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Abstract:  The application of knowledge 
extraction methodologies in support of 
medical informatics promises interesting 
developments that could potentially improve 
many aspects of healthcare services.  In this 
paper we outline a multi-stage rule extraction 
pipeline for rule-based knowledge discovery.  
The featured methodology would facilitate 
operationally straightforward extraction of 
symbolic rules from medical datasets, in 
particular those with unannotated ordinal or 
continuous-valued datavectors.  The extracted 
rulesets will be used in the construction or 
enrichment of rule-based expert systems.  Our 
pipeline incorporates well-established 
supervised and unsupervised machine learning 
methods used for data mining. The motivation 
for our work stems from the individual 
effectiveness of data mining methods 
available for datavector clustering, attribute 
discretisation and rule extraction.  The 
featured knowledge extraction architecture 
will be tested and analysed using several well-
known medical datasets. 
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1.  INTRODUCTION 
 
Knowledge representation in the form of 
symbolic rulesets are appealing in a data 
mining context primarily due to their 
simplicity and unambiguity, and has long been 
central to research in artificial intelligence 
(AI) and knowledge engineering.  Healthcare 
and medicine have traditionally provided a 
problem-rich environments for the evaluation 
of such advanced methodologies; and readily 
provides datasets for which analysis would be 
complicated by the occurrence of data 
heterogeneity and incompleteness—
respectively resulting from datavectors being 
composed from combinations of symbolic, 
discrete and continuous-valued attributes—
and degraded by the presence of noise, 
statistically anomalous values and missing 

attributes.  Classification information 
pertaining to individual datavectors is also 
often unavailable—or at best available only in 
some imprecise rule-of-thumb form—in many 
healthcare problems, particular those which 
require highly specialised domain experts.  
The research described in this paper is 
motivated by the desirability of obtaining 
conceptually symbolic clean descriptions 
from real-life (by definition less than ideal) 
healthcare data, which would subsequently be 
useful in the construction of rule-based expert 
systems.  Our featured methodology is a 
combinative application of various supervised 
and unsupervised learning mechanisms so as 
to enable rule-based knowledge extraction 
under some fairly generic application 
scenarios. 
 
 

2.  OVERVIEW AND ANALYSIS OF 
INDIVIDUAL PIPELINE MECHANISMS 

 
2.1  Datavector Clustering: K-Means 
 
We presume a data collection process 
resulting in unannotated datasets i.e. 
undifferentiated collection of multi-
component datavectors }]n,1[i:{S xi ∈= , 
for which the classification attribute 

α=)(c xi
 for α ∈ [1, k] is unknown.  Our 

methodology assumes the possibility of 
deducing the value of classification attribute 
from information intrinsic within the 
datavector itself, which is usually a reasonable 
assumption for most datasets with ordinal or 
continuous-valued datavector components.  A 
dataset satisfying this presumption would be 
divisible into k clusters, with cluster 
membership determined by datavector 
association i.e. k-means clustering.  This well-
known algorithm [1][17] allows for the 
division of the dataset into cluster-subsets i.e. 
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with the geometric analogues provided by 
Zhang-Ramakrishnan-Livny [4]. 
 
Dataset clustering via k-means is initiated via 
the random assignment of all datavectors to 
the presumed set of constituent clusters, after 
which the cluster-specific attributes are 
computed.  Each subsequent computational 
round would then reassign the cluster 
membership for each datavector Sxi∈  such 

that µα

α −x )(
i

 is minimised for the fresh α 

value.  A set-wide error—which can be 
regarded as the merit criteria associated with 
the cluster representation of the dataset—
based on differences between individual 
datavectors and the cluster-means is also 
computed after each round, thereby allowing 
for algorithm termination when the global 
error drops below some specified threshold or 
alternatively when stable cluster membership 
prevents further reduction in the global error. 
 
