

Degree-of-Interest Trees:
A Component of an Attention-Reactive User Interface

Stuart K. Card, David Nation
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304 USA

card@parc.com, dnation@acm.org

DOI Vis UIData
User

DOI Vis UIData
User

ABSTRACT
This paper proposes Degree-of-Interest trees. These trees use
degree-of-interest calculations and focus+context visualization
methods, together with bounding constraints, to fit within pre-
established bounds. The method is an instance of an emerging
“attention-reactive” user interface whose components are de-
signed to snap together in bounded spaces.

Figure 1. Attention-Reactive User Interface.

The instance of this paradigm we explore here is a method for
dynamically interacting with hierarchical information in trees.
Hierarchical displays are important not only because many inter-
esting collections of information, such as organization charts or
taxonomies, are hierarchical in form, but also because important
collections of information, such as Websites, are approximately
hierarchical. Whereas practical methods exist for displaying trees
up to several thousand nodes, no good methods exist for display-
ing general graphs of this size. Hence, tree-based displays are
more important than just as displays of hierarchical data.

Categories and Subject Descriptors
H.5.2 (Information Interfaces and Presentation): Graphical user
interfaces. I.3.6. (Methodology and Techniques): Interaction
techniques.

General Terms
Human Factors

Keywords
Degree-of-Interest Trees, DOI Trees, focus+context, information
visualization, attention-reactive user interfaces, fisheye displays,
hierarchical display, tree

Good visualizations of hierarchical information would (1) allow
adequate space in nodes to display information, (2) allow users to
understand the relationship of a node to its surrounding context,
(3) allow users to find elements in the hierarchy quickly, and (4)
fit into a bounded region. This last requirement is desirable in
order to insure information fits on a display or that it can compose
together with other display elements in an application without the
need for scrolling.

1. INTRODUCTION
Current technology makes it feasible to bring increasingly large
amounts of information to bear in computer applications. This
paper explores one instance of a general strategy for constructing
interfaces for high-information applications. The strategy is the
Attention-reactive User Interface (AUI). Such an interface con-
sists of two parts. One part is a method for continuous prediction
of the user’s instantaneous Degree-of-Interest (DOI) over items in
the field of information. The other part is a dynamic visual dis-
play of the information that uses the DOI calculation to reduce the
time cost of information access or to manage attention. DOI cal-
culations could be used to allocate display resources, decide
which elements to display, change representation, highlight, or
take initiative in a mixed-initiative dialogue (see Figure 1).

For purpose of illustration, we shall use the display of organiza-
tion charts as our example of hierarchical data, keeping in mind
that the same techniques work for many different types of trees.
Organization charts are trees (at least the ones we shall discuss
first are) and have nodes that display several properties per node.

2. PREVIOUS WORK
There is a considerable literature on the use of trees for informa-
tion visualization and on the layout of trees. The algorithms of
tree layout from a graph drawing point of view have been summa-
rized in Di Battista, et al [1]. Forms of trees from an information
design and information visualization point of view have been
surveyed in Bertin [2], Card et al [3], and Herman et al [4].

2.1 Simple Static Layouts
Much work on tree layouts assume trees will be static and
concentrate on methods to layout trees that meet aesthetic criteria
such as minimal line crossings, placing nodes at the same tree
depth at the same level, and compactness. The simplest way to
lay out trees is to lay them out uniformly (see Plate 1). The num-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Advanced Visual Interface ‘02, May 22-24, 2002.

Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

mailto:card@parc.com
mailto:dnation@acm.org

ber of nodes at the leaves of all the subtrees is computed and
multiplied by an amount of space per node plus spacing between
nodes and between subtrees. This method works for small trees,
but any attempt to portray a tree of moderate size, say 1000
nodes, will start to approximate the appearance of a horizontal
line, since the width increases exponentially while the height
increases only linearly.

