
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

Sound-by-Numbers: Motion-Driven Sound Synthesis

Marc Cardle*, Stephen Brooks*, Ziv Bar-Joseph† and Peter Robinson*

*Computer Laboratory, University of Cambridge †MIT Lab for Computer Science

Figure 1 Fully-automated Sound Synthesis: Given a source animation and its associated soundtrack (Left), an unseen target animation of the same nature
(Right) is analyzed to automatically synthesize a new soundtrack, with a high probability of having the same sounds for the same motion events.

Abstract
We present the first algorithm for automatically generating
soundtracks for input animation based on other animations’
soundtrack. This technique can greatly simplify the production of
soundtracks in computer animation and video by re-targeting
existing soundtracks. A segment of source audio is used to train a
statistical model which is then used to generate variants of the
original audio to fit particular constraints. These constraints can
either be specified explicitly by the user in the form of large-scale
properties of the sound texture, or determined automatically and
semi-automatically by matching similar motion events in a source
animation to those in the target animation.
Keywords: audio, multimedia, soundtrack, sound synthesis.

1. Introduction
Human perception of scenes in the real world is assisted by sound
as well as vision, so effective animations require the correct
association of sound and motion. Currently, animators are faced
with the daunting task of finding, recording or generating
appropriate sound effects and ambiences, and then fastidiously
arranging them to fit the animation, or changing the animation to
fit the soundtrack.

We present a solution for simple and quick soundtrack
creation that generates new, controlled variations on the original
sound source, which still bears a strong resemblance to the
original, using a controlled stochastic algorithm. Additionally, the
motion information available in computer animation, such as
motion curves, is used to constrain the sound synthesis process.
Our system supports many types of soundtrack, ranging from
discrete sound effects, to certain music types and sound
ambiences used to emphasize moods or emotions. In order to
support such a wide variety of sounds, we present an algorithm
which extends the granular audio synthesis method developed by
Bar-Joseph et al [1999] by adding control to the synthesized
sounds.

In the simplest case, users manually indicate large-scale
properties of the new sound to fit an arbitrary animation or video.
This is done by manually specifying which types of sounds in the
original audio are to appear where in the new soundtrack. A
controllable statistical model is extracted from the original
soundtrack and a new sound instance is generated that best fits the
user constraints. The information in the animation's motion curves
is used to facilitate the process. The user selects a sound segment
that is to be associated with a motion event. Doing this for a
single example enables all subsequent similar motion events to
trigger the chosen sound(s), whilst seamlessly preserving the
nature of the original soundtrack. For example, the animator
might want to apply the sound of one car skidding to several cars
being animated in a race without having to separate it from other
background racing sounds.

Next, we extend this method, and present a completely
automated algorithm for synthesizing sounds for input animations.
The user need provide only a source animation and its associated
soundtrack. Given a different target animation of the same nature,
we find the closest matches in the source motion to the target
motion, and assign the matches' associated sound events as
constraints to the synthesis of the target animation's new
soundtrack (Figure 1).
 An advantage of our method is that it provides a very natural
means of specifying soundtracks. Rather than creating a
soundtrack from scratch, broad user specifications such as “more
of this sound and less of that sound” are possible. Alternatively, a
user can simply supply a sample animation (along with its
soundtrack) and, given a new animation, say, in effect: “Make it
sound like this”. Finally, this significantly simplifies existing
soundtrack recycling since no editing, wearisome looping, re-
mixing or imprecise sound source separation is necessary. Sound-
by-Numbers operates in a similar fashion to a children’s paint-by-
numbers kit. But instead of solid colors, or textures in Texture-by-
Numbers [Hertzmann et al. 2001], sound is automatically
synthesized into the corresponding mapping.

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

Our method extends the Bar-Joseph et al. [1999] algorithm
(abbreviated as BJ below) of which a brief overview is given in
Section 3. In section 4 and 5, we present our user-directed
approach and explain three types of intuitive user-control. We
show the results we obtain and further discuss the algorithm and
its limitations in Section 6. We conclude by outlining some
possible extensions of this work.

