
In International Conference on Artificial Intelligence (IC-AI'99), June 28-July 1 1999, Las Vegas.

RE-VISITING BACKPROPAGATION NETWORK
OPTIMIZATION: TOWARDS MAXIMALLY PRUNED NETWORKS

A Goh and SSR Abidi

USM Computer Sciences
11800 Penang, Malaysia

Email: alwyn@cs.usm.my

Abstract

Backpropagation (BP) Neural Network (NN)
error functions enable the mapping of data
vectors to user-defined classifications by driving
weight matrix modifications so as to reduce
classification error over the training data set.
Conventional BP error functions are usually
only implicitly dependant on the weight matrix,
however an explicit penalty term can be added
so as to force numerically insignificant weights
closer to zero. In our investigation, BP training
is undertaken as a prelude to a pruning stage that
selectively removes functionally unimportant
weight matrix elements, thereby resulting in
sparser network connectivity more suited for
subsequent rule extraction. This paper
investigates the usage of several error and
activation functions in the effort to produce
maximally clean network connections.

Keywords: Neural Networks, Backpropagation,
Network Optimisation, Network pruning,
Penalty term.

1 Introduction

NNs are usually designed with the number of
input and output nodes fixed respectively by the
feature descriptor and classification
dimensionality, hence network optimization is
equivalent to determining the size of the hidden
layer and associated connective linkages; which
can be obtained by node addition to an initially

undersized layer, or via the reverse process of
node elimination starting from an oversized
hidden-layer. This paper adopts a refinement on
the latter approach [1, 2, 3], in which inter-node
connections—as opposed the nodes
themselves—are progressively removed until
classification performance degrades below the
acceptability threshold. The objective is
therefore to obtain a sparse but accurate (with
respect classification) weight matrix.

Sparse NN connectivity is directly linked to
the occurrence of numerically insignificant
connection weights, a process which is
encouraged by the incorporation of an adjustable
penalty term [4, 5]. A properly calibrated
penalty term causes small weight matrix
elements to be exposed to a disproportionately
large downward gradient thereby resulting in
further numerical suppression. The subsequent
network pruning involves subjecting the trained
weights to a significance test which leads to the
elimination of functionally unimportant weights
from the NN.

The modified BP training and pruning
algorithms featured in this paper follows the
approach of Setiono [4], and extends the
analysis to alternative NN architectures.
Straightforward examination of the pruning
condition suggests that certain connective
architectures are inherently easier to optimize,
which can be tested on the basis of experimental
data. Our results will demonstrate that careful
selection of certain NN architectural elements—
activation and error functions in particular—

In International Conference on Artificial Intelligence (IC-AI'99), June 28-July 1 1999, Las Vegas.

enhances training-pruning efficiency. Network
pruning is a precursor to most methods to extract
symbolic rules from learnt NN [5, 6, 7]; in this
context, our results are particularly attractive
since sparser weight matrices are expected to
yield a more compact set of symbolic rules.

2 Basic Backpropagation: A Brief

Overview

In order to correctly classify data vectors, the
hidden-input and output-hidden network
connections—represented by the weight
matrices Wji and Wkj; with indices (i, j, k)
representing the input, hidden and output
layers—are progressively adjusted so as to
minimise global classification error. Weight
modification proceeds in the direction opposite
to the gradient of the error function with respect
to the weights. The error gradient of such
networks therefore depends on the following
network features [3]:-
(a) Error function: In our analysis, we use both

quadratic and logarithmic error functions.
The latter is logarithmically divergent at the
domain boundaries, and is therefore
expected to result in BP networks with
superior error convergence characteristics.

(b) Node activation function: The BP networks

reported here feature both sigmoid (σ) and
hyperbolic-tangent (δ) activations for
hidden-layer nodes, while all output
activations are sigmoidal. These BP
networks will henceforth be denoted as δσ
and σσ respectively.