2.2 Compressed Static Layouts
More sophisticated methods of tree layouts have been developed
that are spatially compact. The slide portions of deeper subtrees
underneath shallow subtrees. For example, the classic Reingold-
Tilford layout [5] and its later refinements, creates a top-down,
reasonably compact tree that satisfies various aesthetic criteria,
such as symmetry and the same shape of common subtrees. Tree
space can also be compressed by the use of recursive tree layout
algorithms. For example, H-trees lay out the first few branches as
an H with later branches forming an H off those. Ball-trees lay-
out the branches as spokes from a root with later branches as
spokes from the tips of these (see Herman et al [4]).

2.3 Containment Trees
The tree layout algorithms discussed so far use node and link
diagrams to represent trees. Trees have also been represented by
containment, for example, as a set of nested circles. One class of
particularly interesting containment trees is the TreeMap [6]. A
TreeMap is a technique in which lower subtrees are contained
within higher nodes of the tree. Space is divided, say vertically,
into a number of sections equal to the number of branches at the
top level. Each section is then divided horizontally according to
the number of branches at the next level down in the tree. Divi-
sion of the space continues vertically and horizontally until it is
too small to divide. The algorithm does not allow room for the
content of non-terminal nodes, but the technique can be modified
so that each division has extra space for node contents. One ad-
vantage of TreeMaps is that they stay within predetermined space
bounds, but there is little room for node content, especially of
non-terminal nodes, and aspect ratios of the nodes vary widely,
obscuring simple relationships Recent attempts to order or
squarify the visualizations [7] have mitigated this effect.

2.4 Interactive Tree Layouts
The techniques discussed so far share several problems for use as
components of information visualization systems. First, they do
not scale sufficiently. The tree in Plate 1 has only 341 nodes, but
is already nearly unreadable. Even using one of the compressed
tree layouts will not adequately extend the number of nodes that
can be handled. Second, much of the literature on tree layouts
does not consider trees in which the nodes themselves contain
significant information and require a significant amount of the
layout space. Third, many of the techniques for tree layout are
not bounded in space. They can therefore not be used easily as
modular components of information displays. Interactive trees
handle the first two of these problems by displaying only a por-
tion of the nodes at one time. A typical interactive technique is
that of the Apple Hierarchical Filing System. Each level in the
tree can be expanded individually by clicking on a small triangle.
Thus the user can expand portions of the tree that are to be com-
pared on the screen, while keeping other portions of the tree com-
pressed by eliding nodes below the compressed subtree root. The
tradeoffs are that considerable manual manipulation must be per-
formed by the user to constantly adjust views, and there is no

guarantee the tree will fit, leading to more manual manipulation
of scroll bars. Since the user cannot see large portions of a large
tree, the user may have a difficult time navigating the tree or un-
derstanding the larger shape of the tree.

2.5 Focus+Context Trees
Focus+context trees add automation for automatically choosing
which portions of the tree to show at any instant. In this way,
they reduce the time cost of navigating around the tree. Four
main methods of expanding focus+context trees have been pro-
posed. The first is logical filtering of nodes. Furnas [8] describes
a class of fisheye techniques in which nodes are automatically
displayed or elided according to the user’s computed degree-of-
interest (DOI) in them. The estimated

DOI of a node = Intrinsic Importance
 – Distance from a focus node.

The Intrinsic Importance of a node is its distance from the root
and the Distance of a node is the number of nodes that must be
traversed by following parent and child links from the node of
interest until reaching the subject node. Those nodes whose DOI
lies below a certain threshold are not displayed. If the user indi-
cates interest in some node, say by selecting it, this calculation is
performed again and the display elides those nodes below thresh-
old. In this way, the display of the tree follows the user’s chang-
ing interest. The limitation of this technique is that there is no
guarantee the displayed trees will fit in any display bounds. The
technique is especially problematic when there are a large number
of sibling nodes in a branch.

