
Navigation2D: A Directional Navigation Module for XMonad

Norbert Zeh

December 5, 2011

Abstract

Directional navigation feels more natural than flipping through the windows in sequential order,
either in the history or in some fixed sequence such as xmonad’s window stack. On the other
hand, it is hard to get completely right. This document first explores the requirements that useful
directional navigation strategies should satisfy and then discusses the two navigation strategies
implemented in Navigation2D. These navigation strategies are positioned at the extreme ends of
the trade-off between generality of the navigation strategy and how natural it feels. The user can
then choose which of these strategies satisfies their needs and even specify different strategies to be
used depending on the layout currently in use on a given workspace.

1 Directional Navigation

Directional navigation refers to setting up keybindings that allow the user to navigate to the window
to the left, to the right, above or below the current window using just their keyboard, without in-
volvement of the mouse. If there are many windows on the screen (or on multiple screens), this is
certainly more convenient than the standard [Alt-Tab] approach in traditional window managers or
the focusUp/focusDown method of sequentially traversing the window stack in xmonad.1 However, it’s
hard to get right. The problem is that there are different possible definitions of what it means to “go to
the left/to the right/up/down”. Some of them feel more natural, others are more general. Here are the
two requirements directional navigation should meet (in an ideal world) or at least try to meet (and let
the user choose in full awareness of the trade-off involved).

Completeness: The above definition intentionally said that directional navigation has to allow the user
to switch between windows without using the mouse. Moving the mouse pointer to the desired
window is always possible as a last resort, but if the user is willing to do this frequently, then
they are probably not all that keen on a powerful way to navigate between windows using the
keyboard in the first place. So we state as the first requirement that it has to be possible to move
from any window to any other window using only directional navigation operations.

Naturality: This is a more fuzzy requirement. It simply states that when the user presses the key that
means “move left”, they certainly do not expect the focus to move to a window that feels more
like its above, below or to the right of the current window than it seems to be to the left of the
current window. Left should really feel like left. Right should really feel like right. Etc.

The next section discusses the two directional navigation strategies implemented in Navigation2D:
line navigation and center navigation. The section illustrates that, even for tiled window layouts, the

1[Alt-Tab] allows going back to windows based on how recently they were used and may be more convenient than direc-
tional navigation if these windows are far apart. This should and can be set up using separate keybindings, for example using
XMonad.Actions.GroupNavigation.

1

former is not always complete, while the latter is complete for any layout but may feel unnatural. The
section also proves that for most reasonable tiled layouts, line navigation is complete, and it will be
obvious that it is a very natural directional navigation strategy.

A third requirement, which the xmonad community has grappled with for a while and which is even
more important in the context of directional navigation, is

Support for layers: In a tiling window manager, it is natural to consider windows to live in one of
two layers: the tiled layer and the floating layer. Navigation should be confined to the current
window’s layer.

The reason this is important in the context of directional navigation is that the tiled layout in use
on a given workspace may be sufficiently well structured to guarantee that even line navigation is
complete. So, for this workspace it is possible to use a directional navigation strategy that is both
very natural and complete. On the other hand, one should not assume anything about the relative
positions of windows in the floating layer. So the user may wish to use different directional navigation
strategies to navigate among floating windows and to navigate among tiled windows. Navigation2D
allows the specification of different navigation strategies for the floating layer and the tiled layer. Within
the tiled layer, it allows the choice of different strategies depending on the layout currently in use.
The justification is that the user should be able to choose whether completeness or a natural feel is
more important to them. Maybe they want completeness but, within the constraints this imposes, still
want the navigation to feel as natural as possible. Then this requires different directional navigation
strategies for different layouts, and different navigation strategies for the tiled and floating layers.

2 The Two Navigation Strategies Implemented in Navigation2D

We discuss the two directional navigation strategies implemented in Navigation2D using navigation
to the left from the current window as the running example. The other three directions are handled
analogously.

2.1 Line Navigation

The first directional navigation strategy implemented in Navigation2D is called line navigation and is
illustrated in Figure 1. Using this strategy, we find the next window to the left of the current window as
follows. We draw a horizontal line ` through the center of the current window. A window is a candidate
window to receive the focus only if it intersects this line. Now we sort these candidate windows by the
x-coordinates of their right boundaries and choose the rightmost one whose right boundary is to the left
of the current window’s left boundary. If such a window exists, focus moves to this window. Otherwise
focus stays with the current window.

This is a very stringent notion of moving left, right, up or down, and it certainly feels natural.
Unfortunately, even when windows do not overlap in a tiling layout, line navigation is not complete: in
Figure 2 it is impossible to navigate from any of the peripheral windows to the window in the center.
However, we can prove that this navigation strategy is complete if the layout satisfies a natural condition
satisfied by the vast majority of standard layouts available in xmonad. We call a layout tree-like if it
partitions the workspace into non-overlapping rectangles assigned to the windows in the layout and
can be represented using a binary tree as follows. The leaves of the tree are the windows in the layout.
For every internal node, there exists a horizontal or vertical line that separates the windows in the left
subtree from the windows in the right subtree. Note that we do not require the layout to represent the
arrangement of windows in this fashion. We require only that the layout can be represented this way.

