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Figure 1 Fully-automated Sound Synthesis: Given a source animation and its associated soundtrack (Left), an unseen target animation of the same nature 
(Right) is analyzed to automatically synthesize a new soundtrack, with a high probability of having the same sounds for the same motion events. 

 
Abstract 
We present the first algorithm for automatically generating 
soundtracks for input animation based on other animations’ 
soundtrack. This technique can greatly simplify the production of 
soundtracks in computer animation and video by re-targeting 
existing soundtracks. A segment of source audio is used to train a 
statistical model which is then used to generate variants of the 
original audio to fit particular constraints. These constraints can 
either be specified explicitly by the user in the form of large-scale 
properties of the sound texture, or determined automatically and 
semi-automatically by matching similar motion events in a source 
animation to those in the target animation. 
Keywords: audio, multimedia, soundtrack, sound synthesis. 

1. Introduction 
Human perception of scenes in the real world is assisted by sound 
as well as vision, so effective animations require the correct 
association of sound and motion. Currently, animators are faced 
with the daunting task of finding, recording or generating 
appropriate sound effects and ambiences, and then fastidiously 
arranging them to fit the animation, or changing the animation to 
fit the soundtrack.  

We present a solution for simple and quick soundtrack 
creation that generates new, controlled variations on the original 
sound source, which still bears a strong resemblance to the 
original, using a controlled stochastic algorithm. Additionally, the 
motion information available in computer animation, such as 
motion curves, is used to constrain the sound synthesis process. 
Our system supports many types of soundtrack, ranging from 
discrete sound effects, to certain music types and sound 
ambiences used to emphasize moods or emotions. In order to 
support such a wide variety of sounds, we present an algorithm 
which extends the granular audio synthesis method developed by 
Bar-Joseph et al [1999] by adding control to the synthesized 
sounds. 

In the simplest case, users manually indicate large-scale 
properties of the new sound to fit an arbitrary animation or video. 
This is done by manually specifying which types of sounds in the 
original audio are to appear where in the new soundtrack. A 
controllable statistical model is extracted from the original 
soundtrack and a new sound instance is generated that best fits the 
user constraints. The information in the animation's motion curves 
is used to facilitate the process. The user selects a sound segment 
that is to be associated with a motion event. Doing this for a 
single example enables all subsequent similar motion events to 
trigger the chosen sound(s), whilst seamlessly preserving the 
nature of the original soundtrack. For example, the animator 
might want to apply the sound of one car skidding to several cars 
being animated in a race without having to separate it from other 
background racing sounds. 

Next, we extend this method, and present a completely 
automated algorithm for synthesizing sounds for input animations. 
The user need provide only a source animation and its associated 
soundtrack. Given a different target animation of the same nature, 
we find the closest matches in the source motion to the target 
motion, and assign the matches' associated sound events as 
constraints to the synthesis of the target animation's new 
soundtrack (Figure 1). 
 An advantage of our method is that it provides a very natural 
means of specifying soundtracks. Rather than creating a 
soundtrack from scratch, broad user specifications such as “more 
of this sound and less of that sound” are possible.  Alternatively, a 
user can simply supply a sample animation (along with its 
soundtrack) and, given a new animation, say, in effect: “Make it 
sound like this”. Finally, this significantly simplifies existing 
soundtrack recycling since no editing, wearisome looping, re-
mixing or imprecise sound source separation is necessary. Sound-
by-Numbers operates in a similar fashion to a children’s paint-by-
numbers kit. But instead of solid colors, or textures in Texture-by-
Numbers [Hertzmann et al. 2001], sound is automatically 
synthesized into the corresponding mapping. 
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Our method extends the Bar-Joseph et al. [1999] algorithm 
(abbreviated as BJ below) of which a brief overview is given in 
Section 3.  In section 4 and 5, we present our user-directed 
approach and explain three types of intuitive user-control. We 
show the results we obtain and further discuss the algorithm and 
its limitations in Section 6. We conclude by outlining some 
possible extensions of this work. 

2. Previous Work 
There are several existing methods for automating the task of 
soundtrack generation for animation. 

Early work by Terzopoulos and Fleischer [1988] used 
triggered pre-recorded sounds to model the sound of a tearing 
cloth. A more general approach introduced by Hahn and Hesham 
[1995] ties motion parameters to parameterizable sound 
constructs, known as Timbre-trees. Control over the musical 
soundtrack generation process by animation was examined in 
Nakamura et al. [1994], and a more automated approach, which 
uses motion to directly control MIDI and C-Sound based 
soundtracks, was carried out in Hahn et al.  [1995] and Mishra 
and Hahn [1995]. These latter approaches assume an implicit 
model of sound, contrarily to our method that operates directly at 
the audio sample level of any existing soundtrack. 