In total, we analyse four basic NN

architectures i.e. δσ-quad, δσ-log, σσ-quad and
σσ-log with the suffix describing the error
function, as compared against Setiono’s [4]
analysis which only features δσ-log networks.
In our analysis, the weight matrices of trained
networks are subsequently pruned to eliminate
functionally insignificant weights.

3 Penalty Term in the Error Function

For network pruning, adding a penalty term to
the error function whilst training the network is

an accepted practice [4, 5, 9]. The penalty term
is designed to further reduce weight matrix
elements which are numerically small—in
anticipation that such weights may be safely
eliminated during post-training optimisation—
without significantly affecting overall
classification performance. The penalty
function should exhibit a strongly localised
minimum in the w = 0 neighbourhood, and have
a set of continuous parameters (αi) which can be
adjusted so as to fine-tune the width and
steepness. Following Setiono, we employ the
function:

() ∑∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
=

kj ji

poly ww
wP w 2

32

2

2

2
1 1 αα
αα (1)

which has a single global minimum at w=0 for
parameter values satisfying α1 >> α3 and α2 >>
1. The gradient P∇ should also satisfy the
following criteria:-
• negligible for numerically large w values
• large and negative for numerically small

values near w ≅ 0,

the net effect of which causes the penalty effect
to come into play only for weak inter-node
connections.

The penalty functions used in this paper
employ the numerical values α3 = 10-4 α1 and α2
= 10. In qualitative terms, the size of the α1
parameter determines the relative importance of
the penalty term with regards the conventional
error function. Larger α1 values are therefore
associated with more aggressive weight matrix
optimisation, on the other hand it also leads to a
more choppy descent towards a global minimum
in the error function. We speculate this is due to
implicit w dependence (in the conventional error
term) exercising a smoothing effect, thereby
ensuring a lesser likelihood of temporary
convergence into a local minimum on the error
surface.

4 Optimization of NN Connectivity

We use the same weight matrix optimization
criteria as Setiono [4, 5], which is based on a
first-order Taylor expansion of the node output

In International Conference on Artificial Intelligence (IC-AI'99), June 28-July 1 1999, Las Vegas.

with respect to variation in the weight matrix
element of interest i.e.

() ()] ()ww w
w

yywy w 00
0

−=− ∇ (2)

Setting w0 = 0 and comparing the right-hand

side of (2) against some predetermined
optimisation error ε2 therefore allows us to
determine whether a connective weight can be
“safely” removed without jeopardising
classification accuracy, which would also
depend on the maximum allowable training error
ε1. The combined (training followed by
optimisation) error must still result in correct
classification ie ε = ε1 + ε2 < 0.5 for a sigmoidal
output layer. A high optimisation tolerance ε2
will result in a large number of zeroed weight
matrix elements, on the other hand the
correspondingly low training tolerance ε1 means
more training cycles—or perhaps failure to
successfully train. After some experimentation,
we determined that ε1 ≅ ε2 results in an optimal
balance between training time minimisation and
connectivity optimisation. The objective is to
achieve a sparse weight matrix as that would
lead to a compact set of symbolic rules.

Imposing an upper-limit on the right-hand
side of (2) and evaluating the node output
gradient allows the optimisation conditions to be
expressed as follows:-

ε 216≤ww jikj
 and ε 2

4≤ww jikj

for Wji elements (σσ and δσ, respectively)

ε 2
4≤wkj

for Wkj elements (both cases) (3)

with the first condition—specifying constraints
on Wji pruning—dependant on all Wkj elements
connected to the j-th hidden node. This dictates
that hidden-input connections be eliminated
prior to output-hidden optimisation. The weight
removal algorithm is presented elsewhere, and
will not be repeated here.

Note the four-fold difference in the Wji
elimination conditions for σσ compared against
δσ networks used by Setiono [4, 5]. Equation
(3) can be interpreted as a qualitative statement
with regards the relative efficiency of σσ and δσ
hidden-input weight matrix optimisation. This
assertion constitutes the primary motivation for

the experiments outlined in the following
section—in which σσ and δσ NNs are trained
and pruned using the same training datasets, and
the resultant weight matrices compared.
Networks with σσ architectures are expected to
prune more effectively, given equal penalty
function strengths.

