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STRUCTURE OF A PROLOG PROGRAM

Where, declaratively, Haskell expresses a computation as a system of functions, a
Prolog program describes predicates of objects and relations between objects.

The program consists of

• A set of facts, predicates and relations that are known to hold, and
• A set of rules, predicates and relations that are known to hold if other
predicates or relations hold.

To run a Prolog program, you pose a query. The program “magically” reports all
answers to your query that it can prove using the rules and facts included in the
program.
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STRUCTURE OF A PROLOG PROGRAM: EXAMPLE

% Facts <-- This is a comment
person_height(norbert, (6,0)).
person_height(nelly, (5,1)).
person_height(luca, (5,3)).
person_height(mateo, (3,11)).

% Rules
taller_shorter(X, Y) :-

person_height(X, (FX, _)), person_height(Y, (FY, _)), FX > FY.
taller_shorter(X, Y) :-

person_height(X, (FX, IX)), person_height(Y, (FY, IY)),
FX =:= FY, IX > IY.

% Queries
:- person_height(norbert, (F, I)). % F = 6, I = 0.
:- taller_shorter(luca, nelly). % true.
:- taller_shorter(X, nelly). % X = norbert; X = luca.
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ATOMS, NUMBERS, AND VARIABLES

Atoms:

• Composed of letters, digits, and underscores
• Start with a lowercase letter
• Examples: nelly person0 other_Item

Numbers:

• Integers: 1 -3451913
• Floating point: 1.0 -12.318 4.89e-3

Variables:

• Composed of letters, digits, and underscores
• Start with an uppercase letter
• Examples: Person _has_underscore
• Special variable: _ (wildcard)
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TERMS

Simple term:

• Atom, number or variable

Complex term:
• Predicate:

• ⟨atom⟩(⟨term⟩[,…])
• Examples: taller_shorter(X,Y) person_height(norbert,(6,0))

• Infix relation:
• ⟨term⟩ ⟨rel⟩ ⟨term⟩
• Examples: X = pred(Y, Z) Number > 4

• Tuple:
• (⟨term⟩[,…])
• Examples: (6,0) (Tail, Head)

• List:
• [⟨term⟩[,…][|⟨list⟩]]
• Examples: [] [X] [_|_] [A,B|Rest]
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FACTS AND RULES

Fact:

• States what holds.
• ⟨term⟩.
• Examples: loves_teaching(norbert). married(norbert,nelly).

• Can be read as a rule: ⟨term⟩ :- true.

Rule:

• States how to deduce new facts from known facts.
• ⟨head⟩ :- ⟨term1⟩,. . ..
• ⟨head⟩ holds if ⟨term1⟩, . . . hold simultaneously.
• Example: taller_shorter(X, Y) :-

person_height(X, (FX, IX)),
person_height(Y, (FY, IY)), FX =:= FY, IX > IY.
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CONJUNCTION AND DISJUNCTION (1)

The goals of a rule are combined conjunctively:

between(X, Smaller, Bigger) :- X > Smaller, X < Bigger.

says that X is between Smaller and Bigger if X > Smaller and X < Bigger.

You should read “,” as “and”.

We express disjunction, the possibility to make a predicate true in different ways,
by stating multiple facts or rules for this predicate:

elem_list(Elem, [Elem|_]).
elem_list(Elem, [_|Tail]) :- elem_list(Elem, Tail).

Elem is a member of List if

• Elem is the head of List or
• Elem is an element of the tail of List.
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CONJUNCTION AND DISJUNCTION (2)

There is a shorthand for writing disjunctions:

outside(X, Smaller, Bigger) :- X < Smaller; X > Bigger.

says that X is outside the range (Smaller, Bigger) if X < Smaller or
X > Bigger.

You should read “;” as “or”.

In fact, this is also how you ask Prolog for more answers:

a_number(1).
a_number(2).

?- a_number(X).
X = 1 ;
X = 2.
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UNIFICATION (1)

A query term holds if it unifies with a term provable using the rules and facts in
the program.

Intuitively, two terms unify if the variables on both sides can be replaced with
terms to make the two terms the same.

