
Replicated Texture Editing

Stephen Brooks

Marc Cardle

Neil A. Dodgson

Technical Report CS-2005-21

November 15, 2005

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

Replicated Texture Editing

 Stephen Brooks Marc Cardle Neil A. Dodgson
 Dalhousie University University of Cambridge University of Cambridge

Abstract
Image editing software is often characterized by a seemingly
endless array of toolbars, filters, transformations and layers. But
recently, a counter trend has emerged in the field of image editing
which aims to reduce the user’s workload through semi-
automation. This alternate style of interaction has been made
possible through advances in directed texture synthesis and
computer vision. It is in this context that we have developed our
texture editing system that allows complex operations to be
performed on images with minimal user interaction. This is
achieved by utilizing the inherent self-similarity of image textures
to replicate intended manipulations globally. In this report, we
summarize the capabilities of our image editing approach
including operations for replicated painting, cloning and warping.
In particular, we detail recent enhancements including user-
controlled sharpness, Boolean similarity expressions and the
adaptive synthesis of cloning textures.

Keywords: interactive image editing, texture synthesis, input
amplification.

1 Introduction
The most broadly applied approach to modelling the complexity
of the natural world is to provide the scene designer with
sophisticated tools that permit a high degree of control over
geometric surfaces and their corresponding textures. This
approach has enjoyed considerable success, yet the sophistication
of the editing tools requires a comparable level of sophistication
from the user. Often, the user must be a highly skilled artist as
well as having considerable technical training and experience with
computers. These prerequisites are beyond many users.

Recent research in computer graphics has attempted to semi-
automate the process of constructing and editing digital images.
Far from offering a massive array of image manipulation controls,
these semi-automatic systems offer interaction at a higher
semantic level, consequently minimizing the amount of user
interaction.

Our image editing framework is a realization of this approach
wherein the user is able to minimally specify alterations to a
digital texture image, whilst relying on the system to perform
repetitive, time-consuming tasks. Our system is a visual analogue
to text string search and replace in that a single editing operation
at a given location causes global changes: the same operation is
performed on all similar areas of the texture image. Consequently,
the style of interaction lies between automation and complete user
manipulation.

The report’s structure begins with a synopsis of related work
and is followed by an introduction to the basics of replicated
painting and cloning. The discussion then proceeds to a number of
improvements to our image editing framework including user-
controlled sharpness, Boolean similarity expressions and the
adaptive synthesis of cloning textures. Replicated texture warping

is then discussed along with super-resolution synthesis. We
conclude with a commentary on limitations and future directions.

2 Related Work
We begin our overview of related work with constraint-based
graphics [Sutherland 1963], in which the user places constraints
on graphical arrangements. Another system which manipulates
vector based images is the search and replace method of
Kurlander and Bier [1998]. Conceptually, this system is most
similar to our own. However, both of these systems differ
significantly from ours as they operate on vector images unlike
our raster image editing tools.

The interactive evolution of textures using genetic algorithms
also lies between manual and automatic design methodologies
[Sims 1993]. Based on a Darwinian metaphor, the computer’s
primary role is to present candidate graphics to the user from the
design space. Alternatively, the goal of example-based texture
synthesis is to generate new texture images that appear to be from
the same source as a given input texture [Ashikhmin 2001; Heeger
and Bergen 1995; Kwatra et al. 2003; Kwatra et al 2005; Lefebvre
and Hoppe 2005; Wei and Levoy 2000].

And recently, a new class of image editing tools has emerged
which employs this form of texture synthesis to perform
sophisticated image editing operations including Texture-By-
Numbers [Barrett and Cheney 2002; Harrison 2001; Hertzmann et
al. 2001]. Other tools use texture synthesis to remove entire
objects from scenes [Igehy and Pereira 1997] or replace textures
[Fang and Hart 2004; Liu et al. 2004; Zelinka et al. 2005]. And
as we are introducing a modified texture cloning tool there are
other forms of texture mixing [Bar-Joseph 2001; Matusik et al.
2005] and image compositing [Burt and Adelson 1983; Porter and
Duff 1984] that deserve mention.

