the spreading 
of the activation of the concept units through the 'naming 
connections' to the word units. If a strong naming 
connection exists between a concept unit and its 
corresponding word unit, then the presentation of the 
concept to the concept memory enables the corresponding 
word unit in the word lexicon to acquire the highest 
activation level amongst all other word units. 
 
We now demonstrate the retrieval of the word ‘dad’ when 
given the concept ‘dad’ to the learnt concept memory.  To 
begin with, the presentation of semantic feature vector for 
the concept ‘dad’ is presented at the input layer of the 
concept memory.  This brings into relief the information 
retrieval mechanism of Kohonen maps - the learnt concept 
unit ‘dad’ acquires the highest activation level and is 
deemed as being retrieved in response to the input (shown 
in Fig. 6). Next the naming connection network is used to 
retrieve the lexical label of the retrieved concept ‘dad’.  By 
employing the spreading activation mechanism the 
activation level of all active concept units is spread through 
the naming connections to the word-lexicon. This flow of 
activation results in the emergence of localised patterns of 
activations on the word-lexicon, such that word units that 
are strongly connected with the highly active concept units 
acquire a high activation level.  In this case, the word unit 
‘dad’ acquires the highest activation level and is deemed as 
being retrieved (shown in Fig. 7) in response to the concept 
‘dad’. 
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 Fig. 6: State of the concept memory when presented the 
concept 'dad'.  The degree of activation level is depicted by 

darker shades of grey. Concept unit 'dad' has the highest 
activation level. 
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Fig. 7: State of the word lexicon after activations are spread 
from the concept memory. Word unit 'dad' is retrieved as it 

has the highest activation level. 
 
In Fig. 6, it may be observed that the presentation of the 
concept ‘dad’s perceptual stimuli to the concept memory 
has resulted in concepts belonging to the category ‘agents’ 
to acquire higher activation levels as compared to other 
units in different categories, thereby suggesting the overall 
selection of the 'agent' category.  It may therefore be argued 
that during the retrieval of the concept first the broad 
category was selected and subsequently the selection was 
narrowed down to one category member that best 
represented the perceptual stimuli, i.e. the concept ‘dad’. 
 
In Fig. 7, it may be observed that apart from the highly 
active word unit 'dad' the word unit 'mum' is the next most 
highly active unit. This again explicates the network’s 
knowledge of an implicit category structure; the neural 
network has deduced that the concepts 'dad' and 'mum' are 
very similar to each other, and this conclusion is validated 
by the high activation level of words corresponding to 
concepts belonging to the ‘agent’ category. 
 
We argue that this concept-word retrieval simulation not 
only demonstrates the information retrieval mechanisms 
inherent in Kohonen maps but also validates the efficacy of 
the Hebbian connections implemented in the naming 
connection network, and in turn proves to be a good means 
of explicating the category information learnt by the neural 
networks - the concept memory and the word lexicon. 
 

8.0 CONCLUDING REMARKS 
We have demonstrated that neural networks provide a basis 
for investigating human category learning.  Our simulations 
showed effects of category learning during the 
development of concepts, associated words and the 
lexicalisation of concepts. The emergent categories are 
interpreted in terms of the neural networks partitioning or 
discriminating the input stimuli in an unsupervised learning 

environment. We have shown that such self-organising 
neural networks may have some parallel with human 
(category) learning. 
 
From a neural network standpoint we have demonstrated 
the efficacy of a 'hybrid' neural architecture for simulating 
aspects of human behaviour.  Recall that the neural 
networks were subjected to unsupervised training, a 
training regime that has empathy with the developmental 
paradigm of language development.  Furthermore, the 
connections between the two networks was established 
fairly successfully, through what appears to be a training 
regime based on neo-Hebbian 'laws', rooted in the 
behaviouristic paradigm. The fact that a number of 
researchers in neurobiology, developmental psychology 
and linguistics are interested in neural networks and neural 
simulations leads us to believe that we have made a 
contribution towards some questions related to the 
understanding of human behaviour. 
 
REFERENCES 
[1] D. Rumelhart and J. McClelland, Parallel Distributed 

Processing, Vol I & II. Cambridge:MIT Press, 1986. 
[2]  W. Bechtel and A. Abrahamsen, Neural Networks and 

the Mind. Oxford:Basil Blackwell, 1991. 
[3]  T. Kohonen, Self-organisation and Associative 

Memory. Springer-Verlag, 1984. 
[4]  S. S. R. Abidi, “Neural Networks and Child Language 

Development: Towards a ‘Conglomerate’ Neural 
Network Simulation Architecture” in International 
Conference on Neural Information Processing 
(ICONIP’96), Hong Kong, 1996. 

[5]  S. S. R. Abidi, “Integrating Supervised & 
Unsupervised Learning Strategies For Simulating 
Child Language Development” in World Congress on 
Neural Networks (WCNN’96), San Diego, 1996. 

[6]  S. S. R. Abidi, “A Neural Network Simulation of 
Child Language Development at the One-Word 
Stage” in IASTED International Conference on 
Modelling, Simulation and Optimization, Gold Coast, 
1996. 

[7]  S. S. R. Abidi & K. Ahmad, “Conglomerate Neural 
Network Architectures: The Way Ahead for 
Simulating Early language Development”. Journal of 
Information Science and Engineering, Vol. 13, 1997, 
pp. 235-266. 