More physically-based approaches to motion-driven sound 
events enable real-time realistic synthesis of interaction sounds 
such as collision sounds and continuous contact sounds [Takala 
and Hahn, 1992; van den Doel and Pai, 1996; O'Brien et al., 2001; 
van den Doel, 2001; O'Brien et al., 2002]. Our method differs 
from these previous approaches, in that sounds are not 
synthesized from scratch and no physical models of sound or 
motion are necessary. We simply use existing soundtracks and re-
synthesize them in a controlled manner to synchronize them to 
new animations at a coarser-level than the previous physically-
based approaches. In some respects, our system complements 
these previous approaches by allowing the definition of more 
loosely defined relationships between sound and motion. A 
physically-based approach can be used to generate exact collision 
sounds,while in parallel, our system can be used to build on 
existing soundtracks. 

The inspiration for the present work and the basis for our 
soundtrack generation process is the work by Bar-Joseph et al. 
[1999; Dubnov et al. 2002]. Their system uses the concept of 
granular synthesis [Roads, 1988] where complex sounds are 
created by combining thousands of brief acoustical events. 
Analysis and synthesis of sounds is carried out in a wavelet-based 
time-frequency representation. While the BJ algorithm works well 
on both stochastic and periodic sound textures, it does not provide 
any control over the new instances of the sound texture it 
generates, and it is not clear how it can be applied to 
automatically synthesize complete soundtracks for input 
animations. In this paper we present a revised version of the BJ 
algorithm, which allows us to control not only the location (across 
the animation sequence) where the new synthesized sound is to be 
located, but also the transition between two different sound 
textures. In addition, we combine our new synthesis algorithm 
with an animation alignment algorithm to automatically 
synthesize new sound segments for input animations. Another 
approach for sound texture generation is presented in Hoskinson 
and Pai [2001]. Though this approach successfully synthesizes 
quality sound textures, it uses coarser 'natural-grains' and thus is 
less appropriate for our purposes where a finer-grained 
representation is preferable since it is more controllable. 

An example of video-guided audio synthesis is presented in 
Schödl et al. [2000], where sound is added to their video textures 
by cross-fading and playing the sound samples associated with 
each video frame in the original video. Limited audio continuity 
is supported since the arrangements of audio samples are based on 
the video synthesis, and not on the properties of the soundtrack. 
This limits the method to highly self-similar and stochastic sounds 
the potential introduction of sonic artifacts due to the frequently 
utilized multi-way cross-fading algorithm. We have shown in our 
video that we can support much more complex and less self-
similar sounds then Schödl et al.’s system (who only applied their 
method on two soundtracks). We therefore believe that the 
method presented in this paper is more general, and applicable to 
many more sound types. 

 

Figure 2 BJ Synthesis step during the construction of a portion of multi-
resolution wavelet-tree: Level 5 nodes in the new tree are synthesized by 
stepping through each parent node at level 4.  For each node in level 4, 
we find a winning candidate, in the input tree, that depends on its scale 
ancestors (upper levels, pointed at in blue) and temporal predecessors in 
the same level (those to its left on level 4, pointed at in red). The children 
of the winning candidate are then copied onto the corresponding positions 
at level 5. 

           
3. Bar-Joseph Sound Synthesis 
To generate new sound textures, the BJ algorithm treats the input 
sound as a sample of a stochastic process. This is accomplished 
by first building a tree representing a hierarchical wavelet 
transform of the input sound, and then learning and sampling the 
conditional probabilities of the paths in the original tree. The 
inverse wavelet transform of the resultant tree yields a new 
instance of the input sound.  
 The multi-resolution output tree is generated by choosing 
wavelet coefficients, or nodes, representing parts of the sample 
only when they are similar. Each new node of the output wavelet 
tree is generated level-by-level and node-by-node from the left to 
the right, starting from the root node. At each step, a wavelet 
coefficient is chosen from the source wavelet tree such that its 
node’s ancestors and predecessors are most similar with respect to 
the current new node in the sound being synthesized (Figure 2). 
Wavelet coefficients from the same level are considered as 
potential candidates to replace it if they have similar temporal 
predecessors (i.e. the nodes to the left on the same level) and scale 
ancestors (i.e. the upper-level, coarser wavelet coefficient). Two 
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Figure 3 Soundtrack Synthesis for a Video sequence: The target video (Left-Bottom) is a rearranged soundless version of the source video (Left-Top). The 
explosion sounds in green, along machine gun sounds in red (Middle-Top), are defined as synthesis constraints in the target soundtrack (Middle-Bottom).
These constraints are used to guide directed sound synthesis into generating the appropriate soundtrack for the target video (Right). 

