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Abstract 
 
Backpropagation (BP) Neural Network (NN) 
error functions enable the mapping of data 
vectors to user-defined classifications by driving 
weight matrix modifications so as to reduce 
classification error over the training data set.  
Conventional BP error functions are usually 
only implicitly dependant on the weight matrix, 
however an explicit penalty term can be added 
so as to force numerically insignificant weights 
closer to zero.  In our investigation, BP training 
is undertaken as a prelude to a pruning stage that 
selectively removes functionally unimportant 
weight matrix elements, thereby resulting in 
sparser network connectivity more suited for 
subsequent rule extraction.  This paper 
investigates the usage of several error and 
activation functions in the effort to produce 
maximally clean network connections. 
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1 Introduction 
 
NNs are usually designed with the number of 
input and output nodes fixed respectively by the 
feature descriptor and classification 
dimensionality, hence network optimization is 
equivalent to determining the size of the hidden 
layer and associated connective linkages; which 
can be obtained by node addition to an initially 

undersized layer, or via the reverse process of 
node elimination starting from an oversized 
hidden-layer.  This paper adopts a refinement on 
the latter approach [1, 2, 3], in which inter-node 
connections—as opposed the nodes 
themselves—are progressively removed until 
classification performance degrades below the 
acceptability threshold.  The objective is 
therefore to obtain a sparse but accurate (with 
respect classification) weight matrix. 

Sparse NN connectivity is directly linked to 
the occurrence of numerically insignificant 
connection weights, a process which is 
encouraged by the incorporation of an adjustable 
penalty term [4, 5].  A properly calibrated 
penalty term causes small weight matrix 
elements to be exposed to a disproportionately 
large downward gradient thereby resulting in 
further numerical suppression.  The subsequent 
network pruning involves subjecting the trained 
weights to a significance test which leads to the 
elimination of functionally unimportant weights 
from the NN. 

The modified BP training and pruning 
algorithms featured in this paper follows the 
approach of Setiono [4], and extends the 
analysis to alternative NN architectures.  
Straightforward examination of the pruning 
condition suggests that certain connective 
architectures are inherently easier to optimize, 
which can be tested on the basis of experimental 
data.  Our results will demonstrate that careful 
selection of certain NN architectural elements—
activation and error functions in particular—
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enhances training-pruning efficiency.  Network 
pruning is a precursor to most methods to extract 
symbolic rules from learnt NN [5, 6, 7]; in this 
context, our results are particularly attractive 
since sparser weight matrices are expected to 
yield a more compact set of symbolic rules.  
 
2 Basic Backpropagation: A Brief 

Overview 
 

In order to correctly classify data vectors, the 
hidden-input and output-hidden network 
connections—represented by the weight 
matrices Wji and Wkj; with indices (i, j, k) 
representing the input, hidden and output 
layers—are progressively adjusted so as to 
minimise global classification error.  Weight 
modification proceeds in the direction opposite 
to the gradient of the error function with respect 
to the weights. The error gradient of such 
networks therefore depends on the following 
network features [3]:- 
(a) Error function:  In our analysis, we use both 

quadratic and logarithmic error functions. 
The latter is logarithmically divergent at the 
domain boundaries, and is therefore 
expected to result in BP networks with 
superior error convergence characteristics. 

 
(b) Node activation function:  The BP networks 

reported here feature both sigmoid (σ) and 
hyperbolic-tangent (δ) activations for 
hidden-layer nodes, while all output 
activations are sigmoidal.  These BP 
networks will henceforth be denoted as δσ 
and σσ respectively. 
 
In total, we analyse four basic NN 

architectures i.e. δσ-quad, δσ-log, σσ-quad and 
σσ-log with the suffix describing the error 
function, as compared against Setiono’s [4] 
analysis which only features δσ-log networks.  
In our analysis, the weight matrices of trained 
networks are subsequently pruned to eliminate 
functionally insignificant weights. 

 
3 Penalty Term in the Error Function 

 
For network pruning, adding a penalty term to 
the error function whilst training the network is 

an accepted practice [4, 5, 9].  The penalty term 
is designed to further reduce weight matrix 
elements which are numerically small—in 
anticipation that such weights may be safely 
eliminated during post-training optimisation—
without significantly affecting overall 
classification performance.  The penalty 
function should exhibit a strongly localised 
minimum in the w = 0 neighbourhood, and have 
a set of continuous parameters (αi) which can be 
adjusted so as to fine-tune the width and 
steepness.  Following Setiono, we employ the 
function: 
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which has a single global minimum at w=0 for 
parameter values satisfying α1 >> α3 and α2 >> 
1.  The gradient P∇  should also satisfy the 
following criteria:- 
• negligible for numerically large w values 
• large and negative for numerically small 

values near w ≅ 0,   
 

the net effect of which causes the penalty effect 
to come into play only for weak inter-node 
connections. 