5 Experimental Results

The experiments described below were designed
to observe pruning efficiency in response to the
following parameters:-
• choice of base error function: log vs. quad
• choice of activation functions: δσ vs. σσ
• variation in the penalty function strength:

α1 ∈ {0, 0.005, 0.010, ... }, with α2 and α3
values selected as previously explained

The training datasets we used were selected
from the University of California at Irvine (UCI)
Machine Learning Repository, primarily for
their size and simplicity. The dimensionality of
the training datasets and the NNs used to
represent them is tabulated below:-

Dataset

Node layer size Matrix size

Name Size i j k Wji Wkj
Lenses 24 6 3 3 18 9
Balance 625 20 4 3 80 12

Table 1: Training Datasets

All NNs were coded using standard C++,
and executed as batch-jobs on Windows-95 PCs.
Connectivity optimization was only performed
on successfully trained networks. We imposed
an upper-limit cutoff—of order 106—with
regards the number of training cycles, which
resulted in the training-pruning process lasting
anywhere from a few seconds to several
minutes. With these constraints, it was found
that:
• For the balance data-set, all δσ-quad and

σσ-quad networks with α1 > 0 were not
trainable.

• For the smaller lenses data-set, only δσ-
quad networks were training-convergent.

In International Conference on Artificial Intelligence (IC-AI'99), June 28-July 1 1999, Las Vegas.

leading to the conclusion that NNs with
quadratic error functions are significantly more
difficult to optimize compared against those
with logarithmic error functions. The remainder
of this section will discuss the pruning of weight
matrices produced by logarithmic error
minimization.

For δσ-log and σσ-log NNs, training-
pruning was performed using a sequence of
increasingly strong penalty functions. It was
determined that optimisation scales with α1 only
up to a certain point, beyond which further
efficiency was not obtained. Even greater
increases in α1—resulting in error functions with
a relatively large explicit (penalty) component—
lead to NNs which demonstrate choppy error
minimization, and which tend not to train
properly. This trend was observed for δσ-log
and σσ-log NNs trained on both datasets, and
also for δσ-quad networks trained using the
lenses data-set. Given the previously established
training cycle cutoff, we found that both δσ-log
and σσ-log networks with α1 > 0.02 were not
training convergent. Graphs (1) and (2) below
illustrate the relationship between weight matrix
optimization and penalty function strength.

Balance (Hidden-Input Optimisation)

0

10

20

30

40

50

0.000 0.010 0.020
a_1

pr

un
ed

 c
on

ne
ct

io
ns

ds (min)
ds (max)
ss (min)
ss (max)

Lenses (Hidden-Input Optimisation)

0
1
2
3
4
5
6
7
8
9

0.000 0.010 0.020a_1

pr

un
ed

 c
on

ne
ct

io
ns

ds (min)
ds (max)
ss (min)
ss (max)

Graph 1: Wji optimization for both datasets

Examination of data associated with hidden-
input weight optimization yields another
interesting conclusion, namely that σσ-log
networks consistently prune more easily
compared against their δσ-log equivalents. Our
experiments indicate that minimal σσ-log
optimisation is essentially equal or even slightly
superior to maximal δσ-log pruning. This
validates the qualitative accuracy of Equation
(3), nevertheless we do not find σσ-log
networks to be superior by a factor of four. One
possible interpretation is to regard this inequality
as the theoretical upper-limit for the comparative
pruning efficiency of σσ and δσ networks,
which cannot be attained in practice due to the
probabilistic nature of the BP algorithm. It is
therefore fairly safe to assert that σσ
optimisation results in a sparser weight matrix.