A second class of focus+context techniques uses geometric dis-
tortion. An example is the hyperbolic tree [9, 10]. A visual
transfer function is defined that distorts space such that the area of
interest is magnified at the expense of nodes of the trees some
distance from this interest. Selecting a node moves it to the cen-
ter (or side) of the display. Nodes further out are smaller and
closer to each other. The display stays within fixed boundaries.
But only a limited number of links out from the focus node can be
seen. This technique is less suited for cases in which the DOI
varies in discontinuous ways across the tree, although there can
be a limited number of multiple foci. A variant of geometrical
distortion is the cone-tree (Robertson et al, [11]). Cone-trees
arrange the nodes in a 3-D tree. Selecting a node rotates a branch
of the cone-tree, bringing related nodes into the foreground while
sending other nodes into the background. This technique uses
natural perspective and occlusion to achieve some of the effect of
geometric distortion, but in a way that the user does not experi-
ence the geometric compression as distortion. Furnas’ fisheye
view technique can be combined with cone-trees, thus allowing
the display of larger trees on the order of 10,000 nodes [12].
Because a cone tree is a 3-D display, some of the nodes occlude
each other.

Another class of technique for expanding focus+context displays
is semantic zooming. As the display is zoomed in and nodes are
expanded past a certain threshold their content changes. Fox and
Perlin [13] used this technique in their Pad system to expand a
calendar, which can be seen as a sort of containment tree.
Mackinlay et al [14] also used semantic zooming in calendars and
other spiral trees. The tree is arranged in a 3D spiral. One node
from the tree is expanded and its content semantically zoomed to
reveal additional structure. The higher-level nodes are spiraled
toward the center and made more distant from the user (using

perspective to reduce their size). This tree layout has the virtue
that it stays confined in fixed bounds, but the user only sees a
limited subset of the nodes in the tree, essentially a view looking
upward in the tree toward the root. Graham and Kennedy [15]
used both semantic zooming and geometrical distortion to display
biological taxonomies.

A final focus+context technique is to cluster nodes far from the
point of focus. Those nodes near the point of interest are ex-
panded into their constituent parts; those more distant are kept in
an aggregate form. This technique was used in SemNet [16] and
could be applied to trees.

3. DEGREE-OF-INTEREST TREE (DOI
TREE) SOLUTION
Our Degree-of-Interest Trees (DOI Trees) solution combines all
four focus+context techniques with a method to ensure that the
tree stays within a predefined bounding box. DOI Trees combine
(a) an expanded computation of users’ DOI estimates with (b)
logical filtering to elide nodes of low DOI, (c) geometric scaling
of node size according to DOI so as to be able to hold different
levels of information, (d) semantic scaling of the contents of the
nodes with node size, (e) clustered representation of large unex-
panded branches of the tree, and (f) animated transitions, de-
signed to speed the user’s rapid understanding of changes in the
tree. New techniques are developed for many of these parts.

3.1 Degree-of-Interest Computation
The degree of interest calculation is expanded beyond that used
by Furnas. Whereas Furnas’s calculation assigns all siblings the
same distance from the focus node and hence the same DOI
value, our calculation treats the children of a parent node as or-
dered and assigns fractional DOI offsets to the children based on
order distance from the focus node. The farther the sibling from
the focus node, the more the fractional decrement in its DOI (but
the decrement is always less than 1). This allows the visualiza-
tion part of the program to decide which sibling nodes to com-
press and how to compress them. Whenever the user clicks on a
tree node, that node becomes the focus node, DOI values are re-
computed for each node of the tree, the tree is laid out again, and
an animated transition moves to the next layout. Multiple-foci
can be determined by values of the data or hits in a search.

3.2 Visualization of Tree
There are a small number of possible node sizes (we currently use
three main sizes). The largest size is sufficient to display the
entire full content of the node. For an organization chart, this
would include a person’s name, picture, organization, title, exten-
sion, room number, web page, and possible other information. A
middle size node still displays enough information to identify a
person including a few facts about him. A small node just dis-
plays the fact that a node exists in that position and hence shows
tree structure (and a mouse target for tree expansion). In addition,
nodes have multiple faces to allow the storing of additional in-
formation. A table maps DOI values into node sizes. Plate 2
shows the display of the uniform tree in the Plate 1 (with a
branching factor of 4 at each node) when the focus is at the root.
The larger node has automatically been selected for the focus
node and its color changed. Smaller node sizes have been auto-
matically selected by the algorithm for nodes with lower DOI.
Optionally, a small “fade value” is assigned to cause nodes farther

away that would be the same size to be a little smaller. This is
equivalent to increasing the weighting on the DOI distance func-
tion.