The penalty functions used in this paper 
employ the numerical values α3 = 10-4 α1 and α2 
= 10.  In qualitative terms, the size of the α1 
parameter determines the relative importance of 
the penalty term with regards the conventional 
error function.  Larger α1 values are therefore 
associated with more aggressive weight matrix 
optimisation, on the other hand it also leads to a 
more choppy descent towards a global minimum 
in the error function.  We speculate this is due to 
implicit w dependence (in the conventional error 
term) exercising a smoothing effect, thereby 
ensuring a lesser likelihood of temporary 
convergence into a local minimum on the error 
surface. 
 
4 Optimization of NN Connectivity 

 
We use the same weight matrix optimization 
criteria as Setiono [4, 5], which is based on a 
first-order Taylor expansion of the node output 
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with respect to variation in the weight matrix 
element of interest i.e.  
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Setting w0 = 0 and comparing the right-hand 

side of (2) against some predetermined 
optimisation error ε2 therefore allows us to 
determine whether a connective weight can be 
“safely” removed without jeopardising 
classification accuracy, which would also 
depend on the maximum allowable training error 
ε1.  The combined (training followed by 
optimisation) error must still result in correct 
classification ie ε = ε1 + ε2  < 0.5 for a sigmoidal 
output layer.  A high optimisation tolerance ε2 
will result in a large number of zeroed weight 
matrix elements, on the other hand the 
correspondingly low training tolerance ε1 means 
more training cycles—or perhaps failure to 
successfully train.  After some experimentation, 
we determined that ε1 ≅ ε2 results in an optimal 
balance between training time minimisation and 
connectivity optimisation.  The objective is to 
achieve a sparse weight matrix as that would 
lead to a compact set of symbolic rules. 

Imposing an upper-limit on the right-hand 
side of (2) and evaluating the node output 
gradient allows the optimisation conditions to be 
expressed as follows:- 

ε 216≤ww jikj
  and  ε 2

4≤ww jikj
  

for Wji elements (σσ and δσ, respectively) 

ε 2
4≤wkj

     

for Wkj elements (both cases)          (3) 
 
with the first condition—specifying constraints 
on Wji pruning—dependant on all Wkj elements 
connected to the j-th hidden node.  This dictates 
that hidden-input connections be eliminated 
prior to output-hidden optimisation.  The weight 
removal algorithm is presented elsewhere, and 
will not be repeated here. 

Note the four-fold difference in the Wji 
elimination conditions for σσ compared against 
δσ networks used by Setiono [4, 5].  Equation 
(3) can be interpreted as a qualitative statement 
with regards the relative efficiency of σσ and δσ 
hidden-input weight matrix optimisation.  This 
assertion constitutes the primary motivation for 

the experiments outlined in the following 
section—in which σσ and δσ NNs are trained 
and pruned using the same training datasets, and 
the resultant weight matrices compared.  
Networks with σσ architectures are expected to 
prune more effectively, given equal penalty 
function strengths.  

 
5 Experimental Results 
 
The experiments described below were designed 
to observe pruning efficiency in response to the 
following parameters:- 
• choice of base error function:  log vs. quad 
• choice of activation functions:  δσ vs. σσ 
• variation in the penalty function strength:  

α1 ∈ {0, 0.005, 0.010, ... }, with α2 and α3 
values selected as previously explained 
 

The training datasets we used were selected 
from the University of California at Irvine (UCI) 
Machine Learning Repository, primarily for 
their size and simplicity.  The dimensionality of 
the training datasets and the NNs used to 
represent them is tabulated below:- 
 
Dataset 
 

Node layer size Matrix size 

Name Size i j k Wji Wkj 
Lenses 24 6 3 3 18 9 
Balance 625 20 4 3 80 12 

Table 1:  Training Datasets 
 

All NNs were coded using standard C++, 
and executed as batch-jobs on Windows-95 PCs.  
Connectivity optimization was only performed 
on successfully trained networks.  We imposed 
an upper-limit cutoff—of order 106—with 
regards the number of training cycles, which 
resulted in the training-pruning process lasting 
anywhere from a few seconds to several 
minutes.  With these constraints, it was found 
that: 
• For the balance data-set, all δσ-quad and 

σσ-quad networks with α1 > 0 were not 
trainable.   