Other semi-automated texture creation systems include Live
Paint [Perlin and Velho 1995], which uses the concept of a multi-
resolution painting system [Berman et al. 1994] to combine
procedural textures [Ebert et al. 1994]. Dischler et al. [1999]
describe a unique hybrid approach that combines texture analysis
and geometric modeling. Lewis’ [1984] early paper presents an
interactive procedure for generating textures in the frequency
domain.

Yet another fruitful source of user assistance in image editing
has come from advances in the computer vision community.
Examples of which are intelligent image selection [Mortensen and
Barrett 1995] and snapping [Gleicher 1995] tools. Elder and
Goldberg [1998] also offer a novel editing system that operates in
an invertible contour domain.

Perhaps the most extreme form of automation that still
permits some degree of user input is the image stylization system
of DeCarlo and Santella [2002], which uses eye-tracking to assign
priority to details for a non-photorealistic rendering of the same
image. Another type of application that requires minimal
interaction are design gallery interfaces. In this approach, the user
makes aesthetic judgments over design alternatives that are pre-
computed prior to interaction [Marks et al. 1997].

3 Replicated Image Editing
Our system replicates editing operations globally over a texture
image [Brooks and Dodgson 2002; Brooks et al. 2003; Brooks
and Dodgson 2005]. Changes made to a particular pixel by the
user are made to affect all pixels that exhibit similar local
neighbourhoods to that selected pixel, thereby relieving the user
of the manual effort of repetition. This allows the following
concise texture editing operations:

1. Replicated Painting: altering the colour of similar pixels
(Figure 1).

2. Replicated Cloning: cloning of a second texture onto the
texture being altered (Figure 2).

3. Replicated Warping: locally contracting or expanding
certain regions of the texture, based on the similarity to
the current selected pixel (Figure 3).

3.1 Replicated Painting and Cloning
Painting and cloning are similar operations which paint colours
onto the image being edited. In Figure 1 we have a simple case of
painting a solid red colour onto each pixel whose neighbourhood
is sufficiently similar to the pixel selected by the user. The reader
will note the directional control of the tool. By this we refer to the

ability to affect a particular side of all of the texture elements at
once. Figure 2 shows an example of the replicated cloning of a
moss texture (left) onto pixels in the bark texture (right). Moss is
cloned onto all pixels in the bark texture that are similar to the
user selected pixel. Moving from replicated painting to replicated
cloning requires positioning the cloning texture and using the
corresponding colour values from the cloned texture instead of a
solid colour value over the whole image.

In order to determine which pixels in the image are
sufficiently similar to the pixel selected by the user, the local
circular neighbourhood of the chosen selection point is compared
against that of every other pixel's neighbourhood in the same
image. For replicated painting, the current painting colour is then
applied to the selected pixel but also to a subset of all pixels in the
image: those that have local neighbourhoods whose difference
from the selected pixel are within a certain threshold, T.

The selection point receives full paint opacity, as do all pixels
with neighbourhoods identical to it. The distance threshold, T, is
set by the user and defines the maximum distance value beyond
which the opacity of the applied paint is zero. Between zero
distance and the distance threshold the opacity is scaled linearly,
meaning that the more similar a pixel is deemed to be to the
selected pixel, the greater is the applied paint opacity.

Our distance measure is computed as the weighted sum of
squared differences (L2 norm) between each corresponding pixel
in circular multi-resolution neighbourhoods surrounding to points
p1 = (x1, y1) and p2 = (x2, y2) :

() =21, ppd ∑∑
∈

−

= Cji

L

l),(

1

0

()
⎣ ⎦ ⎣ ⎦()
⎣ ⎦ ⎣ ⎦()

2

22

11

2/,2/
2/,2/

2,24

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
−++

××

jyixG
jyixG

jiM

ll
l

ll
l

lll

where:

{ }rjijiC ≤+≤Ν∈= 222 0),(

Gl is level l of the Gaussian pyramid,
L is the number of Gaussian levels used,
M is a 2D Gaussian weighting function and
r is the neighbourhood radius.