nodes are considered similar when the absolute difference 
between their respective ancestors’ and predecessors’ wavelet 
coefficients is below a certain user-defined threshold δ. A small 
value of δ ensures similarity to the input and a large value allows 
more randomness.  

A nodal match is found by first searching all the nodes at the 
current synthesized tree level for nodes with the maximum 
number of ancestors within the difference threshold δ. This initial 
candidate set C  is further reduced to candidate set C , by 

retaining only the nodes from C  with the maximum number of 
up to k predecessors within the difference threshold δ (where k is 
typically set to 5).  The winning node is randomly chosen by 
uniformly sampling from candidate set C . Complete details of 

the algorithm can be found in Dubnov et al. [2002]. 

anc pred
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4. Directed Sound Synthesis 
The BJ algorithm works well with almost no artifacts on both 
stochastic and periodic sound textures. However, no control is 
possible over new instances of a sound texture since they are by 
definition random.  We now introduce high-level user-control 
over the synthesis process. This is achieved by enabling the user 
to specify which types of sounds from the input sound should 
occur when, and for how long, in the output synthesized sound. 
These user-preferences translate into either hard or soft 
constraints during synthesis. In this section, we first look at how 
these synthesis constraints are defined, and then, by what means 
they are enforced in the modified BJ algorithm. 

4.1 Constraint Specification 
In order to synthesize points of interest in the soundtrack, the 
animator must identify the synthesis constraints. First, the user 
selects a source segment in the sample sound such as an explosion 
in a battle soundtrack (Figure 4). Secondly, the user specifies a 
target segment indicating when, and for how long, in the 
synthesized sound the explosion(s) can be heard. The constraints 
for the rest of the new soundtrack can be left unspecified, so that 
in our video example, a battle-like sound ambience will surround 
the constrained explosion. 

The source and target segments, each defined by a start and 
end time, are directly specified by the user on a familiar graphical 
amplitude x time sound representation. Since the target soundtrack 
has yet to be synthesized and therefore no amplitude information 
is available, target segments are selected on a blank amplitude 
timeline of the length of the intended sound. Note that the 
number, length and combinations of source and target segments 
are unrestricted, and that exclusion constraints can also be 
specified so as to prevent certain sounds from occurring at 
specific locations. 

 The user can associate a probability with each constraint, 
controlling its influence on the final sound. To this end, a 
weighting curve is assigned to each target segment, designating 
the probability of its associated source segment(s) occurring at 
every point in the target area. The weights vary from [-1, 1], 
where -1 and 1 are equivalent to hard-constraints guaranteeing, 
respectively, exclusion or inclusion. Soft-constraints are defined 
in the weight ranges (-1,0) and (0,1) specifying the degree with 
which exclusion or inclusion, respectively, is enforced. 
Furthermore, the reserved weight of 0 corresponds to 
unconstrained synthesis. 
 The special case, when inclusion targets with different 
sources overlap, is dealt with by selecting the target with the 
highest current weighting. For consistency, the user is prevented 
from defining overlapping hard-constraints. 

In order to use these constraints in our algorithm, we need to 
extract all leaf and subsequent parent nodes of the wavelet tree 
involved in synthesizing these source and target segments. To 
each source and target segment(s) combination we assign a 
unique constraint identifier. For example, the explosion 
constraints will have a different identifier to the gun-shot 
constraints. Using this we build two node-lists, S and T, which 
contain the tree level and position offset of all nodes in, 
respectively, the source and target wavelet-tree involved in the 
constraint specification. T additionally contains the constraint 
weight associated to each node. During the directed synthesis 
process, if the currently synthesized node is defined in T, its 
associated constraint identifier in T determines which nodes from 
S, and subsequently in the input wavelet-tree, should be used as 
potential candidates. 