In Plate 3, one of the nodes (node 3) on the next level down has
been selected, changing the DOI calculation for the nodes. Now
when the tree is displayed, node 1 is reduced in size, node 3 is
increased, and nodes below the focus tree are increased in size,
according to the computed DOIs for the nodes. The transition
proceeds by a smooth animation from one state to another to keep
the user oriented and unconfused.

In Plate 4, one of the lowest nodes has been selected, either by
selecting directly, or by selecting nearby nodes, causing the target
node to get larger and be more easily selectable.

4. UTILIZATION OF THE SPACE RE-
SOURCE
Space on the display is a resource. Making the tree stay within its
resource requires methods for monitoring and making adjustments
to the tree visualization. Often, to stay within its bounding box,
the tree visualization must be compressed. But if the space is
being under-utilized, the tree might also be profitably expanded to
take advantage of the additional space. Both compression and
expansion are controlled by the users’ estimated DOI for each
node.

4.1 Compress to Fit
The fact that the basic DOI-based algorithm very greatly reduces
the pressure on the space resource sets up the condition for algo-
rithms that enforce space boundaries to be successful. There are
two cases to consider: the tree not fitting in the X direction and
the tree not fitting in the Y direction.

Compression in X. The tree not fitting in the X direction is com-
mon and occurs either because of a large branching factor below
one node or else because there is an accumulation of widths
across several subtrees. In the latter case, the nodes below each
box are laid out in the horizontal space available for each box.
This pattern is visible in Plate 5. The nodes with the highest
DOIs in a row have the largest node size. This node size estab-
lishes the Y height of a region in which to lay out the immediate
descendents of a node. If there are too many Y descendents hori-
zontally, they are folded into multiple rows according to a com-
mon organization chart convention (with a vertical line joining
the rows, see Plate 10). If the branching factor of individual sub-
trees is large, then the nodes are overlapped as in Plate 5. If there
are elided nodes below a threshold DOI value, then a triangular
symbol proportionate to the log of the number of nodes is used.

To handle trees too wide for the bounding box, the box is divided
horizontally into three regions (Plate 6): The regular free layout
zone, a compression zone, and an aggregation zone. Typically,
70% of the screen is in the free layout zone, with 30% in the
combined compression and aggregation zones. If necessary, the
horizontal layout will be compressed (as in row 3 of Plate 5) for
some of the nodes by overlapping them. As the mouse is moved
over these nodes, they spring to the front, overlapping their
neighbors, thereby allowing the user to peruse them. Space in the
compression and aggregation zones is allocated according to the
fractional DOI value of each node. By default, the value gets
smaller as the node gets closer to the edge of the display. With

3. Node rotation. The normal view of nodes shows them as 3D
boxes. The 3D property is meant to suggest that the boxes have
alternative faces. Stroking a box (by dragging the mouse horizon-
tally over a box) makes the box appear to rotate such that another
side of the box faces forward. This allows more data items to be
associated with a node that are quickly accessible. Plate 9 shows
the rotation of the nodes. Plate 9(a) shows a frame in mid-
rotation; Plate 9(b) shows the completed rotation. In the plate, the
picture has been expanded to fill the whole node side, to serve as
a better cue—another form of semantic zooming. There are op-
timally three faces to a node—front, left, and right (more would
be confusing).

large numbers of nodes, multiple nodes may occupy the same
display location. Only one of the nodes will be displayed. If that
node is selected as the focus node, it will be shifted to the free
layout zone and surrounding nodes will then be visible. The use
of DOI to do selective expansion and the use of folding rows
greatly increases the size of tree that can be horizontally laid out.
The use of compression and aggregation zones ensures that all
trees can be fit within the space.