The use of multi-resolution neighbourhoods in the distance
calculation allows us to incorporate a wider area surrounding each
pixel at a lower computational cost. This is under the assumption
that distant pixels are less important to the similarity calculation
and can therefore be approximated more and more coarsely. We
then define the similarity level s at pixel p = (x, y) to be:

() ()()()0,/,max, TppdTpps ′−=′

where p' is the user selected point and T is the user-selected
threshold. This similarity level is used directly as the opacity of
the applied paint or cloned texture.

We note that all of the above calculations are performed in the
CIE LAB colour space since Euclidean distances in RGB space do
not correspond to colour differences as perceived by human
beings [Jackson et al. 1994]. When computing the distance
measure between two pixels, each pixel is characterized as a
vector composed of a concatenation of all LAB values in each of
the levels. To increase interactivity, we employ principal
components analysis (PCA) to reduce the dimensionality of the
concatenated neighbourhood vectors [Jollife 1986]. Using

Figure 1: A simple case of replicated painting.

Figure 2: Left: cloning image. Right: moss cloned onto bark.

Figure 3: Replicated warping with leaves narrowed and expanded.

Figure 4: Painting of solid green colour onto textures. Left: original. Centre: Painted using only Gaussian pyramid neighbourhood values.
Right: Both neighbourhood and wavelet responses used.

Figure 5: Example use of a multi-point Boolean similarity expression. The green rings denote positively weighted similarity points, and the
red is negative. Left: original repeating blue-dot texture. Middle: two positively weighted similarity points used to paint white onto similar
pixels. Right: The expression is asking the system to “paint white those pixels that are similar to the green points but dissimilar to the red”.

Figure 6: Painting of snow (white paint) applied to a doorway using three similarity points. Middle: Painted using only Gaussian pyramid
neighbourhood responses. Right: Both Gaussian and wavelet responses used.

principal component analysis increases the efficiency of
computing the distance metric without a significant loss of
fidelity. Due to the considerable coherence within the
neighbourhood vectors we generally gain an order of magnitude
reduction in the size of the vectors without an appreciable
reduction of quality. This allows us to achieve interactive rates.

3.2 Painting Sharpness
A limitation of the distance measure, d(p1, p2), is that it does not
work as well for textures that contain a high degree of randomness
or sharp features. This is due to the smoothing tendency of
Gaussian-pyramid neighbourhood metrics. To address the
limitations of the original distance measure, we have integrated
wavelet responses into our distance metric. Moreover, we give
the user even finer control by providing a ‘sharpness’ slider that
specifies what proportion of Gaussian neighbourhood versus
wavelet responses are to be used in the distance calculation.

To improve the distance metric we include multi-scale
responses from a steerable pyramid transform of the image being
edited [Simoncelli et al. 1992]. Like the Gaussian pyramid, this
transform decomposes the image into several spatial frequency
bands. It also further divides each frequency band into a set of
orientation bands which respond to rotationally varying edges.
With the wavelet responses added, the distance metric becomes:

() =lppdG ,, 21 ∑
∈Cji),(

()
⎣ ⎦ ⎣ ⎦()
⎣ ⎦ ⎣ ⎦()

2

22

11

2/,2/
2/,2/

2,24

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
−++

××

jyixG
jyixG

jiM

ll
l

ll
l

lll

() =lppdW ,, 21 ∑
=

3

0θ

⎣ ⎦ ⎣ ⎦()
⎣ ⎦ ⎣ ⎦()

2

22,

11,

2/,2/
2/,2/

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
ll

l

ll
l

yxW
yxW

θ

θ

() () ()()lppdlppdppd WG

L

l
,,,,)1(, 2121

1

0
21 ×+×−= ∑

−

=

ββ

where:

()lppdG ,, 21
 is the Gaussian pyramid component,

()lppdW ,, 21
 is the steerable wavelet component,

[]1..0∈β is controlled by the user’s sharpness slider,
Wl,θ is orientation θ, level l of the wavelet pyramid,
L is the number of pyramid levels used.

Since the wavelet transform responds strongly to edges at varying
orientations, by placing more emphasis on wavelet responses the
user can thereby cause the self-similarity tool to react more
strongly to sharp features in the texture during editing and avoid
the problem of excessive smoothing that can result from relying
solely upon Gaussian pyramid neighbourhoods.