2

Figure 1: Illustration of line navigation. The current window is shown with a fat border. The windows
that are candidates to navigate to are shaded grey. The one whose right boundary is closest to the
current window (and the one that receives focus) is shown with a fat border.

Figure 2: The four peripheral windows can navigate between each other using line navigation, but the
window in the middle cannot be reached from any of them.

Lemma 1. Line navigation is complete for tree-like layouts.

Proof. Consider a tree representation of the layout. We prove by induction on the size of the subtree
that any two windows in the same subtree can reach each other. The base case is when the subtree
contains only one leaf. In this case, the claim is true because nothing needs to be done to navigate from
a window to itself.

So consider a subtree with root r and two subtrees L and R, and let w1 and w2 be any two windows
in r ’s subtree. We prove that we can navigate from w1 to w2. If w1, w2 ∈ L or w1, w2 ∈ R, this is true
by the induction hypothesis. So we can assume without loss of generality that w1 ∈ L and w2 ∈ R.
We can further assume that the line ` separating L and R is vertical. Let w′1 be a window in L whose
right boundary is part of `. Since the layout is tree-like, such a window exists. For the same reason,
there exists a window w′2 ∈ R whose left boundary is part of ` and which intersects the horizontal line
through the center of w′1. By the induction hypothesis, we can navigate from w1 to w′1 and from w′2 to
w2 because they belong to the same subtrees. We can also navigate from w′1 to w′2 because w′2 is the
window with the leftmost left boundary among the windows that intersect the horizontal line through
the center of w′1 and whose left boundaries are to the right of the right boundary of w′1. (Since no two
windows in the layout overlap, there cannot be any other window that also intersects the horizontal
line through the center of w′1 and whose left boundary coincides with the left boundary of w′1.) This
shows that there exists a path to navigate from w1 to w2 via w′1 and w′2.

3

2.2 Center Navigation

It is easy to define complete directional navigation strategies, but they all feel fairly unnatural. The
author chose to implement the following strategy in Navigation2D, which we call center navigation.2

It appears to be one of the most natural navigation strategies that can easily be shown to be complete
for any layout. To navigate to the left, we consider the cone bounded by the two rays emanating from
the center of the current window at 45◦ angles in the north-west and south-west directions. For a
window to be a candidate to receive the focus, its center must lie inside this cone. A center on the
bottom ray is not considered to be in the cone, while a center on the top ray is considered to be in
the cone. A center that coincides with the center of the current window may or may not be in the
cone. When considering the left cone, as we do here, or the top cone, a window center that coincides
with the center of the current window is in the cone if it precedes the current window in the window
stack. When considering the right or bottom cone, such a window is in the cone if it succeeds the
current window in the window stack. To continue the definition of navigating to the left: If there is
no window in the cone, focus stays with the current window. Otherwise we sort the center points
primarily by increasing L1-distance from the current window’s center, secondarily by increasing angles
between the right boundary of the cone and the rays from the current window center through these
center points and, as a third criterion, by decreasing position in the window stack. Focus moves to the
first window in this sorted list. This navigation strategy is illustrated in Figure 3. Center navigation

2This is the same strategy as used by openbox, augmented with a tie breaking rule for equally ranked windows that ensures
that every window is reachable.

A

B

Figure 3: Illustration of center navigation. It may lead to unnatural behaviour as shown here, where
one would probably expect window A to receive the focus but window B receives the focus instead.
Nevertheless, focus never moves to a window that feels more like it’s above or below the current
window than it is to its left.

4

may not feel as natural as line navigation, as illustrated in the figure. However, as already mentioned,
it has the following desirable property, which makes it suitable as a general navigation strategy even
for the floating layer.

Lemma 2. Center navigation is complete for any layout, even those that allow windows to overlap.

Proof. Since the navigation of windows is defined entirely using their centers, we refer to windows
by their center points in this proof. We show that using center navigation, we can navigate from any
point p to any other point q. To navigate from p to q, we use the following natural strategy. Choose
a directional cone of p that contains q. If p and q do not coincide, this cone is unique. Otherwise q is
in the top and left cones or in the bottom and right cones; in this case, we choose the cone arbitrarily.
Since there is at least one candidate point in the chosen cone, namely q, navigating from p in the
corresponding direction leads to a point p′ 6= p. If p′ = q, we are done. Otherwise we make p′ the
current point and iterate this strategy.