Compression in Y. It can also happen that a tree would be too
deep vertically to fit within its space. Normally the tree is then
scaled to fit within the Y dimension. If the scaling would result in
nodes that are too small to display their contents, nodes are either
elided lower in the tree or at the top, depending on the DOI and
the position of the node of interest. First, if the nodes for a tree
are less than a threshold DOI, then they are elided and replaced
by an elision graphic, essentially representing the nodes as a clus-
ter. Since nodes decrease intrinsic importance with distance from
the root and in distance importance with distance from the focus
node(s), the chain of nodes from the focus node through succes-
sive parent nodes to the root will have the same DOI value except
that the fade feature will gradually make the nodes smaller as they
approach the root node. Since the tree is scaled to fit within the
window, this could cause all of the nodes to become very small
for very deep trees. To deal with this problem a top portion of the
tree is removed and replaced with an elision graphic.

4.4 Tree Transitions
User orientation in the tree is preserved by making the views of
the tree animate into each other. The animation time is set at a
desirable level, usually in the range of (0.5~1.0 sec) (see [17]).
The average draw time per frame for recent frames is used to set
the number of animation frames that can be drawn in this time.
The in-between frames show a linear change in each node’s size
and position. It is important that the choreography of animated
transitions be understandable by the user. In fact, the necessity
for simple-to-understand transitions was found to limit tree lay-
outs. For example, Plate 10 employs a folding convention often
used in organization charts. Implementation of similar layouts
convinced us that it is difficult to make tree transition animations
with such layouts that are understandable to the user, except in
the case where the stacked rows are of the smallest size nodes
(e.g., as in Plate 5). Rapid-to-understand transitions are very
important, because focus+context displays use system dynamics
to substitute for being able to show the entire tree. The user must
have the experience that there is a single tree that is being
stretched and pulled as it is being explored.

4.2 Expand to Fit
Sometimes the algorithms described so far might leave extra
blank space on the display below the focus node. Therefore, an
alternative version of the algorithm, switch selectable by the user,
expands part of the tree into this space. The way it does this is
that if there is still vertical space available on the display, the
“most interesting node” is expanded.

5. SEARCH AND MULTIFOCAL DOI
TREES

This could (1) be the node with the highest DOI on the row, or it
could (2) be the node with the largest number of descendents, or
(3) it could be the node with the highest “information scent” as
determined by key words typed by the user or (4) the words of
greatest frequency in the nodes selected or (5) by other means.
Plate 7(b) shows the tree of Plate 7(a) expanded according to the
subtree with the most nodes.

DOI calculations can be done based on computations other than
the user’s point of attention used above. An example is a user
searching over a collection. This often results in multiple initial
focal points from which to start the DOI calculation. The interest
in a given node may be composed of DOI generated from multi-
ple sources. In Plate 12, the user has searched for the name Stefik
in the organization chart. The result reveals that Stefik appears
three times and reports to himself twice. The chart shows these
nodes, but it also shows them in context to the rest of the organi-
zation chart. The visualization makes it easy to find answers to
questions like “to whom does Stefik report?” or “who is the lone
person reporting to Stefik in one of his capacities?” or “who are
all the research fellows and how are they distributed across labo-
ratories?”

4.3 Within-Node Compress to Fit—Semantic
Zooming
Each node also represents an assigned space resource within
which there are items to display. In our example organization
chart application, these fields include attributes such as post
name, post reported to, name, title, office extension, email, pic-
ture file URL, and home page URL. Just as we used compress-to-
fit techniques for the layout, we can also use semantic zooming
compress-to-fit techniques within the node:

6. USES OF DOI TREES 1. Data deletion. Smaller nodes only display some of the data
items. DOI Trees have many uses. Here we list just a few:
2. Word abbreviation. Words and phrases are abbreviated if there
is not room on the line where they are displayed. For example,
Vice President becomes V.P. The system uses a text file of ab-
breviations plus some heuristics to generate abbreviations. Plate
8 shows the DOI Tree of an organization chart with the green
node selected. The effect of data deletion and word abbreviations
on the middle-sized nodes can be seen.