• For the smaller lenses data-set, only δσ-
quad networks were training-convergent.   
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leading to the conclusion that NNs with 
quadratic error functions are significantly more 
difficult to optimize compared against those 
with logarithmic error functions.  The remainder 
of this section will discuss the pruning of weight 
matrices produced by logarithmic error 
minimization. 

For δσ-log and σσ-log NNs, training-
pruning was performed using a sequence of 
increasingly strong penalty functions.  It was 
determined that optimisation scales with α1 only 
up to a certain point, beyond which further 
efficiency was not obtained.  Even greater 
increases in α1—resulting in error functions with 
a relatively large explicit (penalty) component—
lead to NNs which demonstrate choppy error 
minimization, and which tend not to train 
properly.  This trend was observed for δσ-log 
and σσ-log NNs trained on both datasets, and 
also for δσ-quad networks trained using the 
lenses data-set.  Given the previously established 
training cycle cutoff, we found that both δσ-log 
and σσ-log networks with α1 > 0.02 were not 
training convergent.  Graphs (1) and (2) below 
illustrate the relationship between weight matrix 
optimization and penalty function strength. 
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Graph 1:  Wji optimization for both datasets 

 

Examination of data associated with hidden-
input weight optimization yields another 
interesting conclusion, namely that σσ-log 
networks consistently prune more easily 
compared against their δσ-log equivalents.  Our 
experiments indicate that minimal σσ-log 
optimisation is essentially equal or even slightly 
superior to maximal δσ-log pruning.  This 
validates the qualitative accuracy of Equation 
(3), nevertheless we do not find σσ-log 
networks to be superior by a factor of four.  One 
possible interpretation is to regard this inequality 
as the theoretical upper-limit for the comparative 
pruning efficiency of σσ and δσ networks, 
which cannot be attained in practice due to the 
probabilistic nature of the BP algorithm.  It is 
therefore fairly safe to assert that σσ 
optimisation results in a sparser weight matrix.  
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Graph 2:  Wkj optimization for both datasets 
 
The output-hidden optimisation data shows 

no significant difference between the 
performance of σσ-log and δσ-log networks.  
This is consistent with the lower equation in (3), 
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which is applicable towards all networks 
featuring sigmoidal activation at the output 
layer.  Graph (2) does however verify the effect 
of penalty function strength on overall pruning 
efficiency. 

 
6 Concluding Remarks 

 
The experimental results discussed in the 
previous section verifies the effectiveness of 
Setiono’s algorithm in suppressing and 
subsequently eliminating small inter-node 
connections.  In all experiments, it was found 
that pruning efficiency increases with penalty 
function strength but only up to an optimal 
point.  We were thus able to obtain significantly 
more sparse weight matrices—with up to half of 
the original (fully-connected) network elements 
removed in some cases—while retaining high 
classification accuracy.  

Penalty function usage seems to be far more 
effective when combined with logarithmic—
rather than the more commonly used 
quadratic—error function.  In fact, we found 
quadratic error NNs difficult (and sometimes 
impossible) to train even with an extremely 
weak penalty term.  One possibility is that the 
explicitly-dependent penalty term leads to an 
overall error surface which contains more local 
minima, and is therefore more likely to trap the 
gradient descent.  If this is the case, then 
logarithmic error NNs are certainly better 
equipped to handle addition of a penalty term 
due to the steeper overall error surface. 

We also found that NN architecture has a 
major effect on optimization efficiency.  
Networks featuring hidden and output-layer 
(σσ) sigmoidal activation had measurably 
superior connectivity pruning when compared 
against networks with hidden-layer tanh (δσ) 
nodes.  This follows directly from the functional 
dependence of the hidden-layer nodes, which 
leads to a Wji elimination condition which is 
easier to satisfy for σσ networks.  As expected, 
there was no significant difference between σσ 
and δσ networks with regards output-layer 
pruning efficiency. 

In conclusion, σσ-log NNs were ascertained 
to have the best training-pruning characteristics 
over the entire range of penalty function 

strengths.  This combination of error and 
activation functions, in fact, almost always out-
performs the δσ-log NNs used in Setiono’s 
analysis—at least for the datasets under 
consideration.  We are currently extending our 
investigation to larger datasets, both in terms of 
input-output nodes and training examples.  The 
other area of interest is symbolic rule extraction, 
for which a larger degree of connective 
optimisation should correlate with a more 
compact rule-set.  Preliminary results indicate 
this is usually the case, we will present a 
comprehensive analysis in a follow-up paper. 
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