2. Previous Work
There are several existing methods for automating the task of
soundtrack generation for animation.

Early work by Terzopoulos and Fleischer [1988] used
triggered pre-recorded sounds to model the sound of a tearing
cloth. A more general approach introduced by Hahn and Hesham
[1995] ties motion parameters to parameterizable sound
constructs, known as Timbre-trees. Control over the musical
soundtrack generation process by animation was examined in
Nakamura et al. [1994], and a more automated approach, which
uses motion to directly control MIDI and C-Sound based
soundtracks, was carried out in Hahn et al. [1995] and Mishra
and Hahn [1995]. These latter approaches assume an implicit
model of sound, contrarily to our method that operates directly at
the audio sample level of any existing soundtrack.

More physically-based approaches to motion-driven sound
events enable real-time realistic synthesis of interaction sounds
such as collision sounds and continuous contact sounds [Takala
and Hahn, 1992; van den Doel and Pai, 1996; O'Brien et al., 2001;
van den Doel, 2001; O'Brien et al., 2002]. Our method differs
from these previous approaches, in that sounds are not
synthesized from scratch and no physical models of sound or
motion are necessary. We simply use existing soundtracks and re-
synthesize them in a controlled manner to synchronize them to
new animations at a coarser-level than the previous physically-
based approaches. In some respects, our system complements
these previous approaches by allowing the definition of more
loosely defined relationships between sound and motion. A
physically-based approach can be used to generate exact collision
sounds,while in parallel, our system can be used to build on
existing soundtracks.

The inspiration for the present work and the basis for our
soundtrack generation process is the work by Bar-Joseph et al.
[1999; Dubnov et al. 2002]. Their system uses the concept of
granular synthesis [Roads, 1988] where complex sounds are
created by combining thousands of brief acoustical events.
Analysis and synthesis of sounds is carried out in a wavelet-based
time-frequency representation. While the BJ algorithm works well
on both stochastic and periodic sound textures, it does not provide
any control over the new instances of the sound texture it
generates, and it is not clear how it can be applied to
automatically synthesize complete soundtracks for input
animations. In this paper we present a revised version of the BJ
algorithm, which allows us to control not only the location (across
the animation sequence) where the new synthesized sound is to be
located, but also the transition between two different sound
textures. In addition, we combine our new synthesis algorithm
with an animation alignment algorithm to automatically
synthesize new sound segments for input animations. Another
approach for sound texture generation is presented in Hoskinson
and Pai [2001]. Though this approach successfully synthesizes
quality sound textures, it uses coarser 'natural-grains' and thus is
less appropriate for our purposes where a finer-grained
representation is preferable since it is more controllable.

An example of video-guided audio synthesis is presented in
Schödl et al. [2000], where sound is added to their video textures
by cross-fading and playing the sound samples associated with
each video frame in the original video. Limited audio continuity
is supported since the arrangements of audio samples are based on
the video synthesis, and not on the properties of the soundtrack.
This limits the method to highly self-similar and stochastic sounds
the potential introduction of sonic artifacts due to the frequently
utilized multi-way cross-fading algorithm. We have shown in our
video that we can support much more complex and less self-
similar sounds then Schödl et al.’s system (who only applied their
method on two soundtracks). We therefore believe that the
method presented in this paper is more general, and applicable to
many more sound types.

Figure 2 BJ Synthesis step during the construction of a portion of multi-
resolution wavelet-tree: Level 5 nodes in the new tree are synthesized by
stepping through each parent node at level 4. For each node in level 4,
we find a winning candidate, in the input tree, that depends on its scale
ancestors (upper levels, pointed at in blue) and temporal predecessors in
the same level (those to its left on level 4, pointed at in red). The children
of the winning candidate are then copied onto the corresponding positions
at level 5.

3. Bar-Joseph Sound Synthesis
To generate new sound textures, the BJ algorithm treats the input
sound as a sample of a stochastic process. This is accomplished
by first building a tree representing a hierarchical wavelet
transform of the input sound, and then learning and sampling the
conditional probabilities of the paths in the original tree. The
inverse wavelet transform of the resultant tree yields a new
instance of the input sound.
 The multi-resolution output tree is generated by choosing
wavelet coefficients, or nodes, representing parts of the sample
only when they are similar. Each new node of the output wavelet
tree is generated level-by-level and node-by-node from the left to
the right, starting from the root node. At each step, a wavelet
coefficient is chosen from the source wavelet tree such that its
node’s ancestors and predecessors are most similar with respect to
the current new node in the sound being synthesized (Figure 2).
Wavelet coefficients from the same level are considered as
potential candidates to replace it if they have similar temporal
predecessors (i.e. the nodes to the left on the same level) and scale
ancestors (i.e. the upper-level, coarser wavelet coefficient). Two