[8]  L. Bloom, One Word at a Time. Paris:Mounton, 1973.   
[9]  J. Clapper and G. Bower, “Category Invention in 

Unsupervised Learning”. Journal Of Experimental 
Psychology: Learning, Memory And Cognition, Vol. 
20, 1994, pp. 442 - 460. 

[10]  G. Hinton, “Learning Distributed Representations of 
Concepts” in Eight Annual Cognitive Science Society 
Conference, Amherst, 1986. 

[11] D. Medin, “Concepts and Conceptual Structure”. 
American Psychologist, Vol. 44, 1989, pp. 1469-81. 



[12]  K. Nelson, “Some Evidence for Cognitive Primacy of 
Categorisation and its Functional Basis”. Merrill-
Palmer Quarterly, Vol. 19, 1973, pp. 21-39. 

[13]  K. Nelson, “Structure and Strategy in Learning to 
Talk”, Monographs of the Society for Research in 
Child Development, Vol. 38, 1973. 

[14]  S. S. R. Abidi & K. Ahmad, “Child Language 
Development: A Connectionist Simulation of the 
Evolving Concept Memory”.  M. Aldridge (Ed.) Child 
language. Clevedon: Multilingual Matters Ltd, 1996. 

[15] J. Luce & P. Luce, “Similarity Neighbourhoods of 
Words in Young Children’s Lexicons”. Journal of 
Child Language, Vol. 17, 1990. 

[16] S. Levine & S. Carey, “Up Front: The Acquisition of a 
Concept and a Word”.  Journal of Child Language, 
Vol. 9, 1982, pp. 645 - 657.  

[17]  M. Callanan, “How Parents Label Objects for Young 
Children: The Role of Input in the Acquisition of 
Category Hierarchies”. Child Development, Vol. 56, 
1985, pp. 508 - 523. 

[18]  T. Ward & M. Vela, “What Makes a Vibble a 
Vibble?”  Child Development, Vol. 60, 1989, pp.  
215-224. 

 
 
BIOGRAPHY 
Syed Sibte Raza Abidi has a Ph.D. degree in Computer 
Science from Surrey Univ. (UK) and Master’s degree in 
Computer Engg. from Miami Univ. (USA).  His research 
interests include Neural Networks, Telemedicine, Medical 
Informatics, Data Mining & Expert Systems.  He has 
worked on ESPRIT (European Commission) projects and is 
currently working on various IRPA projects.  His research 
efforts have been widely published in International 
conferences and journals. He is leading the Intelligent 
Systems Research Group at USM - Computer Sciences. 


	USING NEURAL NETWORKS TO EXPLICATE HUMAN CATEGORY LEARNING:
	A SIMULATION OF CONCEPT LEARNING AND LEXICALISATION
	Syed Sibte Raza Abidi
	School of Computer Sciences
	Universiti Sains Malaysia
	11800 Penang
	Malaysia
	Tel.: 604-6573335
	Fax: 604-6573335
	email: sraza@cs.usm.my
	ABSTRACT
	Neural networks, provide a basis for studying var
	Keywords: Neural Networks, Unsupervised Learning, Hybrid Architecture, Category Learning
	1.0 INTRODUCTION
	2.0INTRODUCTION TO NEURAL NETWORKS
	3.0A ‘HYBRID’ NEURAL NETWORK ARCHITECTURE
	Activity
	Input layer
	Output Layer
	Development of Concept Memory
	(Kohonen Map)
	20 units
	121 units
	Development of Word Lexicon
	(Kohonen Map)
	5 units
	121 units
	Development of Naming Connections
	(Hebbian Connection Network)
	121 units
	121 units
	4.0A SIMULATION OF THE DEVELOPMENT OF THE 'CONCEPT MEMORY'
	4.1A Neural Network Inspired Concept Representation Scheme
	4.2 Description of the Simulation

	5.0A SIMULATION OF THE DEVELOPMENT OF THE 'WORD LEXICON'
	6.0 A SIMULATION OF THE DEVELOPMENT OF THE 'NAMIN
	6.1.Impetus for the Simulation Architecture
	6.2.Simulation Scheme for Developing Naming Connections

	Iteration Range
	Dog
	RU
	Cow
	RU
	Juice
	RU
	Dad
	RU
	1 - 500
	2
	36
	70
	17
	501 - 1000
	36
	88
	56
	17
	1001-1500
	36
	88
	56
	17
	1501-2000
	36
	88
	91
	17
	2001-2500
	114
	88
	91
	17
	2501-3000
	114
	88
	56
	17
	3001-3500
	114
	88
	56
	17
	3501-4000
	114
	88
	91
	17
	4001-6000
	114
	88
	91
	119
	6001-6500
	76
	88
	91
	119
	6501-7000
	76
	88
	91
	119
	7001-7500
	76
	88
	55
	86
	7501-8000
	76
	88
	55
	86
	7.0EXPLICATING THE EVIDENCES OF CATEGORY LEARNING
	7.1'Automatic' Categorisation of Concepts
	7.2Local Organisation Inside a Category - Presence of Sub-Categories
	7.3 Indirect Evidence of the Existence of Categories - Concept Generalisation
	7.4Indirect Evidence of the Existence of Categories - Addition of New Concepts

	�
	7.5 Indirect Evidence of the Existence of Categor

	8.0CONCLUDING REMARKS
	REFERENCES