Figure 4 shows the painting of a solid green colour onto a
wood shingle texture. The original image is shown to the left. The
centre image shows a result using only Gaussian pyramid
neighbourhood values and the image to the right shows a result
using both neighbourhood and wavelet responses. As can be seen
from the zoomed inset images, by incorporating the wavelet
responses into the similarity distance metric, the self-similarity
tool is able to respond to the finer edge details in the original
images. The user can therefore dictate the extent to which these

edge details influence the final outcome. An additional example is
shown in Figure 6.

3.3 Boolean Similarity Expressions
We now describe an extension to our editing framework that
allows the user to select multiple similarity points within the
texture which together comprise a Boolean similarity expression.
In Figure 5, we see an example of using multiple similarity points.
To the left is shown a repeating blue-dot texture which has been
constructed for the purpose of illustration. In the centre the same
blue texture is shown painted white using two positive (green)
similarity points. On the right the Boolean similarity expression
now includes two positive similarity points and one negative
(red). Note how the negative similarity point restricts the
application of the white paint. In this way, the user can specify
that pixels must be like pixel A or pixel B but not pixel C.

To compute the opacity level when using a Boolean similarity
expression, we simply sum the combined opacity level from the
positive similarity points and subtract the opacity of the negative
ones. The final value is then clamped to be within the range of
0.0 and 1.0. The formula for the opacity of any pixel, p, given
two user-selected sets of positive, A, and negative, B, similarity
points is then:

() () () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

==

1,0,,,maxmin,,
11

m

j
j

n

i
i BpsApsBApopacity

where:

n is the number of positive similarity points and
m is the number of negative similarity points.

An example of painting snow (white paint) onto areas of a
doorway using multiple similarity points is shown in Figure 6.

3.4 Adaptive Generation of Cloning Textures
There exist in nature multi-layered textures in which the structure
and position of the secondary texture(s) is dependant on the
primary texture. An example of this is shown in Figure 8 in
which the spatial structure of the secondary fire texture is
dependant on the underlying wood texture. However, as presented
thus far, replicated cloning does not have the ability to adapt the
cloning texture to spatially match the target texture. In Brooks et
al. [2003], we addressed this issue by developing a semi-
automatic process for re-arranging a cloning texture (fire) to better
match a target texture (wood) prior to cloning.

This is achieved by semi-automatically constructing Texture-
by-Numbers [Hertzmann et al. 2001] masks of both the cloning
texture and the image being cloned onto. The construction of
these masks are themselves based on the self-similarity of the
textures. These masks are then used in a guided re-synthesis prior
to cloning. Sample results of this two stage solution are shown in
Figures 7 and 8 where the cloned texture is first re-arranged using
texture-by-numbers re-synthesis. More details of this process are
available in the original paper [Brooks et al. 2003].

An alternate solution to the problem of matching the cloning
texture to the target texture is presented in Brooks and Dodgson
[2005]. Rather than cloning colour content from a second image,
we use the level of similarity of a given pixel (to the user selected
pixel) as an input parameter for generating procedural textures.
 For replicated painting and cloning, the user selected pixel is
compared with all other pixels in the same image. This produces a
“similarity-map” which can be visualized with whiter colours for

Figure 7: Snowy leaf texture is re-ordered and cloned onto a rusting ring.

Figure 8: Fire texture is re-ordered and cloned onto wood shingles.

Figure 9: Procedurally generated moss texture is cloned into the brick image. The similarity-image is shown to the left.

Figure 10: The left pair of images shows a procedurally generated rust texture cloned onto a metal image. The right pair of images shows a
procedurally generated fire texture cloned onto a shingle image.

highly-similar pixels and blacker colours for pixels that are not
similar. Such a similarity-map is shown to the left in Figure 9.
In this example the user has selected a location on the underside
of a brick. Once this similarity map, s(x, y), is computed, the
values can be directly input into a procedural texture.

Our example procedural textures incorporate fractal noise
which introduces a certain degree of natural randomness [Ebert et
al. 1994]. A 2D fractal noise function, f(x, y), can be briefly
defined as follows:

() ()()∑
=

××=
N

i

iii yxnoiseyxf
0

2/2,2,

where i is the current octave, N is the number of octaves, and
noise is a function that smoothly interpolates a grid of random
values with cosine or cubic interpolation.