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

Figure 3 Soundtrack Synthesis for a Video sequence: The target video (Left-Bottom) is a rearranged soundless version of the source video (Left-Top). The
explosion sounds in green, along machine gun sounds in red (Middle-Top), are defined as synthesis constraints in the target soundtrack (Middle-Bottom).
These constraints are used to guide directed sound synthesis into generating the appropriate soundtrack for the target video (Right).

nodes are considered similar when the absolute difference
between their respective ancestors’ and predecessors’ wavelet
coefficients is below a certain user-defined threshold δ. A small
value of δ ensures similarity to the input and a large value allows
more randomness.

A nodal match is found by first searching all the nodes at the
current synthesized tree level for nodes with the maximum
number of ancestors within the difference threshold δ. This initial
candidate set C is further reduced to candidate set C , by

retaining only the nodes from C with the maximum number of
up to k predecessors within the difference threshold δ (where k is
typically set to 5). The winning node is randomly chosen by
uniformly sampling from candidate set C . Complete details of

the algorithm can be found in Dubnov et al. [2002].

anc pred

anc

pred

4. Directed Sound Synthesis
The BJ algorithm works well with almost no artifacts on both
stochastic and periodic sound textures. However, no control is
possible over new instances of a sound texture since they are by
definition random. We now introduce high-level user-control
over the synthesis process. This is achieved by enabling the user
to specify which types of sounds from the input sound should
occur when, and for how long, in the output synthesized sound.
These user-preferences translate into either hard or soft
constraints during synthesis. In this section, we first look at how
these synthesis constraints are defined, and then, by what means
they are enforced in the modified BJ algorithm.

4.1 Constraint Specification
In order to synthesize points of interest in the soundtrack, the
animator must identify the synthesis constraints. First, the user
selects a source segment in the sample sound such as an explosion
in a battle soundtrack (Figure 4). Secondly, the user specifies a
target segment indicating when, and for how long, in the
synthesized sound the explosion(s) can be heard. The constraints
for the rest of the new soundtrack can be left unspecified, so that
in our video example, a battle-like sound ambience will surround
the constrained explosion.

The source and target segments, each defined by a start and
end time, are directly specified by the user on a familiar graphical
amplitude x time sound representation. Since the target soundtrack
has yet to be synthesized and therefore no amplitude information
is available, target segments are selected on a blank amplitude
timeline of the length of the intended sound. Note that the
number, length and combinations of source and target segments
are unrestricted, and that exclusion constraints can also be
specified so as to prevent certain sounds from occurring at
specific locations.

 The user can associate a probability with each constraint,
controlling its influence on the final sound. To this end, a
weighting curve is assigned to each target segment, designating
the probability of its associated source segment(s) occurring at
every point in the target area. The weights vary from [-1, 1],
where -1 and 1 are equivalent to hard-constraints guaranteeing,
respectively, exclusion or inclusion. Soft-constraints are defined
in the weight ranges (-1,0) and (0,1) specifying the degree with
which exclusion or inclusion, respectively, is enforced.
Furthermore, the reserved weight of 0 corresponds to
unconstrained synthesis.
 The special case, when inclusion targets with different
sources overlap, is dealt with by selecting the target with the
highest current weighting. For consistency, the user is prevented
from defining overlapping hard-constraints.

In order to use these constraints in our algorithm, we need to
extract all leaf and subsequent parent nodes of the wavelet tree
involved in synthesizing these source and target segments. To
each source and target segment(s) combination we assign a
unique constraint identifier. For example, the explosion
constraints will have a different identifier to the gun-shot
constraints. Using this we build two node-lists, S and T, which
contain the tree level and position offset of all nodes in,
respectively, the source and target wavelet-tree involved in the
constraint specification. T additionally contains the constraint
weight associated to each node. During the directed synthesis
process, if the currently synthesized node is defined in T, its
associated constraint identifier in T determines which nodes from
S, and subsequently in the input wavelet-tree, should be used as
potential candidates.