Balance (Output-Hidden Optimisation)

0

1

2

3

4

5

6

7

0.000 0.010 0.020

a_1

pr

un
ed

 c
on

ne
ct

io
ns

ds (min)
ds (max)
ss (min)
ss (max)

Lenses (Output-Hidden Optimisation)

0

1

2

3

0.000 0.010 0.020

a_1

pr

un
ed

 c
on

ne
ct

io
ns

ds (min)
ds (max)
ss (min)
ss (max)

Graph 2: Wkj optimization for both datasets

The output-hidden optimisation data shows

no significant difference between the
performance of σσ-log and δσ-log networks.
This is consistent with the lower equation in (3),

In International Conference on Artificial Intelligence (IC-AI'99), June 28-July 1 1999, Las Vegas.

which is applicable towards all networks
featuring sigmoidal activation at the output
layer. Graph (2) does however verify the effect
of penalty function strength on overall pruning
efficiency.

6 Concluding Remarks

The experimental results discussed in the
previous section verifies the effectiveness of
Setiono’s algorithm in suppressing and
subsequently eliminating small inter-node
connections. In all experiments, it was found
that pruning efficiency increases with penalty
function strength but only up to an optimal
point. We were thus able to obtain significantly
more sparse weight matrices—with up to half of
the original (fully-connected) network elements
removed in some cases—while retaining high
classification accuracy.

Penalty function usage seems to be far more
effective when combined with logarithmic—
rather than the more commonly used
quadratic—error function. In fact, we found
quadratic error NNs difficult (and sometimes
impossible) to train even with an extremely
weak penalty term. One possibility is that the
explicitly-dependent penalty term leads to an
overall error surface which contains more local
minima, and is therefore more likely to trap the
gradient descent. If this is the case, then
logarithmic error NNs are certainly better
equipped to handle addition of a penalty term
due to the steeper overall error surface.

We also found that NN architecture has a
major effect on optimization efficiency.
Networks featuring hidden and output-layer
(σσ) sigmoidal activation had measurably
superior connectivity pruning when compared
against networks with hidden-layer tanh (δσ)
nodes. This follows directly from the functional
dependence of the hidden-layer nodes, which
leads to a Wji elimination condition which is
easier to satisfy for σσ networks. As expected,
there was no significant difference between σσ
and δσ networks with regards output-layer
pruning efficiency.

In conclusion, σσ-log NNs were ascertained
to have the best training-pruning characteristics
over the entire range of penalty function

strengths. This combination of error and
activation functions, in fact, almost always out-
performs the δσ-log NNs used in Setiono’s
analysis—at least for the datasets under
consideration. We are currently extending our
investigation to larger datasets, both in terms of
input-output nodes and training examples. The
other area of interest is symbolic rule extraction,
for which a larger degree of connective
optimisation should correlate with a more
compact rule-set. Preliminary results indicate
this is usually the case, we will present a
comprehensive analysis in a follow-up paper.

References

[1] FL Chung & T Lee (1992). A Node

Pruning Algorithm for Backpropagation
Networks. Int J Neural Systems, Vol. 3(3),
pp. 301-314.

[2] ED Karnin (1990). A Simple Procedure for
Pruning Backpropagation Trained Neural
Networks. IEEE Trans Neural Networks,
Vol. 1(2), pp. 239-242.

[3] R Watrous (1987). Learning Algorithms
for Connectionist Networks: Applied
Gradient Methods of Nonlinear
Optimisation. Proc IEEE 1st Int Conf
Neural Networks, IEEE Press, NY, pp. 619-
627.

[4] R Setiono (1997). A Penalty Function
Approach for Pruning Feedforward Neural
Networks. Neural Computation, Vol. 9 (1),
pp. 185-204.

[5] R Setiono (1997). Extracting Rules from
Neural Networks by Pruning and Hidden
Unit Splitting. Neural Computation, Vol.
9(1), pp. 205-225.

[6] LM Fu (1994). Rule Generation from
Neural Networks. IEEE Trans Systems,
Man & Cybernetics, Vol. 24(8)

[7] R Setiono (1995). Understanding Neural
Networks via Rule Extraction. Proc 14th Int
Joint Conf Artificial Intelligence, Monreal,
pp. 480-485.