With a fractal noise function in hand, we can now define a
number of procedural textures which take the similarity value,
s(x, y), at pixel p along with the original x and y positional values
as input. The first example is a moss texture shown in Figure 9
that uses the similarity value to control the frequency of the
texture. Moss is defined in the following pseudo-code:

 function moss(x, y, s(x, y)) returns color {

// low-frequency green for the basic moss appearance
 amount = abs(sin(f (5 × x × s(x, y), 5 × y × s(x, y))));
 color = mixColor(green, black, amount);

// add small amount of mid-frequency orange
 amount = abs(0.2 × sin(f (25 × x × s(x, y), 25 × y × s(x, y))));
 color = mixColor(orange, color, amount);

// add high-frequency yellow speckling
 amount = abs(0.8 × sin(f (50 × x × s(x, y), 50 × y × s(x, y))));
 color = mixColor(yellow, color, amount);
 }

where mixColor(colorA, colorB, amount) returns amount of
colorA and (1 – amount) of colorB. Without the use of the
similarity levels, the moss texture would lack visual structure.

The next procedural texture, rust, is similar in structure to
moss and is shown in Figure 10. Our rust texture is defined in the
following pseudo-code:

 function rust(x, y, s(x, y)) returns color {

// low-frequency red for the basic rust appearance
 amount = abs(sin(f (5 × x × s(x, y), 5 × y × s(x, y))));

 color = mixColor(red, black, amount);

// add high-frequency orange speckling
 amount = abs(0.5 × sin(f (50 × x × s(x, y), 50 × y × s(x, y))));
 color = mixColor(orange, color, amount);
 }

The final texture, fire, also shown in is a smoother texture and is
compressed in the horizontal direction:

function fire(x, y, s(x, y)) returns color {

// similarity level controls amount of fire
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y))));
 color = mixColor(red, black, amount);

// power of 10 used to narrow yellow areas
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^10;

 color = mixColor(yellow, color, amount);

// higher power of 20 used to narrow brightest areas
 amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^20;
 color = mixColor(white, color, amount);
 }

Once the procedural textures are computed we directly apply
them to the original image, using the similarity level as a
weighting value between the original texture colour t(x, y) and the
newly generated colour m(x, y). The final colour, c(x, y) is
computed as:

() ()() () () ()yxmyxsyxtyxsyxc ,,,,1, ×+×−=

These procedural textures that have been defined by no means
exhaust the possibilities but do illustrate the usefulness of
integrating replicated editing with procedural textures.

The advantages of using procedurally-based texture cloning
are efficiency, flexibility and ease of use. However, it does require
that procedural functions can be constructed that realistically
simulate the cloning textures. This is not always the case.

3.5 Replicated Warping
Replicated warping is distinct from painting and cloning in that it
does not affect pixel colour; it instead modifies the shape of image
regions under the user’s guidance. Those pixels whose local
neighbourhoods are within a certain threshold of similarity to the
user selected point are expanded locally. The question becomes
how to convert scalar similarity values, s(x, y), derived from
neighbourhood distances into 2D area expansions (Figure 11).

To accomplish this we borrow the interactive image-warping
scheme of Keahey et al. [1997]. In their notation, the grid of
similarity values defines a magnification function, M, from which
a 2D grid displacement function, F, must be derived. The
magnification function, M, is essentially the derivative of the
desired F, and a numerical algorithm is used to approximate the
integration of M, yielding an estimate, FC, at each iteration. The
corresponding approximate magnification function, MC, can be
directly computed from FC, allowing the resultant error, ME = M -
MC, to be calculated. FC is then further modified on a vertex-by-
vertex basis. Effectively, the neighbouring vertices are moved
outwards in FC where ME > 0, and drawn inwards where ME < 0,
yielding a better approximation. From this, a 2D transformation is
produced that is both symmetric and centred around magnification
maxima. The algorithm benefits from optimizations detailed by
Keahey and our implementation converges in less than 0.05s.