4.2 Hard and Soft Constrained Synthesis
Now that we know the source origins of every node at every level
in the target tree, we can modify the BJ algorithm to take these
constraints into account. In addition to enforcing similar ancestors
and predecessors, successor restrictions are imposed. Successor
nodes are defined as the neighboring nodes appearing forward in
time at the same tree level. Similarly to predecessor nodes, these
can be rather distant in terms of their tree graph topology.

Figure 4 (Top) Source regions A and B. (Middle) Weighting curve for A
and B. (Bottom) Directed synthesis output.

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

Let d be the successor look-ahead distance defined as
, where l varies from 0 to n corresponding

respectively to the root and leaf levels of the tree, and k is a user
constant defining the anticipation strength (typically set to 5%). In
this manner, d is kept consistent at different scales. We use d to
split up the space of all nodes into the set of constrained and
unconstrained nodes before carrying out matching on every node.

2ld = × k

Hence, if the currently synthesized node belongs to T or has
its d-th successor in T, or both, then is the corresponding set of
candidates inside and outside S satisfying the same constraint
identifier conditions. Let all remaining nodes be contained in the
set V . Nodal matching is then separately carried out on both
and V in parallel, resulting in two candidate sets C and C ,

defined, respectively as the constrained candidate set and the
unconstrained candidate set. They define the best matching
candidates for both the constrained and unconstrained sets. The
winning node is then randomly chosen by non-uniformly
sampling from C ∪ . Nodes in C are given the default

weight of 0.1 whereas the ones in C are all given the weight of

T’s current weighting. Depending on T’s weight value, this has
the effect of biasing the selection process in favor or against the
nodes in C . If T’s current weight is a hard-constrained 1, then

the winner is picked by uniform sampling from C only.

w

W
pred

w
V
pred

W
pred

W
pred

W
pred

V
predC V

pred

W
pred

While the above algorithm works fine in most cases,
Sometimes the quality of the matches found in C might be

inferior to those found in C due to the reduced search space.

We therefore want to prevent significantly inferior matches from
being chosen in order to maximize audio quality. This is

controlled by ensuring that the sum of the maximum number of
found ancestors in C and predecessors in C is within a user-

percentage threshold r of that of C and . Let m and

be, respectively, the number of ancestors and predecessors for the
best candidates currently in C and C within the randomness

threshold δ. Let and n be their equivalent in C and C ,

then if () then the candidates from
are discarded (r is usually set to 70%). The threshold r

controls the degree with which soft-constraints are enforced at the
cost of audio quality. We adopt a different strategy for hard-
constraints as explained below.

W
pred

W

V
anc

V
pred

W
anc

V

(V Vm n+

W
predC

w

W
anc

V

+ <

W
pred

V
predCV

anc

) r×

Wn

V
pred

W
pred

m

W Wm n

In the naïve BJ algorithm, initial candidates include all nodes
at the current level. Doing this over the whole tree results in a
quadratic number of checks. Hence, a greatly reduced search
space is obtained by limiting the search to the children of the
candidate set of nodes of the parent. However, on the borderline
between unconstrained and hard-constrained areas, the reduced
candidate might result in C being empty, since no node is

within the imposed threshold limits. Consequently, in our
algorithm, if no candidates are found in C whilst in hard-

constrained inclusion mode, a full search is conducted in S. If
matches within the threshold tolerance still cannot be found, the
best approximate match in S is utilized instead.

W
pred

W
pred

5. Automated User Control
In this section, we use the algorithm described in Section 4 to
present three different user-interaction methods to specify the
synthesis constraints. These include manual, semi-automatic and
fully automatic constraint definition.

5.1 Manual Control

The user starts by specifying one or more source regions in the
sample sound. In the example depicted in Figure 4, two distinct
source regions are defined corresponding to areas A and B (top).
Note that A is defined by two segments. The user then draws the
target probability curve for both sources A and B directly on the
timeline of the new sound. A's weightings are zero except for two
sections where short and smooth soft-constraints lead to a 1-
valued hard-constraint plateau. This results in region A smoothly
appearing twice, and nowhere else. On the other hand, B’s curve
also defines two occurrences but is undefined elsewhere,
imposing no restrictions. Thus sounds from B might be heard
elsewhere.