The popularity of k-means in data mining 
applications is due (in large part) to the basic 
procedural simplicity, which frequently lends 
itself to many variations i.e. tree-like 
hierarchical clustering as suggested by [4].  
The set-cluster representation is, on the other 
hand, non-deterministic (due to the random 
initial membership) and dependant on k i.e. 
the externally specified cluster multiplicity.  
There are two diametrically opposed strategies 
to deal with this issue i.e.:- 
• Over-estimation in the initial k value 

followed by progressive amalgamation of 
clusters (thereby resulting in a reduced k) 
with closely-separated centres as defined 
by the comparison of the cluster-means 
with (σ, δ) values for both clusters 

• Under-estimation in the initial k value 
followed by progressive partitioning of 
loose clusters (thereby resulting in an 
increased k) as defined by large (σ, δ) 
values 

 

both of which (in common to basic k-means) 
would also require multiple iterations to select 
the best cluster representation i.e. resulting in 
the lowest global error.  It should, however, be 
pointed out that cluster multiplicity can often 
be deduced for many data mining problems; 
as would justifiably be the case for both 
featured datasets i.e. the widely analysed 
Wisconsin Breast-Cancer and New-Thyroid, 
which respectively have two (benign and 
malignant) and three (normal, hyperthyroidal 
and hypothyroidal) classification values. 
 
 
2.2  Attribute Discretisation: Chi-2 and 
MDL Partitioning 
 
Discretisation of ordinal or continuous-valued 
datavector components is motivated by the 
desirability of a discrete-valued or binarised 
input attribute representation for the 
subsequent rule-extraction phase.  Attribute 
discretisation procedures can be characterised 
as being supervised or unsupervised—
respectively applied on datavectors for which 
the classification attribute is known and 
unknown—the former of which are 
considered to be far more compute-efficient.  
Supervised methods assume the successful 
computation of α=α )(c x )(

i
v —via k-means or 

an alternative clustering algorithm—following 
which statistical or information-theoretic 
discretisation can be executed on each 
component of multidimensional datavector 

],,[ xx )(
i

)(
i LL
v αα = .  Statistical 
optimisation via Chi-2 [2] and entropy 
reduction via MDL partitioning [5] [6] can 
both be employed as pipeline mechanisms, 
and their respective bottom-up and top-down 
approaches provides for an interesting 
contrast. 
 
Chi-2—which can be regarded as a dynamic 
refinement of its static predecessor i.e. 
Kerber’s Chi-merge—generates a discretised 
attribute representation from the progressive 
pairwise merging of adjacent attribute-value 
intervals with the lowest significance level as 

indicated by the χ2
 statistical parameter.  

Interval merging would then commence from 
pairs of individual datavector attribute-values 
so as to maximise first vector-wise and 

subsequently component-specific χ2
 values.  

The resultant discretised vector would be of 
form ]),(d,[)(d xx ii LL

v v =  with 

individual components },,{)(d
)i(

jix LL µ∈  

represented by the means of all attribute-
values within the discretised interval.  The 
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primary termination criteria for Chi-2 is 
motivated by the desirability of minimising 
class-erroneous discretisations i.e. identical 
representations )(d)(d xx )(

j
)(

i
vv βα =  for unequal 

classification values α ≠ β.  Note the 
possibility of discretisation down to a single 
interval (encompassing all attribute-values) 
frequently occurs for at least some of the 
datavector components, the occurrence of 
which indicates the insignificance of that 
particular component for classification 
purposes.  Chi-2 discretisation was applied in 
two previous works, rule extraction from 
neural network [8] and synthesis of maximal 
decision rules using rough sets [9]. 
 
MDL partitioning, on the other hand, proceeds 
via the identification of partition point p with 
which to bisect datavector component 

SSx Si −+
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to select p so that the entropy of the bisected 
dataset i.e. 
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minimised.  This procedure is applied 
repeatedly on a particular datavector 
component until further bisection no longer 
results in entropy reduction.  Note that both 
statistical and information-theoretic methods 
result in dataset reduction from:- 
• Dimensional: via identification of 

classification-insignificant components 
• Numerical: due to )(d)(d xx ji

vv =  

for i ≠ j, 
viewpoints, with Chi-2 resulting in far more 
aggressive discretisation compared to MDL 
partitioning.  This is empirically demonstrated 
by the approximate 90 % reduction—in both 
Wisconsin Breast-Cancer and New-Thyroid 
datasets—under Chi-2, as opposed the 
corresponding 40-70 % reduction under MDL 
partitioning. 
 