 

4.2 Hard and Soft Constrained Synthesis 
Now that we know the source origins of every node at every level 
in the target tree, we can modify the BJ algorithm to take these 
constraints into account. In addition to enforcing similar ancestors 
and predecessors, successor restrictions are imposed. Successor 
nodes are defined as the neighboring nodes appearing forward in 
time at the same tree level. Similarly to predecessor nodes, these 
can be rather distant in terms of their tree graph topology. 

 

 
Figure 4  (Top) Source regions A and B. (Middle) Weighting curve for A 
and B. (Bottom) Directed synthesis output. 
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Let d be the successor look-ahead distance defined as 
, where l varies from 0 to n corresponding 

respectively to the root and leaf levels of the tree, and k is a user 
constant defining the anticipation strength (typically set to 5%). In 
this manner, d is kept consistent at different scales. We use d to 
split up the space of all nodes into the set of constrained and 
unconstrained nodes before carrying out matching on every node. 

2ld = × k

Hence, if the currently synthesized node belongs to T or has 
its d-th successor in T, or both, then is the corresponding set of 
candidates inside and outside S satisfying the same constraint 
identifier conditions. Let all remaining nodes be contained in the 
set V . Nodal matching is then separately carried out on both  
and V  in parallel, resulting in two candidate sets C  and C , 

defined, respectively as the constrained candidate set and the 
unconstrained candidate set. They define the best matching 
candidates for both the constrained and unconstrained sets. The 
winning node is then randomly chosen by non-uniformly 
sampling from C ∪ . Nodes in C  are given the default 

weight of 0.1 whereas the ones in C  are all given the weight of 

T’s current weighting. Depending on T’s weight value, this has 
the effect of biasing the selection process in favor or against the 
nodes in C . If T’s current weight is a hard-constrained 1, then 

the winner is picked by uniform sampling from C  only. 
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While the above algorithm works fine in most cases, 
Sometimes the quality of the matches found in C might be 

inferior to those found in C due to the reduced search space. 

We therefore want to prevent significantly inferior matches from 
being chosen in order to maximize audio quality. This is 

controlled by ensuring that the sum of the maximum number of 
found ancestors in C  and predecessors in C  is within a user- 

percentage threshold r of that of C and . Let m and  

be, respectively, the number of ancestors and predecessors for the 
best candidates currently in C  and C  within the randomness 

threshold δ. Let  and n  be their equivalent in C  and C , 

then if ( )  then the candidates from 
are discarded (r is usually set to 70%). The threshold r 

controls the degree with which soft-constraints are enforced at the 
cost of audio quality. We adopt a different strategy for hard-
constraints as explained below. 
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In the naïve BJ algorithm, initial candidates include all nodes 
at the current level. Doing this over the whole tree results in a 
quadratic number of checks. Hence, a greatly reduced search 
space is obtained by limiting the search to the children of the 
candidate set of nodes of the parent. However, on the borderline 
between unconstrained and hard-constrained areas, the reduced 
candidate might result in C  being empty, since no node is 

within the imposed threshold limits. Consequently, in our 
algorithm, if no candidates are found in C  whilst in hard-

constrained inclusion mode, a full search is conducted in S. If 
matches within the threshold tolerance still cannot be found, the 
best approximate match in S is utilized instead. 

W
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5. Automated User Control 
In this section, we use the algorithm described in Section 4 to 
present three different user-interaction methods to specify the 
synthesis constraints. These include manual, semi-automatic and 
fully automatic constraint definition. 
 

5.1 Manual Control 
 
The user starts by specifying one or more source regions in the 
sample sound. In the example depicted in Figure 4, two distinct 
source regions are defined corresponding to areas A and B (top). 
Note that A is defined by two segments. The user then draws the 
target probability curve for both sources A and B directly on the 
timeline of the new sound. A's weightings are zero except for two 
sections where short and smooth soft-constraints lead to a 1-
valued hard-constraint plateau. This results in region A smoothly 
appearing twice, and nowhere else. On the other hand, B’s curve 
also defines two occurrences but is undefined elsewhere, 
imposing no restrictions. Thus sounds from B might be heard 
elsewhere. 
 

5.2 Semi-Automatic Control 
In this mode of interaction, the motion data in the target 
animation is used.  The user associates sound segments with 
motion events so that recurring similar motion events trigger the 
same sounds. We detect all these recurring motion events, if any, 
by finding all motion segments similar to the query motion, the 
number of which is controlled by an adjustable similarity distance 
threshold θ. 