5.2 Semi-Automatic Control
In this mode of interaction, the motion data in the target
animation is used. The user associates sound segments with
motion events so that recurring similar motion events trigger the
same sounds. We detect all these recurring motion events, if any,
by finding all motion segments similar to the query motion, the
number of which is controlled by an adjustable similarity distance
threshold θ.

We support matching over 1D time-varying motion curves
such as 1D position or angle variations. Matches that are non-
overlapping and up to L times longer, and H times shorter, than
the query motion are retained (usually L is set to 2 and H to 0.5).
Similarity is calculated across the entire target motion for sliding
windows ranging from L to H in size. Similarity is determined by
applying the Iterative Deepening Dynamic Time Warping
(IDDTW) distance measure [Chu et al., 2002], a fast variant of
Bruderlin and Williams’s [1995] original Dynamic Time Warping
(DTW) on motion. By squeezing and stretching motions before
calculating their similarity, DTW produces better measure of
similarity between two motions because it is not as sensitive to
small distortions in the time axis as the Euclidean distance. We
recently have added support for more matching primitives such as
2D and 3D motions, as well as over the complete skeleton in
motion capture. Further details can be found in [PaperID 120,
2003].

By default, each motion that matches the user-selected motion
is given the same weight in the synthesis. Alternatively, the
synthesis weightings can be made proportional to the strength of
the corresponding matches. The effect is that strong motion
matches will have high probability of having the same audio
properties as the query, and inversely for weak matches. Let

xs be the similarity measure of a current match x, the

query’s audio weight (set by the user) and c, a user percentage,
then x’s audio strength, , is defined as:

qw

xw

1
1
x

x q
sw w c cθ

θ
 − = +  −  

−

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

By modifying the value of c, the animator can modulate the

effect of the matching strength on the resulting audio strength.
Our interface is further automated by performing audio

matching to find similar audio segments to the query sound
segment in the rest of the sample soundtrack. These audio
matches, along with the query audio, are combined to form the
same source audio segment for the motion matches. By
performing sound-spotting audio matching [Spevak and
Polfreman, 2001], perceptually similar non-overlapping audio
segments to the query are found in the rest of the soundtrack. An
interface slider enables the animator to control the number of
returned audio matches. This is especially valuable for selecting
frequently recurring sounds over extended soundtracks.

5.3 Fully-Automatic Control
In contrast to the approaches above, this method requires
practically no user-intervention beyond providing the following
inputs: a sample animation with its soundtrack and a different
animation, preferably of the same nature. After the user specifies
the 'steering' motion track, a new soundtrack is automatically
synthesized with high probability of having the same sounds for
the same motion events as those in the sample animation.

We therefore need to determine which portions of the source
motion best match with those in the new, target motion. This is
achieved by using the motion matching algorithm recently
presented in Pullen and Bregler [2002]. The algorithm is depicted
in Figure 5. The motion curve is broken into segments where the
sign of the first derivative changes. For better results, a low-pass
filter is applied to remove noise beforehand. All of the fragments
of the (smoothed and segmented) target motion are considered
one-by-one, and for each we select whichever fragment of source
motion is most similar. To achieve this comparison, the source
motion fragments are stretched or compressed in time to be the
same length as the target motion fragment. This yields the K
closest matches for each target fragment. An optimal path is
found through these possible choices to create a single stream of
fragments. The calculated path maximizes the instances of
consecutive fragments as well maximizing the selection of the top
K closest matches [Pullen and Bregler, 2002]. We then assign the
audio of the matching source fragment to that of the target
fragment.

At the end of this process, every target fragment has been

assigned a single source audio segment taken from its matching
source fragment. From this, an index of source/target constraint

combinations is constructed by merging targets with overlapping
sources. In practice, soft constraints, where preferred nodes have
weights just over 0, give the best results. This is because hard-
constraints can produce artifacts if used extensively. Furthermore,
additional weighting is given to perceptually significant sounds so
as to increase the likelihood that they will be enforced. Weights
are therefore made proportional to the average RMS volume over
the entire audio segment. Louder sounds usually attract more
attention and therefore should have higher priority.

The resulting target soundtrack is usually of a higher quality
if there are sections in time where fragments that were
consecutive in the source data are used consecutively to create the
path. This is accommodated by Pullen and Bregler’s [2002]
method as the algorithm considers the neighbors of each
fragment, and searches for paths that maximize the use of
consecutive fragments.