 
2.3  Supervised Rule Extraction: LC 
Interpretation and Rough Sets 
 
Generalised symbolic descriptions of 
annotated datasets can be obtained from a 
variety of supervised NN training and rule 
extraction methodologies—as systematically 
classified by the Andrews-Diederich-Tickle 
(ADT) [10] taxonomy—or alternatively using 
rough set analysis as outlined by Pawlak.  The 
Rulex procedure formulated by Andrews-
Geva [3] on LC networks with localised 

Radial Basis Function (RBF) like activation 
functions constructed using sigmoidal 
building blocks is employed within the 
pipeline due to the relatively fast LC 
parametric convergence during training, and 
also the natural manner in which rules are 
computed from trained LC network 
parameters.  The latter feature provides for a 
notable contrast to the majority of NN-based 
rule extraction frameworks with distinct 
symbolic formulation processes executed after 
satisfactory completion of NN training.  
Usage of LC networks with localised 
activation—as opposed the more widely used 
Multi-Layer Perceptron (MLP) networks with 
globalised sigmoidal activation—can also be 
considered to be strongly motivated by the 
assignment of datavector class attributes via 
cluster membership, which is itself a localised 
process.  LC network training followed by 
Rulex symbolic formulation can therefore be 
expected to perform adequately within the 
context of our data mining pipeline. 
 
LC networks are composed of sigmoid pairs 

( )( ) ( )( )eexp bicixikibicixiki
ii

−−−−+−−= ++
−−

11
11

)(

 restricted to a single dimension in a multi-
dimensional datavector ],,[ LL

v xix = , 
with i used as the component dimension (as 
opposed to datavector) index. Note the 
localised functionality i.e. 0)( ≅xp ii

 far 

away—as defined by the exponential 
suppression ki

—from the interval 

],[ bcbc iiii
+−  with centre ci

 and 

breadth bi
.  These unidimensional pairs are 

subsequently combined by a sigmoidally-
activated output node of form 
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each individual pi
 (retroactively interpretable 

as a hidden node) localised in the i-th 
component, but contributing a non-localised 
ridge-like projection in the other datavectors 
components ],,[ xj LL  (with j ≠ i). The 

π parameter is intended to cancel-out all such 
ridges resulting from ∑

i
ip , thereby 

resulting in the sigmoidal superposition being 
localised near multi-dimensional interval 

],[ bcbc
vvvv +− .  Output node activation 

would therefore only occur in that interval, 
with π being dependent on datavector 
dimensionality and κ determining the 
abruptness of the activation interval.  
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Restricted LC training would entail the 
progressive re-estimation of free parameters 

],,[ kbc
vvv  so as to maximise gradient 

descent with respect a set-wide error based on 
differences between computed output, )(xq r

 
and the previously assigned (via k-means) 
classification attribute. Rulex subsequently 
employs the post-training LC parameters to 
establish class membership for datavectors in 

],[ )()( xx vv +− , with )()( ±± ±= iii rcx  the 
upper and lower activation thresholds.  
Effective LC training was found to require a 
reasonably sizeable training dataset, hence the 
appropriateness of MDL discretisation prior to 
Rulex.  For the Wisconsin Breast-Cancer and 
New-Thyroid datasets, this algorithmic 
combination results in symbolic rules of 
significantly greater accuracy compared to 
Rulex preceeded by Chi-2 discretisation.  
There would also seem to exist the non-
negligible eventuality of LC training failure 
using Chi-2 discretised datasets, as arose for 
the New-Thyroid dataset. 
 
Rough set theory generalises the notion of 
conventional set membership so that 
individual datavectors can be assigned to 
lower and upper approximations, respectively 
denoted αS  and αS  with ααα SSS ==  

allowing recovery of crisp conventional sets.  
Class-uncertainty—resulting from ambiguity 
in the classification attribute after 
discretisation—would result in datavector 
membership in the boundary region 

αα SS − .  Rule extraction from rough sets is 

based on the construction of reducts i.e. 
minimal attribute-sets that allow for the 
identification of datavectors in a particular 
subset from the rest of the dataset.  Reducts 
are essentially realisations of discernability 
relations specifying class membership, and are 
calculable from equivalence classes which are 
usually generated using genetic algorithm 
(GA) based methods.  Reducts and the 
extracted rules are characterised by:- 
• Support-level: indicative of their 

applicability with respect the dataset 
• Length: number of attributes required for 

class-equivalence discernibility, 

with the major operational complication 
arising from rule redundancy and questionable 
utility of reducts which only apply towards 
relatively small datavector subsets.  Rule 
extraction should therefore be preceeded by 
the elimination of reducts with low support-
level and short length, with the latter criteria 
necessary so as to avoid the emergence of 
over-specific rules.  For the Wisconsin Breast-
Cancer and New-Thyroid datasets, it was 
determined that reduct elimination (exceeding 
90 % in some cases) can be safely executed 
without significantly jeopardising the 
accuracy (exceeding 70 % in all cases) of the 
extracted ruleset. 
 