We support matching over 1D time-varying motion curves 
such as 1D position or angle variations. Matches that are non-
overlapping and up to L times longer, and H times shorter, than 
the query motion are retained (usually L is set to 2 and H to 0.5). 
Similarity is calculated across the entire target motion for sliding 
windows ranging from L to H in size. Similarity is determined by 
applying the Iterative Deepening Dynamic Time Warping 
(IDDTW) distance measure [Chu et al., 2002], a fast variant of 
Bruderlin and Williams’s [1995] original Dynamic Time Warping 
(DTW) on motion. By squeezing and stretching motions before 
calculating their similarity, DTW produces better measure of 
similarity between two motions because it is not as sensitive to 
small distortions in the time axis as the Euclidean distance. We 
recently have added support for more matching primitives such as 
2D and 3D motions, as well as over the complete skeleton in 
motion capture. Further details can be found in [PaperID 120, 
2003]. 

By default, each motion that matches the user-selected motion 
is given the same weight in the synthesis. Alternatively, the 
synthesis weightings can be made proportional to the strength of 
the corresponding matches. The effect is that strong motion 
matches will have high probability of having the same audio 
properties as the query, and inversely for weak matches. Let 

xs be the similarity measure of a current match x,  the 

query’s audio weight (set by the user) and c, a user percentage, 
then x’s audio strength, , is defined as: 

qw

xw
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x
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By modifying the value of c, the animator can modulate the 

effect of the matching strength on the resulting audio strength. 
Our interface is further automated by performing audio 

matching to find similar audio segments to the query sound 
segment in the rest of the sample soundtrack. These audio 
matches, along with the query audio, are combined to form the 
same source audio segment for the motion matches. By 
performing sound-spotting audio matching [Spevak and 
Polfreman, 2001], perceptually similar non-overlapping audio 
segments to the query are found in the rest of the soundtrack. An 
interface slider enables the animator to control the number of 
returned audio matches. This is especially valuable for selecting 
frequently recurring sounds over extended soundtracks. 

5.3 Fully-Automatic Control 
In contrast to the approaches above, this method requires 
practically no user-intervention beyond providing the following 
inputs: a sample animation with its soundtrack and a different 
animation, preferably of the same nature. After the user specifies 
the 'steering' motion track, a new soundtrack is automatically 
synthesized with high probability of having the same sounds for 
the same motion events as those in the sample animation. 

We therefore need to determine which portions of the source 
motion best match with those in the new, target motion. This is 
achieved by using the motion matching algorithm recently 
presented in Pullen and Bregler [2002]. The algorithm is depicted 
in Figure 5. The motion curve is broken into segments where the 
sign of the first derivative changes. For better results, a low-pass 
filter is applied to remove noise beforehand. All of the fragments 
of the (smoothed and segmented) target motion are considered 
one-by-one, and for each we select whichever fragment of source 
motion is most similar. To achieve this comparison, the source 
motion fragments are stretched or compressed in time to be the 
same length as the target motion fragment.  This yields the K 
closest matches for each target fragment. An optimal path is 
found through these possible choices to create a single stream of 
fragments. The calculated path maximizes the instances of 
consecutive fragments as well maximizing the selection of the top 
K closest matches [Pullen and Bregler, 2002]. We then assign the 
audio of the matching source fragment to that of the target 
fragment. 

 
At the end of this process, every target fragment has been 

assigned a single source audio segment taken from its matching 
source fragment. From this, an index of source/target constraint 

combinations is constructed by merging targets with overlapping 
sources. In practice, soft constraints, where preferred nodes have 
weights just over 0, give the best results. This is because hard-
constraints can produce artifacts if used extensively. Furthermore, 
additional weighting is given to perceptually significant sounds so 
as to increase the likelihood that they will be enforced. Weights 
are therefore made proportional to the average RMS volume over 
the entire audio segment. Louder sounds usually attract more 
attention and therefore should have higher priority. 

The resulting target soundtrack is usually of a higher quality 
if there are sections in time where fragments that were 
consecutive in the source data are used consecutively to create the 
path. This is accommodated by Pullen and Bregler’s [2002] 
method as the algorithm considers the neighbors of each 
fragment, and searches for paths that maximize the use of 
consecutive fragments. 