• Every occurrence of a given variable needs to be replaced with the same
term.

Examples: (= tests whether two terms unify, \= tests whether they don’t)

• X = X X = Y X = a(Y) a(X,y,z) = a(y,X,z) a \= b
all succeed (individually).

• X = a, X = b fails because X = a forces X to equal a and then a \= b.
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UNIFICATION (2)

Formal definition:

• Two identical terms unify.
• A variable unifies with any other term.
• If T1 and T2 are complex terms, they unify if

• They have the same functor and arity,
• Their corresponding arguments unify, and
• The resulting variable instantiations are compatible.

• If none of the above rules applies to T1 and T2, then T1 and T2 do not unify.
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UNIFICATION (3)

X = Y, Y = a

_9341 = a

true

X = _9341
Y = _9341

_9341 = a

X = Y, X = a, Y = b

_9341 = a, _9341 = b

a = b

X = _9341
Y = _9341

_9341 = a

†
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OCCURS CHECK

What about the query X = f(X)?

Logically, this should fail because there is no (finite) instantiation of X that makes
the two sides equal.

In Prolog, this query succeeds with the answer X = f(X).

In the interest of efficiency, Prolog does not check whether a variable occurs in its
own replacement.

If you want to test for unification with occurs check, use
unify_with_occurs_check/2, so

?- unify_with_occurs_check(X, f(X)).
false.
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BACKTRACKING

To find the answers to a query, Prolog applies depth-first search with unification.
When searching for a fact or rule that unifies with a goal, it searches the
database from top to bottom.

f(a).
f(b).
f(c).

g(a).
g(b).
g(c).

h(a).
h(c).

k(X) :-
f(X), g(X), h(X).

k(Y)

f(_5137), g(_5137), h(_5137)

g(b), h(b)g(a), h(a) g(c), h(c)

h(a) h(b) h(c)

true true

Y = _5137

_5137 = a _5137 = b _5137 = c

†
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LISTS

Sequences and collections are represented as lists.

Since list elements can themselves be lists, we can use lists to represent
complicated data structures such as trees (even though they are often better
represented as deeply nested complex terms).

• Empty list: []
• Head and tail: [a|[b,c,d]] = [a,b,c,d]

[a|[]] = [a]
• Multiple heads: [a,b|[c,d]] = [a,b,c,d]
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CONTROL FLOW CONSTRUCTS

The notion of “control flow” is much weaker in Prolog than even in a functional
language because we are (mostly) not concerned with the order in which the
Prolog interpreter does things.

What we do need is a way to build up arbitrarily complex relations … inductively …
using recursion.
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RECURSION

Summing a list of integers:

sum([], 0).
sum([X|Xs], Sum) :-

sum(Xs, Sum1), Sum is Sum1 + X.

Better:

sum([], 0).
sum([X|Xs], Sum) :-

Sum #= Sum1 + X, sum(Xs, Sum1).
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MAPPING A PREDICATE OVER A LIST OR LISTS

odd(X) :- 1 is X mod 2.

?- maplist(odd,[1,3,5]).
true.
?- maplist(odd,[1,2,3]).
false.

?- maplist(<,[1,3,5],[2,7,8]).
true.
?- maplist(<,[1,3,9],[2,7,8]).
false.

add(X,Y,Sum) :- Sum is X+Y.

?- maplist(add,[1,3,5],[4,8,9],Sums).
Sums = [5,11,14].
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BUILT-IN PREDICATES

Primitives:

• true, false
• fail (is the same as false)

Unification:

• = (arguments unify), \= (arguments do not unify)

Arithmetic and numeric comparisons: (Use with caution.)

• +, -, *, /, //
• <, >, >=, =<, =:=, =\=
• 5 \= 2+3 but X is 2+3, 5 = X

Lots more
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CONTROL FLOW: GOAL ORDERING (1)

Given the facts

f(e). g(a). g(b). g(c). g(d). g(e).

the following two predicates are logically the same:

h1(X) :- f(X), g(X). h2(X) :- g(X), f(X).

Which one is more efficient?