 

3.  DESCRIPTION OF HYBRIDISED 
FRAMEWORK 

 
3.1 Multi-Mechanism Architecture 
 
The proposed rule-extraction framework 
would feature sequential application of the 
following processes: 
(1) Unsupervised cluster formation: k-means 
(2) Supervised attribute discretisation: Chi-2 

or MDL partitioning 
(3) Supervised training: restricted LC 

networks or reduct formation from rough 
sets 

(4) Rule extraction: Rulex on LC networks or 
reduct-based rule formation 

 
as illustrated in Fig 1 above, which would (in 
an actual operational environment) be 
preceded by a filter stage for the execution of 
routine preprocessing tasks i.e. attribute 
scaling (to mitigate against numerically large 
datavector components being 
disproportionately influential), and the 
elimination of incomplete (from a descriptive 
viewpoint) or unlikely (via identification of 
statistical outliers) datavectors.  Note the 
usage of the computed classification attribute 
from the first processing stage in the next two, 
eventually resulting in a symbolic ruleset for 
each distinct classification attribute α ∈ [1, k].  
This enables the usage of the featured 
framework in support of data mining 
applications where the classification is a priori 
unknown.

 
 



 
In International ICSC Congress on Intelligent Systems and Applications (ISA'2000), 
Special Session on Knowledge Based Systems in Medicine, December 11-15 2000, Sydney. 

1 i q α
Discretisation

(Chi-2 / Entropy-
MDL)

1

Cluster Form
(k-means)

1 j p
ij p

1 1 j p
q α

LC Networks /
Rough Set Reducts

Supervised Learning

Rule Extraction
(Rulex or Rough

Set Rules)

Symbolic
Rules

Raw
Data

Preprocess
Filter

Figure 1: Architecture of rule extraction pipeline 
 
We are currently investigating the 
effectiveness of the proposed framework on 
datasets with a mixture of categorical and 
ordinal/continuous-valued datavector 
attributes, which would constitute an 
important generalisation over purely 
ordinal/continuous-valued datavectors.  The 
categorical datavector components can be 
handled separately and introduced directly 
into the NN training stage, however this 
assumes (without much justification) that 
computation of classification attribute 
primarily depends on the ordinal/continuous 
components.  A more well-founded approach 
would entail class computation from the 
categorical components (for instance using 
methods based on rough set [7] analysis), in 
parallel with the cluster formation process for 
the ordinal/continuous components.  
Classification information obtained from 
independant analysis of categorical and 
ordinal/continuous attributes would 
subsequently have to be integrated, following 
which various downstream analytic processes 
(as previously indicated) can be executed. 
Sensitivity analysis [12]—based on 
computations of first and second derivatives 
of the classification error in trained NNs—has 
been demonstrated as being effective in 
determining the relative importance (with 
respect classification) of individual attributes, 
and would conceivably be useful in such a 
capacity. 

3.2 Experimental Data 
 
The Wisconsin Breast-Cancer and New-
Thyroid datasets (both obtained from UCI 
machine learning repository) were chosen due 
to all their datavector components being 
ordinal/continuous-valued, with the respective 
characteristics indicated in Table 1 below. 
 
The provided classification information is 
required for an evaluation of the k-means 
process, which is highly accurate for both 
datasets.  Both class-subsets in Wisconsin 
Breast-Cancer and all three in New-Thyroid 
are also well-separated—i.e. with inter-mean 
distances fairly large compared to the radii or 
diameters—thereby allowing for a reasonable 
degree of optimism with respect the accuracy 
of the extracted symbolic rulesets.  Following 
this Chi-2 and MDL partitioning is executed, 
thereby resulting in dataset reduction as 
indicated in Table 2 below. 
 