Let p = p1, p2, . . . be the sequence of points we traverse using this strategy. We call navigating from
pi to pi+1 a step. We call a step stationary if pi and pi+1 coincide. We prove the lemma by showing that
the sequence p1, p2, . . . contains every window center at most once. This implies that the sequence is
finite. If q were not part of the sequence, on the other hand, the sequence would have to be infinite
because, as we argued above, for every point pi 6= q, there exists a point in the same directional cone of
pi as q, that is, we can choose a successor pi+1 for pi in the sequence. Together, these two observations
imply that q must be part of the sequence, that is, we reach q after a finite number of navigation steps.

The proof that every window center appears at most once in the sequence p1, p2, . . . is based on the
following three claims.

Claim 1. For all i such that pi 6= q, ||pi+1− q||1 ≤ ||pi − q||1.

Proof. Consider the L1-circle O with radius r := ||pi − q||1 around q (see Figure 4). This circle is
divided into four quarter-circles L, R, T , and B as shown in the figure. We can assume that pi lies on
the periphery of L and, thus, that q and pi+1 lie in pi ’s right directional cone C . Since ||pi+1 − pi||1 ≤
||q − pi||1 = r, pi+1 lies in the intersection of C and the L1-circle O′ with radius r around pi . This
intersection, however, is completely contained in O, which implies that ||pi+1−q||1 ≤ r = ||pi−q||1.

Claim 2. If ||pi − q||1 = ||pi+1 − q||1, then pi and pi+1 coincide or pi+1 is located on the right boundary
ray of the directional cone of pi that contains q.

Proof. We use the same notation as in the proof of Claim 1. Observe that ||pi − q||1 = ||pi+1 − q||1
implies that pi+1 lies on the periphery of O. Now we distinguish four cases.

If pi and pi+1 coincide, the claim holds. So assume they do not coincide.
If pi lies on the north-west to south-east line through q (point p1 in Figure 4), then the only points

other than pi on the periphery of O and in the intersection of O′ and C lie on the line segment s1 in the
figure. Any point on s1, however, has the same L1-distance from pi as q, and q is the point in C with
this L1-distance from pi that minimizes the angle to the right boundary ray of C . This contradicts the
choice of pi+1 as the successor of pi . Thus, this case cannot arise.

If pi lies on the segment s2 in the figure and does not coincide with p1 (e.g., point p2), then the
intersection of C and O′ lies strictly inside O, that is, ||pi+1−q||1 < ||pi−q||1 unless pi and pi+1 coincide.
Thus, this case cannot arise either.

The only remaining option is that pi lies on the segment s3 in the figure (e.g., point p3). In this
case, all points in the intersection of O′ and C and on the periphery of O lie on the right boundary ray
of C , that is, the claim holds.

5

L

T

R

B

p1

p2

p3

q

s1

s2

s3

s4

Figure 4: Proof of Lemma 2.

Claim 3. Every sequence of consecutive stationary steps that visit a sequence of points pi , pi+1, . . . , p j
traverse the window stack in the same direction.

Proof. If q does not coincide with pi , then q is contained in the same unique directional cone of all
points pi , pi+1, . . . , p j−1. Assume w.l.o.g. that this is the right cone of pi . Then, for all i ≤ h < j, ph+1
belongs to this cone only if it succeeds ph in the window stack. Thus, each of these steps moves forward
in the window stack.

If q coincides with pi , assume w.l.o.g. that q succeeds pi in the window stack. If q succeeds ph in
the window stack, for all i ≤ h < j, then again ph+1 belongs to the same two cones of ph as q only if
ph+1 succeeds ph in the window stack. Thus, once again each step moves forward in the window stack.

So assume there exists an h such that q precedes ph in the window stack. If we choose the minimum
such h, then h> i and q succeeds ph−1 in the window stack. In particular, q appears between ph−1 and
ph in the window stack. This, however, contradicts the choice of ph, as it is the first window center after
ph−1 in the window stack and which coincides with ph−1.

To finish the proof of the lemma, we show that these three claims imply that the sequence p1, p2, . . .

6

visits every window center at most once. Assume the contrary, and consider two occurences pi and p j
of the same window center p. By Claim 1, all points pi , pi+1, . . . , p j are equidistant from q.

If p and q coincide, then pi , pi+1, . . . , p j coincide with q, and the steps traversing points pi , pi+1, . . . , p j
are stationary. Thus, by Claim 3, we have pi 6= p j , a contradiction.

So assume p and q do not coincide. Then q is contained in a unique directional cone of p. Assume
w.l.o.g. that it is the right cone of p. Then p belongs to the boundary of the left quarter circle L of
circle O in Figure 4. Now let us break the sequence of points pi , pi+1, . . . , p j into maximal contiguous
groups of coinciding points; that is, the steps between the points in each group are stationary, while the
steps between points in consecutive groups are non-stationary. Denote these groups by P1, P2, . . . , Pk.
By Claim 3, no group Ph contains any window center more than once. Thus, since p ∈ P1 and p ∈ Pk,
we have k ≥ 2. To finish the proof, we show that no two points in different groups Ph and Ph′ , h < h′,
coincide, which contradicts that p ∈ P1 and p ∈ Pk.