Self-similarity scalar values are directly used to interactively
drive area magnification. If in painting mode the pixel would
have received 75% opacity, the local area instead increases by
75%. Since the overall area remains the same, some regions are
compressed while others are expanded. Figure 3 shows the
application of replicated warping to an image of leaves. The left
image has been altered so that the spaces between the leaves have
been expanded, shrivelling the leaves themselves. The right image
shows the opposite effect with the leaves expanded almost to the
exclusion of the spaces in between. Further examples of replicated
warping are shown in Figure 12.

Depending on the texture and on the amount of expansion, the
warped texture can suffer a loss of high frequency detail. We
overcome this by re-synthesizing detail into expanded areas, using
the newly warped texture as a constraining image for super-
resolution synthesis as described in Hertzmann et al. [2001].
Close-up images of enhanced details are shown in Figure 13.

Figure 11: From scalar similarity values (left) to 2D texture warp (right).

Figure 12: Similarity Based Warping: 1st column shows contracted regions, 2nd column contains original textures and 3rd column contains
expanded regions. Final results in 4th column have been enhanced with super-resolution synthesis using details from the original textures.

Figure 13: Loss of high frequency details and re-synthesis. Left images are taken from the original textures with the warped versions
shown in the middle. Results of super-resolution synthesis are shown to the right.

4 Conclusion and Future Directions
Our unique image editing framework amplifies the user’s input by
replicating painting, cloning and warping operations over a
texture. This framework has benefited from a number of recent
improvements including user-controlled sharpness, Boolean
similarity expressions and the adaptive synthesis of cloning
textures.

Although these replicated editing techniques are not generally
suitable for non-texture images, we believe that this might be
overcome by combining our system with systems that perform
image segmentation and shape-from-shading.

Currently our approach works best for textures which are
uniformly lit. Non-uniform lighting leads to poorer results. We
believe that this restriction might be addressed by integrating
similarity based editing with a photo editing system such as that
of Oh et al. [2001] which permits texture illumination correction.

Replicated editing might also be extended to geometric and
texture editing operations on a 3D object based on the similarity
of local surface curvature instead of, or in concert with, texture
similarity. It would need to be determined if the user interface
techniques which work for 2D will work equally well for the 3D
analogue.

References
ASHIKHMIN, M. 2001. Synthesizing Natural Textures, in ACM Symposium

on Interactive 3D Graphics, 217–226.
BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M. 2001.

Texture Mixing and Texture Movie Synthesis Using Statistical
Learning. IEEE Transactions on Visualization and Computer
Graphics, 7, 2, 120-135.

BARRETT, W. AND CHENEY, A. 2002. Object-Based Image Editing. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002),
21(3), 777-784.

BERMAN, D., BARTELL, J., AND SALESIN, D. 1994. Multiresolution
Painting and Compositing. ACM SIGGRAPH 94, 85-90.

BROOKS, S. AND DODGSON, N. A. 2002. Self-Similarity Based Texture
Editing. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2002), 21(3), 653-656.

BROOKS, S., CARDLE, M. AND DODGSON, N. A. 2003. Enhanced Texture
Editing using Self-Similarity. Vision, Video and Graphics, Bath, 231-
238.

BROOKS, S. AND DODGSON, N. A. 2005. Integrating Procedural Textures
with Replicated Image Editing. Proceedings of ACM GRAPHITE. (to
appear)

BURT, P., AND ADELSON, E. 1983. A Multiresolution Spline with
Application to Image Mosaics. ACM Transactions on Graphics, 2, 4,
217-236.

DECARLO, D. AND SANTELLA, A. 2002. Stylization and Abstraction of
Photographs. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2002), 21(3), 769-776.

DISCHLER, J., AND GHAZANFARPOUR, D. 1999. Interactive Image-Based
Modeling of Macrostructured Textures. IEEE Computer Graphics and
Applications, 19, 1, 66-74.

EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K. AND WORLEY, S.
1994. Texturing and Modeling: A Procedural Approach. AP
Professional, Cambridge, MA.

ELDER, J., AND GOLDBERG, R. 1998. Image Editing In the Contour
Domain. IEEE Computer Vision and Pattern Recognition, 374-381.