• h1 instantiates X = e and then succeeds because g(e) holds.
• h2 instantiates X = a, X = b, … and fails on all instantiations except X = e.
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CONTROL FLOW: GOAL ORDERING (2)

Consider the facts

child(anne,bridget). child(bridget,caroline).
child(caroline,donna). child(donna,emily).

and the following logically equivalent definitions of a descendant relationship:

descend1(X,Y) descend2(X,Y)
:- child(X,Z), descend1(Z,Y). :- descend2(Z,Y), child(X,Z).

descend1(X,Y) :- child(X,Y). descend2(X,Y) :- child(X,Y).

Now ask the queries descend1(anne,bridget) and descend2(anne,bridget).
What happens?

• descend1(anne,bridget) succeeds.
• descend2(anne,bridget) does not terminate.
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CONTROL FLOW: CUT

! (read “cut”) is a predicate that always succeeds, but with a side effect:

• It commits Prolog to all choices (unification of variables) that were made
since the parent goal was unified with the left-hand side of the rule.

• This includes the choice to use this particular rule.
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CUT: FIRST EXAMPLE (1)

a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X) :- a(X). p(X) :- b(X), c(X), d(X), e(X). p(X) :- f(X).

?- p(X).
X = 1 ;
X = 2 ;
X = 3.

p(X)

b(_2), c(_2), d(_2), e(_2)

c(1), d(1), e(1) c(2), d(2), e(2)true true

a(_1) f(_3)

d(1), e(1) d(2), e(2)

e(2)

true

†

X = _1 X = _2 X = _3

_1 = 1 _2 = 1 _2 = 2 _3 = 3
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CUT: FIRST EXAMPLE (2)

a(1). b(1). b(2). c(1). c(2). d(2). e(2). f(3).
p(X) :- a(X). p(X) :- b(X), c(X), !, d(X), e(X). p(X) :- f(X).

?- p(X).
X = 1 ;
false.

p(X)

b(_2), c(_2), !, d(_2), e(_2)

c(1), !, d(1), e(1) c(2), !, d(2), e(2)true

a(_1) f(_3)

!, d(1), e(1)

d(1), e(1) †

X = _1 X = _2 "
X = _3

_1 = 1 _2 = 1 " _2 = 2
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CUT: SECOND EXAMPLE

p(X,Y) :- q(X,Y).
p(3,6).

q(X,Y) :- a(X), !, b(Y).
q(4,7).

a(1). a(2).
b(4). b(5).

?- p(X,Y).
X = 1, Y = 4 ;
X = 1, Y = 5 ;
X = 3, Y = 6.

24/44
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CUT: THIRD EXAMPLE (1)

A predicate to compute the maximum:

max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- X < Y.

max(4,3,Z)

4 >= 3

true

4 < 3 †

X = 4, Y = 3, Z = 4 X = 4, Y = 3, Z = 3

This is correct but inefficient.
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CUT: THIRD EXAMPLE (2)

A more efficient implementation:

max(X,Y,X) :- X >= Y, !.
max(X,Y,Y) :- X < Y.

max(4,3,Z)

4 >= 3, !

!

true

4 < 3

X = 4, Y = 3, Z = 4 " X = 4, Y = 3, Z = 3
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CUT: THIRD EXAMPLE (3)

Even more efficient?

max(X,Y,X) :- X >= Y, !.
max(X,Y,Y).

?- max(4,3,Z).
Z = 4.

?- max(3,5,Z).
Z = 5.

?- max(3,4,3).
false.

?- max(4,3,3).
true. % <-- incorrect
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CUT: THIRD EXAMPLE (4)

Avoiding the second comparison correctly:

max(X,Y,Z) :- X >= Y, !, X = Z.
max(X,Y,Y).

?- max(4,3,Z).
Z = 4.

?- max(3,5,Z).
Z = 5.

?- max(3,4,3).
false.

?- max(4,3,3).
false.

28/44
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NEGATION: CUT AND FAIL

In general, Prolog has no notion of a predicate not being true! It can only decide
whether it can prove the predicate using the information in the database.

This is called “negation as failure”.

It is useful to be able to ask the question: “Are you unable to prove this
predicate?” (Is this predicate false?)