Information Browser. Items in the tree could be linked to arbi-
trary URL pages or to programs, such as an email program.
Hence, the tree could act as a browser across pages of WWW data
(Plate 11). For some applications, such as the organization chart,
the tree as a browser operates more quickly than a conventional
WWW browser page. This is because a group of the pages can be
on the screen together in their relationship.

Organization Chart. This is the application we have used as an
example. In addition to displaying the organization chart and its
use in finding people in the organization, the URL links on the
nodes of the tree also serve as gateways to supporting data (Plate
8). This chart has over 400 nodes, is accessible over the Web,
and combines all the information contained in ten separate or-
ganization charts (each of which fills a page). We also maintain a
larger organization chart several times its size. By searching for a
name or by browsing the chart, the details of the individual or-
ganizations are revealed. Furthermore, the chart serves as a gate-
way into the organizational home pages of the different organiza-
tions (accessed by clicking the appropriate link within the node)
or personal home pages. It also could be used to access email to
any of the individuals whose email is given on the chart by sim-
ply clicking the link.

Web site visualization. Another use is for views of Web sites,
which have been coerced into tree form. Thumbnail miniatures of
pages could be displayed in the nodes. Full size displays of the
pages could be displayed beside the browser.

Web site statistics. The DOI of individual pages in the web site
could be set to a function of the number of hits that page has re-
ceived in the last month or week or hour or other time period.
Thus, site sponsors could watch the activity of their web sites.

Databases. Databases that are expressible by trees could be dis-
played and searched. For example, the 7000-node taxonomic
database used for competitive tests at CHI is shown in Plate 13.
By following the higher-level groupings, the user has found the
node “Ebola Virus.”

Multilinked databases. Many databases that are not trees can also
be displayed as DOI Trees. An example of such a database is
given in Plate 14. The database is coerced into a tree. Additional,
non-tree links are revealed as blue lines (as in the plate) when the
mouse is moved over them. Because of the mapping into the tree,
some nodes may be duplicated in the structure (these are colored
pink in the plate). By using these techniques, complex structures
that would be difficult to plot as generalized graphs are plotted as
trees, but the other linkages can still be investigated.

Email streams visualization. Email streams could be represented
as trees. The DOI for these streams could be generated based on
the content similarity and tree closeness.

6.1 Data Source and Authoring
The data for DOI Trees can be derived from a database. They can
also be read from tab-delimited files. Users can thus prepare and
edit trees for DOI Tree display by using normal spreadsheets
without any programming. The present embodiment of DOI
Trees enables users to place arbitrary bitmaps as backgrounds to
the tree and to the nodes. This allows the display of these trees to
be readily adapted to presentation requirements of an organiza-
tion.

7. DISCUSSION
The evaluation of dynamic visualizations such as DOI Trees is a
subtle undertaking. Philosophically, we do not believe it is suffi-
cient to do a simple system A vs. system B human factors evalua-
tion on DOI Trees, because the results may depend on the task,
the contents of the nodes, and perceptual properties of the visuali-
zation design, all of which need to be teased out. Our previous

studies on the hyperbolic tree required lengthy studies using eye-
movements and scales of semantic ambiguity (measured as in-
formation scent) in order to tease out issues of visualization de-
sign [18, 19] and visual attention [20]. We plan similar studies
for DOI Trees, but they are beyond the scope of this paper. What
we can say is that the current prototype is in use for organization
charts at PARC, in use for other databases in the government, and
under consideration for a web analytics product component. Us-
ers seem to be able to use DOI Trees easily. Several government
agencies in the health and statistical services area have indicated
interest. When we contacted the Xerox licensing office for li-
censing discussions on this system, we were amazed that they had
already discovered it on the internal corporate Web and were
already using it for their own applications. Thus, we believe it
will not be hard to use the system for practical applications.