FANG, H. AND HART, J. C. 2004. Textureshop: Texture Synthesis as a
Photograph Editing Tool. ACM Transactions on Graphics, 23(3), 354-
359.

GLEICHER, M. Image snapping. 1995. In Computer Graphics (SIGGRAPH
'95 Proceedings), 183-190.

HARRISON, P. 2001. A Non-Hierarchical Procedure for Re-Synthesis of
Complex Textures. WSCG'2001.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-Based Texture
Analysis/Synthesis. In Computer Graphics (SIGGRAPH '95
Proceedings), 229-238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B. AND SALESIN,
D. H. 2001. Image analogies. In Computer Graphics (SIGGRAPH ’01
Proceedings), 327-340.

IGEHY, H. AND PEREIRA, L. 1997. Image Replacement Through Texture
Synthesis. In International Conference on Image Processing, volume
3, 186-189.

JACKSON, R., MACDONALD, L AND FREEMAN, K. 1994. Computer
Generated Color: A Practical Guide to Presentation and Display.
John Wiley & Sons.

JOLLIFE, I.T. 1986. Principal Component Analysis. Springer-Verlag, New
York.

KEAHEY, A., AND ROBERTSON, E. 1997. Nonlinear Magnification Fields.
IEEE Symposium on Information Visualization, 51-58.

KURLANDER, D. AND BIER, E. 1988. Graphical search and replace. In
Computer Graphics (SIGGRAPH '88 Proceedings), 113-120.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003.
Graphcut Textures: Image and Video Synthesis using Graph Cuts.
ACM Transactions on Graphics, 22(3), 277-286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005. Texture
optimization for example-based synthesis. ACM Transactions on
Graphics, 24(3), 795-802.

LEFEBVRE, S. AND HOPPE, H. 2005. Parallel controllable texture synthesis.
ACM Transactions on Graphics, 24(3), 777-786.

LEWIS, J. P. 1984. Texture Synthesis for Digital Painting. Computer
Graphics, 18, 3, 245-252.

LIU, Y., LIN, W., AND HAYS, J. 2004. Near-regular texture analysis and
manipulation. ACM Transactions on Graphics, 23(3), 368-376.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W., GIBSON,
S., HODGINS, J., KANG, T., MIRTICH, B., PSTER, H., RUML, W.,
RYALL, K., SEIMS, J., AND SHIEBER, S. 1997. Design galleries: A
general approach to setting parameters for computer graphics and
animation. In Computer Graphics (SIGGRAPH '97 Proceedings),
389-400.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Texture design using
a simplicial complex of morphable textures. ACM Transactions on
Graphics, 24(3), 787-794.

MORTENSEN, E. AND BARRETT, W. 1995. Intelligent scissors for image
composition. In Computer Graphics (SIGGRAPH '95 Proceedings),
191-198.

OH, B., CHEN, M., DORSEY, J., AND DURAND, F. 2001. Image-Based
Modeling and Photo Editing. ACM SIGGRAPH 2001, 433-442.

PERLIN, K., AND VELHO, L. 1995. Live Paint: Painting With Procedural
Multiscale Textures. ACM SIGGRAPH 95, 153-160.

PORTER, T., AND DUFF, T. 1984. Compositing Digital Images. Computer
Graphics, 18, 3, 253-259.

SIMONCELLI, E. P., FREEMAN, W. T., ADELSON, E. H. AND HEEGER, D. J.
1992. Shiftable Multi-Scale Transforms. IEEE Transactions on
Information Theory, Issue on Wavelets 38, 587–607.

SIMS, K. 1993. Interactive evolution of equations for procedural models.
The Visual Computer, 9(8), 466-476.

SUTHERLAND, I. 1963. Sketchpad--a man-machine graphical
communication system. Technical Report 296, Lincoln Laboratory,
Massachusetts Institute of Technology.

WEI, L. AND LEVOY, M. 2000. Fast Texture Synthesis using Tree-
Structured Vector Quantization, In Computer Graphics (SIGGRAPH
'00 Proceedings), 479-488.

ZELINKA, S., FANG, H., GARLAND, M., AND HART, J. C. 2005. Interactive
Material Replacement in Photographs. In Proceedings of Graphics
Interface, 227-232.