By breaking up the motion at first derivative sign changes, we
enforce better audio continuity over portions of motion that are
constant. On the other hand, segmentation based on second
derivative changes, or inflexion points, gives better audio
continuity at changes in the motion. Consequently, our system
simply generates two soundtracks, one for each segmentation
strategy, and the animator picks whichever best fits his or her
expectations.

6. Results and Discussion
We now present several applications of Sound-by-Numbers. The
examples are in the accompanying video as printed figures could
not convey our results meaningfully.

The first example illustrates the use of manual control to
derive a new sound track from an exsiting one when the
corresponding video sequence is edited. Only a few seconds were
necessary to synthesize 30 seconds of output at 32 KHz on a
1.8Ghz processor. The synthesis time increases with the length of
the synthesized target sound and its sampling frequency.

In our next example semi-automatic control is used to
produce the soundtrack of a flying bird animation. All similar
flight patterns to the user selected ones are assigned to the same
target sounds, whilst the rest of the soundtrack conveys the jungle
background sounds. Notice that no complex audio editing was
required here, just a few mouse clicks. Not surprisingly, better
results are obtained if the source and targets regions are similar in
length, otherwise unexpected results occur. For example, a
laughing sequence sounds unnatural if it is prolonged for too long
using hard-constraints. We also found that the directed synthesis
very occasionally switches to approximate matching (maybe for
one node out of thousands for the example here) so sound quality
is rarely adversely affected. This can be eliminated by activating
the automatic padding of a short soft-constraint gradation before
and after hard-constraint segment boundaries. Repetitions in the
synthesized sounds can be discouraged by simply lowering the
weights of candidates that have just been picked. Finally, if the
results are not what the user expected, at most a small number of
quick iterations are required to produce a soundtrack that better
accommodates the user's intentions.

Figure 5 Phases involved in fully-automatic control: (Phase 1) The
source motion, its soundtrack and the target motion are entered. (Phase 2)
Both motions are broken up at sign changes in first derivative. (Phase 3)
Matches between the source and target motion fragments are found.
(Phase4) Each fragment in the target motion now has a source audio
segment assigned.

Our final example takes advantage of our fully automated
approach to generate new racing car sounds to accompany the
edited version of the original racing car animation.

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

7. Limitations
Good candidates input sources are sounds that allow themselves
to be manually re-arranged without incurring perceptual
problems. This is especially true of traffic sounds, crowd
recordings, jazz and ambient music, audience laughing and
collections of short sounds where maintaining the long-term order
of occurrence is not essential. Sounds with clear progressions,
such as a very slowly increasing siren sound, cannot be
meaningfully rearranged by hand, and therefore, cannot also be
done by our algorithm. Similarly, our method is not appropriate
for speech processing including human singing. This does not
invalidate our work since the supported sound types still cover a
wide variety of video and animation segments.

8. Conclusion and Future Work
In this paper we have introduced a fully automatic algorithm for
generating soundtracks for an input animation based on other
animations soundtracks. In order to achieve this, we have
described a new sound synthesis algorithm capable of taking into
account users’ preferences, whilst producing high-quality output.
Multiple interaction modes provide a variety of user intervention
levels ranging from precise to more general control of the
synthesized soundtrack. Ultimately, the fully-automated method
provides users with a quick and intuitive way to produce
soundtracks for computer animations.

Although it is feasible to use conventional audio software,
such as ProTools, to manually generate very short soundtracks,
it rapidly becomes impractical for the production of extended
soundtracks. Re-arranging the whole soundtrack so as to produce
constantly varying versions of the original would quickly become
cumbersome in ProTools. Also, in our system, constraints can
be later changed on-the-fly leading to a full re-synthesis of the
soundtrack.

There are still many opportunities for future work such as the
integration of our system into video textures [Schödl et al., 2000]
and motion synthesis algorithms [Pullen and Bregler, 2002;
Arikan and Forsyth, 2002; Li et al., 2002], as well as real-time
operation.

Currently, overlapping target regions are dealt with by
choosing the highest probable target. Sound morphing techniques,
such as [Serra et al.,1997], could be applied to combine source
sounds in overlapping regions according to their weightings.
Additionally, identifying quasi-silent portions [Tadamura and
Nakamae, 1998] and giving them lower priority during
constrained synthesis would improve constraints satisfaction and
therefore control.