Let 1 ≤ k′ ≤ k be maximal such that, for all points in groups P1, P2, . . . , p′k, q lies in their right
directional cone. For 1 ≤ h≤ k′, let pih be the last point in group Ph. By Claim 2, since pih and pih+1

do
not coincide, for all 1 ≤ h≤ k′, pih+1

lies on the right boundary ray of the right directional cone of pih.
Furthermore, the proof of Claim 2 shows that, for all 1 ≤ h < k′, pih lies on segment s3 in Figure 4.
Together, these two facts show that points pi1 , pi2 , . . . , pik′

appear in order along s3, that is, two points
in different groups among P1, P2, . . . , Pk′ do not coincide.

If k′ = k, this finishes the proof. If k′ < k, the first point p j′ of Pk′+1 belongs to segment s4 in
Figure 4 and, thus, does not coincide with any point in groups P1, P2, . . . , Pk′ . Furthermore, observe
that s4 plays the same role for the bottom quarter circle B of O as s2 plays for the left quarter circle L
of O. Thus, as shown in the proof of Claim 2, it is impossible to take a step from p j′ towards q and
which does not decrease the L1-distance from q. This shows that j′ = j, a contradiction because p j′ and
pi ∈ P1 do not coincide.

3 The Complete Set of Operations Supported by Navigation2D

The previous section discussed directional navigation using moving between windows as an example.
In a tiling window manager, however, any navigation strategy is of limited use if it cannot also be
used to rearrange windows in the layout. Moreover, in multi-monitor setups, moving across multiple
monitors using only directional navigation on the windows may be tedious. Thus, the same navigation
strategies should be supported to move more quickly between monitors. The following is the list of
operations supported by Navigation2D.

switchLayer: Switches focus between the tiling and the floating layer. Focus moves to the window in
the other layer whose center is closest to the center of the current window.

windowGo: Moves focus to the window in the given direction. The navigation strategy used depends
on the layer in use. If the current window is in the floating layer, then the strategy for the floating
layer is used. If the current window is in the tiled layer, then the most general strategy among
the strategies defined for all visible workspaces is used.

windowSwap: Choose a window in the same way as windowGo but instead of moving focus to this
window, the window is swapped with the current window.

screenGo: Moves focus to the currently focused window of the workspace on the screen in the given
direction from the current screen. To find this screen, the navigation strategy defined for screen
navigation is used.

7

screenSwap: Chooses a screen in the same way as screenGo does but swaps the workspace on this
screen with the workspace on the current screen instead of moving focus to the chosen screen.

windowToScreen: Chooses a screen in the same way as screenGo does but moves the currently focused
window on the current screen to the chosen screen. The window is inserted before the currently
focused window on the chosen screen.

4 A Final Question

Why yet another directional navigation module for xmonad? There already exist X.A.WindowNavigation
and X.L.WindowNavigation. The answer is essentially the same as for all xmonad modules that see the
light of day: the existing modules didn’t quite do what I wanted.

X.A.WindowNavigation says in its documentation that it is experimental, and it certainly felt that
way when I played with it. Sometimes when navigating between screens, the focus jumped in unex-
pected ways. I then looked at the code and decided I didn’t want to understand the notion of a current
point stored in the module’s state. This point was guaranteed to be a point inside the current window,
and the behaviour of the navigation strategy depended on where this point was. This is a poor choice
in my mind because the user has no visual cue of where this magic point is and, thus, cannot predict
the result of the next navigation operation.

X.A.WindowNavigation grew out of X.L.WindowNavigation. The difference between the two is that
the latter is implemented as a layout modifier and, thus, does not support navigation across screens.
A feature X.L.WindowNavigation provides (and X.A.WindowNavigation and X.A.Navigation2D don’t)
is highlighting of the windows the focus will move to next in each direction. This is useful but I did
not care enough about it to implement it in Navigation2D. Moreover, as it is currently implemented
in X.L.WindowNavigation, it’s broken. There’s an easily reproducible bug in recolouring windows that
results in the previously focused window and the currently focused window having the border colour
of the focused window.

Neither of the two WindowNavigation modules supports separate navigation of the tiled and float
layers. In fact, handling of floating windows is highly inconsistent in that it is possible to navigate from
floating windows to tiled windows but there is no way to go from a tiled window to a floating window.

Neither of the two WindowNavigation modules supports customization of the navigation strategy.
Finally, neither of the two WindowNavigation modules supports the application of the same navi-

gation strategies to screens instead of windows.

8