DOI Trees use predictions of the user’s dynamically changing
interest to change the display: If the user indicates interest by
selecting one nodes, then the system predicts the user’s relative
interest in the other nodes through the DOI calculation. If the
user indicates interest by a search for some term, then the system
predicts interest in the other nodes through the DOI calculations
from the nodes that hit. We are implementing other ways for the
user to indicate a base interest, such as frequency of access. The
purpose of having separate DOI and visual rendering calculations
is so that new methods of indicating interest may be devised with-
out having to redo the visual algorithms.

Nodes of most interest are filtered for visualization, geometrically
enlarged, semantically zoomed, and shown in tree context of rele-
vantly selected other nodes. Nodes predicted to be distant from
the user’s interest are shrunk, aggregated, or elided. Nodes in the
display become the access portal to related information on the
web or applications like email. DOI trees force the display to be
contained within a constrained space, but they also choose extra
nodes to display in order to fill that display.

These design features are in the service of higher-level goals.
The principle goal is to reduce the average cost-structure of in-
formation to the user of a large information set. The DOI calcula-
tion and its subsequent use in visualization attempt to reduce the
cost structure of the task using the information. For example, in
Plate 11 the cost in time for finding who Stefik reports to or who
reports to him in his many capacities is low. This is partly done
by making user access to many of the other reporting relation-
ships in the tree a little slower. That is to say, the DOI calculation
is used to bias the interface in a way that accelerates likely ac-
tions. This differential cost of accessing information is what we
mean by a cost structure and the paradigm of an attention-reactive
user interface seeks to dynamically change these biases according
to where the user’s attention is (or should be—this paradigm can
also be used to direct the user’s attention to areas the system
thinks are important). Although there is an access bias, notice the
fact that DOI Trees still maintain an overview of the entire field
of information, maintaining context and at least a minimum ac-
cess to all pieces of information.

The second goal is to increase modularity between the DOI and
the visual components by limiting the information exchanged
between the DOI calculation and the visualization to a narrow
interface. It should be possible to change either the DOI or visual
component more or less independently Hence DOI Trees should
make a good system building block.

The third goal is spatial modularity. By making the DOI Tree
stay within its space bounds (which could be dynamically in-
creased or decreased), it is easy to compose this display with
other displays (for example, a panel showing detailed information
about the current focus node). Thus, it would be easy to use this
focus+context display as the overview part of a larger overview +
detail display. Whereas a technique like TreeMaps stays within a
bounded space, they have a more difficult time showing the con-
tents of interest for nodes in large trees.

The last two goals make DOI Trees a modular system component
to use in the construction of attention-reactive user interfaces for
systems involving access to or sensemaking of large collections
of information. The DOI Trees presented are particularly simple
instantiations of the attention-reactive user interface idea. More
complex dynamic calculations are possible that handle other
sources of context or that take over automatically handling other
overhead tasks for the user as the user’s attention progresses.

8. ACKNOWLEDGMENTS
Jeff Heer from Xerox PARC and Debbie Roberts from NSA con-
tributed code to the algorithms.

9. REFERENCES
[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph

Drawing: Algorithms for the Visualization of Graphs. Upper
Saddle River, NJ: Prentice Hall, 1999.

[2] J. Bertin, Semiology of Graphics: Diagrams, Networks,
Maps. Madison, WI: University of Wisconsin Press,
1967/1983.

[3] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings
in Information Visualization: Using Vision to Think. San
Francisco, California: Morgan-Kaufmann, 1999.

[4] I. Herman, G. Melancon, and M. S. Marshall, "Graph visu-
alization and navigation in information visualization: A sur-
vey," IEEE Transactions on Visualization and Computer
Graphics, vol. 6, pp. 24-43, 2000.

[5] E. M. Reingold and J. S. Tilford, "Tidier drawings of trees.,"
IEEE Transactions of Software Engineering, vol. SE-7, pp.
21-28, 1981.