9. Acknowledgements

We thank Mark Grundland, Loic Barthe, Neil Dodgson and
Carsten Moenning for providing valuable feedback. This work is
supported by the UK Engineering and Physical Sciences Research
Council and the Cambridge Commonwealth Trust.

10. References

ARIKAN, O., AND FORSYTH, D.A. 2002. Interactive Motion Generation

From Examples. In Proceedings of ACM SIGGRAPH 2002, San
Antonio, Texas, August 22-27.

BAR-JOSEPH, Z., LISCHINSKI, D., WERMAN, M., DUBNOV, S., AND EL-
YANIV, R. 1999. Granular Synthesis of Sound Textures using

Statistical Learning. In Proceedings of the International Computer
Music Conference, 178-181.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In
Proceedings of ACM SIGGRAPH 1995, 97-104.

CHU, S., KEOGH, E., HART, D. AND PAZZANI, M. 2002. Iterative
Deepening Dynamic Time Warping. In Second SIAM International
Conference on Data Mining.

DUBNOV, S., BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND
WERMAN, M. 2002. Synthesizing sound textures through wavelet
tree learning. In IEEE Computer Graphics and Applications, 22(4),
38-48.

FOOTE, J. 2000. ARTHUR: Retrieving Orchestral Music by Long-Term
Structure. In Proceedings of the International Symposium on Music
Information Retrieval, Plymouth, Massachusetts.

HAHN, J., HESHAM, F., GRITZ, L., AND LEE, J.W. 1995. Integrating
Sounds in Virtual Environments, Presence Journal.

HAHN, JAMES, J.GEIGEL, J., LEE, J.W., GRITZ, L., TAKALA, T., AND
MISHRA, S. 1995. An Integrated Approach to Sound and Motion,
Journal of Visualization and Computer Animation, Volume 6, Issue
No. 2, 109-123.

HERTZMAN, A., JAVOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D.
H. 2001. Image Analogies. In Proceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, 327-
340.

HOSKINSON, R., AND PAI, D., 2001. Manipulation and Resynthesis with
Natural Grains. In Proceedings of the International Computer Music
Conference 2001.

LI, Y., WANG, T., AND SHUM, H-Y. 2002. Motion Textures: A Two-Level
Statistical Model for Character Motion Synthesis. In Proceedings of
ACM SIGGRAPH 2002, San Antonio, Texas, August 22-27.

MISHRA, S., AND HAHN, J. 1995. Mapping Motion to Sound and Music in
Computer Animation and VE, Invited Paper, Pacific graphics, Seoul,
Korea, August 21-August 24.

O'BRIEN, J. F., SHEN, C., AND GATCHALIAN, C. M., 2002. Synthesizing
Sounds from Rigid-Body Simulations. In Proceedings of ACM
SIGGRAPH 2002 Symposium on Computer Animation.

O'BRIEN, J. F., COOK, P. R., AND ESSL G., 2001. Synthesizing Sounds
from Physically Based Motion. In Proceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, August
11-17.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Deformable models. The
Visual Computer, 4, 6, 306-331.

TAKALA, T., AND HAHN, J. 1992. Sound rendering. In Proceedings of
SIGGRAPH 92, Computer Graphics Proceedings, Annual
Conference Series, 211-220.

NAKAMURA, J., KAKU, T., HYUN, K., NOMA, T., AND YOSHIDA, S. 1994,
Automatic Background Music Generation based on Actors' Mood
and Motions, Journal of Visualization and Computer Animation,
Vol. 5, No. 4, 247-264.

CARDLE, M., VLACHOS, M., BROOKS, S., KEOGH, E. AND GUNOPULOS,
D., 2003. Fast Motion Capture Matching with Replicated Motion
Editing. Proceedings of ACM SIGGRAPH 2003 Technical Sketches.

PULLEN, K., AND BREGLER, C. 2002. Motion Capture Assisted Animation:
Texturing and Synthesis, In Proceedings of ACM SIGGRAPH 2002,
San Antonio, Texas, August 22-27.

ROADS, C. 1988. Introduction to granular synthesis, Computer Music
Journal, 12(2):11–13.

SCHÖDL, A., SZELISKI, R., SALESIN, AND D., ESSA, I. 2000. Video
textures. In Proceedings of SIGGRAPH 2000, pages 489-498, July.