The provided classification information is 
required for an evaluation of the k-means 
process, which is highly accurate for both 
datasets.  Both class-subsets in Wisconsin 
Breast-Cancer and all three in New-Thyroid 
are also well-separated—i.e. with inter-mean 
distances fairly large compared to the radii or 
diameters—thereby allowing for a reasonable 
degree of optimism with respect the accuracy 
of the extracted symbolic rulesets.  Following

 
Dataset Dataset 

size 
Datavector 
Attributes 

Classifications Clustering 
accuracy 

Wisconsin 
Breast-Cancer 

683 9 2 96 % 

New-Thyroid 215 4 3 86 % 
Table 1: Dataset characteristics 
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this Chi-2 and MDL partitioning is executed, 
thereby resulting in dataset reduction as 
indicated in Table 2 below. 
 

Discretisation method  
Dataset Chi-2 MDL 
Wisconsin 
Breast-Cancer 

91 % 72 % 

New-Thyroid 88 % 41 % 
Table 2: Dataset reduction after attribute 

discretisation 
 
Chi-2 also allows for the outright elimination 
(as being classification-irrelevant) of 
datavector attributes i.e. 2 out of 9 for 
Wisconsin Breast-Cancer and 2 out of 5 for 
New-Thyroid.  The relative inter-class 
datavector distribution can also be 
demonstrated to be qualitatively preserved, 
with the notable exception of Wisconsin 
Breast-Cancer under MDL discretisation.  
This did not, however, seem to affect the 
overall effectiveness of the rule extraction 
pipeline; as will be demonstrated by 
subsequently presented experimental data.  
The discretised datavectors and the cluster-
assigned classification attributes are then 
divided into training and test datasets. 
 
LC network training followed by Rulex seems 
to result in a relatively compact ruleset, in 
contrast to the rough set analysis which would 
generate an overlarge ruleset without reduct 
elimination as previously discussed.  The level 
of ruleset reduction possible using dataset-
specific criteria is indicated in Table 3 below, 
with the end result being a reasonably small 
(and therefore conceptually useful) symbolic 
ruleset.  The effectiveness (with respect the 
test dataset) of all possible algorithm 
combinations—i.e. Chi-2 and MDL 

discretisations with LC network and rough set 
rule extraction—is presented in Table 4 
below, with the only problem being the LC 
network non-trainability using the Chi-2 
discretised New-Thyroid dataset.  Note that 
the featured algorithm combinations would for 
the most part result in acceptable (exceeding 
70%) classification performance.  We are 
currently evaluating the effectiveness of the 
presented framework on other larger and more 
complex datasets, and hope to report the 
results thereof in a subsequent publication. 
 
 

4.  CONCLUDING REMARKS 
 
The proposed sequential application of:- 
(1) Classification via datavector clustering 
(2) Feature selection and data simplification 

via discretisation 
(3) Knowledge extraction via supervised 

learning and symbolic rule generation 
 
appears to be a fundamentally sound 
methodology for the analysis of unannotated 
datavectors with ordinal or continuous-valued 
attributes.  Such attribute values would be a 
natural consequence of instrumentalised data 
collection, and as such would constitute an 
important sub-category of healthcare 
problems.  Expert systems constructed from 
the extracted rules would provide a useful 
operational tool, particularly in a decision-
support capacity when specialist expertise is 
not readily available.  Knowledge extraction 
from a more generic data analytic 
framework—i.e. one able to handle both 
categorical and ordinal/continuous attributes 
on an equivalent basis—would be even more 
useful, and we anticipate this being an 
interesting line of research to undertake. 

 
Reducts before elimination Reducts after elimination  

Dataset 
Discreti
-sation Number Support Length 

Elimination 
criteria Number Support Length 

Ruleset 
size 

Chi-2 9 1-12 5-6 Support > 2 
Length < 6 

1 3 5 5 Wiscon-
sin 
Breast-
Cancer 

MDL 27 1-18 4-8 Support > 2 
Length < 6 

2 3 5 4 

Chi-2 1 12 2 n/a 
 

1 12 2 8 New-
Thyroid 

MDL 8 1-5 3-4 Support > 4 
Length < 4 

1 5 3 11 

Table 3: Reduct elimination prior to rule extraction 
 

Algorithmic methods  
 
Dataset 

Chi-2/ 
LC network 

Chi-2/ 
Rough set 

MDL/ 
LC network 

MDL/ 
Rough set 

Wisconsin 
Breast-Cancer 

69 % 75 % 92 % 71 % 

New-Thyroid n/a 77 % 83 % 70 % 
Table 4: Test classification accuracy of extracted rulesets 
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