[6] B. Johnson and B. Shneiderman, "Space-filling approach to
the visualization of hierarchical information structures.," in
Proceedings of IEEE Visualization '91, 1991, pp. 284–291.

[7] B. Shneiderman and M. Wattenberg, "Ordered TreeMap
Layouts," presented at IEEE Symposium on Information
Visualization, 2001.

[8] G. W. Furnas, "The FISHEYE view: a new look at structured
files," in Readings in Information Visualization: Using Vi-
sion to Think, S. K. Card, J. D. Mackinlay, and B. Shnei-
derman, Eds. San Francisco: Morgan Kaufmann Publishers,
Inc., 1981, pp. 312-330.

[9] J. Lamping and R. Rao, "Laying out and Visualizing Large
Trees Using a Hyperbolic Space," presented at Proceedings
of UIST'94, ACM Symposium on User Interface Software
and Technology, 1994.

[10] T. Munzner and P. Burchard, "Visualizing the structure of
the World Wide Web in 3D hyperbolic space," presented at
Proceedings of VRML '95, 1995.

[11] G. G. Robertson, J. D. Mackinlay, and S. K. Card, "Cone
trees: Animated 3D visualizations of Hierarchical Informa-

tion," presented at Proceedings of CHI'91, ACM Conference
on Human Factors in Computing Systems, New York, 1991.

[12] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings
in Information Visualization: Using Vision to Think. San
Francisco, California: Morgan-Kaufmann, 1999.

[13] K. Perlin and D. Fox, "Pad: An Alternative Approach to the
Computer Interface," presented at Proceedings of
SIGGRAPH'93, ACM Conference on Computer Graphics,
1993.

[14] J. D. Mackinlay, G. G. Robertson, and R. DeLine, "Develop-
ing Calendar Visualizers for the Information Visualizer,"
presented at Proceedings of UIST'94, ACM Symposium on
User Interface Software and Technology, Marina del Rey,
Ca, 1994.

[15] M. Graham and J. Kennedy, "Combining linking & focusing
techniques for a multiple hierarchy visualisation," presented
at 5th International conference on Information Visualisation,
London.

[16] K. M. Fairchild, S. E. Poltrock, and G. W. Furnas, "SemNet:
Three-dimensional representations of large knowledge
bases," in Cognitive Science and Its Applications for Hu-
man-Computer Interaction, R. Guindon, Ed. Hillsdale, New
Jersey: Lawrence Erlbaum Associates, 1988, pp. 201–233.

[17] S. K. Card, T. P. Moran, and A. Newell, "The Model Human
Processor: An engineering model of human performance," in
Handbook of Perception and Human Performance, K. K. L.
Boff and J. Thomas, Eds. New York, New York: John Wiley
and Sons, 1986, pp. Chapter 45, 1- 35.

[18] P. Pirolli, S. K. Card, and M. M. Van Der Wege, "Visual
information foraging in a focus+context visualization," pre-
sented at CHI 2001, Seattle, 2001.

[19] P. Pirolli, S. K. Card, and M. M. Van Der Wege, "Effects of
information scent and information density on the hyperbolic
tree browser," in review.

[20] P. Pirolli, S. K. Card, and M. M. Van Der Wege, "The effect
of information scent on searching information visualizations
of large tree structures," presented at AVI '2000, Palermo, It-
aly, 2000.

	INTRODUCTION
	PREVIOUS WORK
	Simple Static Layouts
	Compressed Static Layouts
	Containment Trees
	Interactive Tree Layouts
	Focus+Context Trees

	DEGREE-OF-INTEREST TREE (DOI TREE) SOLUTION
	Degree-of-Interest Computation
	Visualization of Tree

	UTILIZATION OF THE SPACE RESOURCE
	Compress to Fit
	Expand to Fit
	Within-Node Compress to Fit—Semantic Zooming
	Tree Transitions

	SEARCH AND MULTIFOCAL DOI TREES
	USES OF DOI TREES
	Data Source and Authoring

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