SERRA , X., AND BONADA, J., HERRERA, P., AND LOUREIRO, R. 1997.
Integrating Complementary Spectral Models in the Design of a
Musical Synthesizer, Proceedings of the International Computer
Music Conference.

SPEVAK, C., AND POLFREMAN, R., 2001. Sound spotting - A frame-based
approach, Proc. of the Second Annual International Symposium on Music
Information Retrieval: ISMIR 2001.

TADAMURA, K., AND NAKAMAE, E. 1998. Synchronizing Computer
Graphics Animation and Audio, IEEE Multimedia, October-
December, Vol. 5, No. 4.

http://citeseer.nj.nec.com/arikan02interactive.html
http://citeseer.nj.nec.com/arikan02interactive.html
http://citeseer.nj.nec.com/bruderlin95motion.html
http://citeseer.nj.nec.com/chu02iterative.html
http://citeseer.nj.nec.com/chu02iterative.html
http://www.psrg.lcs.mit.edu/~zivbj/graphics/soundTexture.pdf
http://www.psrg.lcs.mit.edu/~zivbj/graphics/soundTexture.pdf
http://citeseer.nj.nec.com/foote00arthur.html
http://citeseer.nj.nec.com/foote00arthur.html
http://www.seas.gwu.edu/~graphics/papers/presence.ps
http://www.seas.gwu.edu/~graphics/papers/presence.ps
http://www.seas.gwu.edu/~graphics/papers/soundjvca.ps
http://citeseer.nj.nec.com/hertzmann01image.html
http://www.cs.ubc.ca/~reynald/cr1193.pdf
http://www.cs.ubc.ca/~reynald/cr1193.pdf
http://www.cc.gatech.edu/dvfx/readings/li-s02.pdf
http://www.cc.gatech.edu/dvfx/readings/li-s02.pdf
http://www.seas.gwu.edu/~graphics/papers/pg-music.ps
http://www.seas.gwu.edu/~graphics/papers/pg-music.ps
http://citeseer.nj.nec.com/obrien01synthesizing.html
http://citeseer.nj.nec.com/obrien01synthesizing.html
http://citeseer.nj.nec.com/obrien01synthesizing.html
http://citeseer.nj.nec.com/obrien01synthesizing.html
http://www.cs.princeton.edu/courses/archive/spring01/cs598b/papers/takala92.pdf
http://www.cl.cam.ac.uk/users/mpc33/sketch03.html
http://www.cl.cam.ac.uk/users/mpc33/sketch03.html
http://citeseer.nj.nec.com/532650.html
http://citeseer.nj.nec.com/532650.html
http://citeseer.nj.nec.com/odl00video.html
http://citeseer.nj.nec.com/odl00video.html
http://www.iua.upf.es/~xserra/articles/spectral-models/
http://www.iua.upf.es/~xserra/articles/spectral-models/
http://ismir2001.indiana.edu/posters/spevak.pdf
http://ismir2001.indiana.edu/posters/spevak.pdf
http://www.computer.org/multimedia/mu1998/u4063abs.htm?SMSESSION=NO
http://www.computer.org/multimedia/mu1998/u4063abs.htm?SMSESSION=NO

Eurographics/SIGGRAPH Symposium on Computer Animation (2003)

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. Foley automatic:
Physically-based sound effects for interactive simulation and
animation. In Proceedings of SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, 537–544.

VAN DEN DOEL, K., AND PAI, D. K. 1996. Synthesis of shape dependent
sounds with physical modeling. In Proceedings of the International
Conference on Auditory Display.

http://citeseer.nj.nec.com/vandendoel01foleyautomatic.html
http://citeseer.nj.nec.com/vandendoel01foleyautomatic.html
http://citeseer.nj.nec.com/vandendoel01foleyautomatic.html
http://www.cs.ubc.ca/~kvdoel/publications/icad96.pdf
http://www.cs.ubc.ca/~kvdoel/publications/icad96.pdf

	Bar-Joseph Sound Synthesis
	Constraint Specification
	Hard and Soft Constrained Synthesis
	Manual Control
	Semi-Automatic Control
	Fully-Automatic Control

	Limitations
	Conclusion and Future Work
	Acknowledgements
	References