By breaking up the motion at first derivative sign changes, we 
enforce better audio continuity over portions of motion that are 
constant. On the other hand, segmentation based on second 
derivative changes, or inflexion points, gives better audio 
continuity at changes in the motion. Consequently, our system 
simply generates two soundtracks, one for each segmentation 
strategy, and the animator picks whichever best fits his or her 
expectations.  

 
6. Results and Discussion 
We now present several applications of Sound-by-Numbers. The 
examples are in the accompanying video as printed figures could 
not convey our results meaningfully.  

The first example illustrates the use of manual control to 
derive a new sound track from an exsiting one when the 
corresponding video sequence is edited. Only a few seconds were 
necessary to synthesize 30 seconds of output at 32 KHz on a 
1.8Ghz processor. The synthesis time increases with the length of 
the synthesized target sound and its sampling frequency. 

In our next example semi-automatic control is used to 
produce the soundtrack of a flying bird animation. All similar 
flight patterns to the user selected ones are assigned to the same 
target sounds, whilst the rest of the soundtrack conveys the jungle 
background sounds. Notice that no complex audio editing was 
required here, just a few mouse clicks. Not surprisingly, better 
results are obtained if the source and targets regions are similar in 
length, otherwise unexpected results occur. For example, a 
laughing sequence sounds unnatural if it is prolonged for too long 
using hard-constraints. We also found that the directed synthesis 
very occasionally switches to approximate matching (maybe for 
one node out of thousands for the example here) so sound quality 
is rarely adversely affected. This can be eliminated by activating 
the automatic padding of a short soft-constraint gradation before 
and after hard-constraint segment boundaries. Repetitions in the 
synthesized sounds can be discouraged by simply lowering the 
weights of candidates that have just been picked. Finally, if the 
results are not what the user expected, at most a small number of 
quick iterations are required to produce a soundtrack that better 
accommodates the user's intentions.  

Figure 5 Phases involved in fully-automatic control: (Phase 1) The 
source motion, its soundtrack and the target motion are entered. (Phase 2) 
Both motions are broken up at sign changes in first derivative. (Phase 3) 
Matches between the source and target motion fragments are found. 
(Phase4) Each fragment in the target motion now has a source audio 
segment assigned. 

Our final example takes advantage of our fully automated 
approach to generate new racing car sounds to accompany the 
edited version of the original racing car animation. 
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7. Limitations 
Good candidates input sources are sounds that allow themselves 
to be manually re-arranged without incurring perceptual 
problems. This is especially true of traffic sounds, crowd 
recordings, jazz and ambient music, audience laughing and 
collections of short sounds where maintaining the long-term order 
of occurrence is not essential. Sounds with clear progressions, 
such as a very slowly increasing siren sound, cannot be 
meaningfully rearranged by hand, and therefore, cannot also be 
done by our algorithm. Similarly, our method is not appropriate 
for speech processing including human singing. This does not 
invalidate our work since the supported sound types still cover a 
wide variety of video and animation segments. 

8. Conclusion and Future Work 
In this paper we have introduced a fully automatic algorithm for 
generating soundtracks for an input animation based on other 
animations soundtracks. In order to achieve this, we have 
described a new sound synthesis algorithm capable of taking into 
account users’ preferences, whilst producing high-quality output. 
Multiple interaction modes provide a variety of user intervention 
levels ranging from precise to more general control of the 
synthesized soundtrack. Ultimately, the fully-automated method 
provides users with a quick and intuitive way to produce 
soundtracks for computer animations.  

Although it is feasible to use conventional audio software, 
such as ProTools, to manually generate very short soundtracks, 
it rapidly becomes impractical for the production of extended 
soundtracks. Re-arranging the whole soundtrack so as to produce 
constantly varying versions of the original would quickly become 
cumbersome in ProTools. Also, in our system, constraints can 
be later changed on-the-fly leading to a full re-synthesis of the 
soundtrack.  

There are still many opportunities for future work such as the 
integration of our system into video textures [Schödl et al., 2000] 
and motion synthesis algorithms [Pullen and Bregler, 2002; 
Arikan and Forsyth, 2002; Li et al., 2002], as well as real-time 
operation.  

Currently, overlapping target regions are dealt with by 
choosing the highest probable target. Sound morphing techniques, 
such as [Serra et al.,1997], could be applied to combine source 
sounds in overlapping regions according to their weightings. 
Additionally, identifying quasi-silent portions [Tadamura and 
Nakamae, 1998] and giving them lower priority during 
constrained synthesis would improve constraints satisfaction and 
therefore control. 
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