Solution:
neg(P) :- P, !, fail.
neg(_).

Example:
?- neg(true).
false.
?- neg(false).
true.

Prolog has a built-in function \+
that does exactly what neg does.
Thus, these two queries become
\+ true. and \+ false.
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CONTROL FLOW: ONCE

Sometimes, we know that a predicate can match only once or we never need
more than one solution.

In these cases, we would like to prevent Prolog from searching for additional
solutions, in the interest of efficiency.

once(P)

• Fails if P fails.
• Succeeds if P succeeds but finds only one solution.

a(1). a(2).
?- a(X).
X = 1 ;
X = 2.

a(1). a(2).
?- once(a(X)).
X = 1.

Implementation: once(P) :- call(P), !.
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CONTROL FLOW: -> (1)

Prolog has an if-then construct:
If -> Then behaves the same as once(If), Then.

Example:

a(1). a(2). b(1,3). b(1,4). b(2,5). b(2,6).
p(Y) :- a(X) -> b(X,Y).

?- p(Y).
Y = 3;
Y = 4.
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CONTROL FLOW: -> (2)

There’s also a version that acts like if-then-else: If -> Then; Else.
It acts as if implemented as

If -> Then; Else :- If, !, Then.
If -> Then; Else :- !, Else.

Example:

max(X,Y,Z) :- X < Y -> Z = Y; Z = X.
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COLLECTING ALL ANSWERS (1)

Backtracking produces the different solutions to a query one at a time.
Sometimes, we may want to collect all solutions.

Finding all solutions:

a(1,4). a(1,3). a(2,4). a(2,3).

?- findall((X,Y), a(X,Y), List).
List = [(1,4), (1,3), (2,4), (2,3)].

?- findall(Y, a(X,Y), List).
List = [4, 3, 4, 3].
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COLLECTING ALL ANSWERS (2)

Grouping solutions:

a(1,4). a(1,3). a(2,4). a(2,3).

?- bagof(Y, a(X,Y), List).
X = 1, List = [4, 3] ;
X = 2, List = [4, 3].

?- bagof(Y, X^a(X,Y), List).
List = [4, 3, 4, 3].
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COLLECTING ALL ANSWERS (3)

Grouping solutions, sorted, without duplicates:

a(1,4). a(1,3). a(2,4). a(2,3).

?- setof(Y, a(X,Y), List).
X = 1, List = [3, 4] ;
X = 2, List = [3, 4].

?- setof(Y, X^a(X,Y), List).
List = [3, 4].
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FASTER REASONING: CONSTRAINT PROGRAMMING OVER INTEGER DOMAINS (1)

Add this line to the beginning of your Prolog program or to your .swiplrc file to
enable constraint programming over integer domains:

:- use_module(library(clpfd)).

What does it do?

Standard arithmetic:

?- X is 4+3.
X = 7.

?- 7 is X+3.
ERROR: Arguments are not
sufficiently instantiated

Constraints:

?- X #= 4+3.
X = 7.

?- 7 #= X+3.
X = 4.
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FASTER REASONING: CONSTRAINT PROGRAMMING OVER INTEGER DOMAINS (2)

Standard comparisons:

?- 4 > 3.
true.

?- X > 3.
ERROR: Arguments are not
sufficiently instantiated

Constraints:

?- 4 #> 3.
true.

?- X #> 3.
X in 3..sup.
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REPORTING SOLUTIONS

Sometimes, a solution satisfying all the constraints is reported directly:

?- X #> 3, X #< 5.
X = 4.

Usually, you need to use label to generate a solution/solutions:

?- X #> 3, X #< 6.
X in 4..5.

?- X #> 3, X #< 6, label([X]).
X = 4 ;
X = 5.
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DOMAIN CONSTRAINTS

The most basic constraint specifies the range of values a variable or a list of
variables can take:

SudokuCell in 1..9.

ListOfAllSudokuCells ins 1..9.
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EQUALITY AND INEQUALITY CONSTRAINTS

X #= Y+Z.

W*X #> Y+Z.

X #>= 3.

…
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ALL-DIFFERENT CONSTRAINTS (1)

We can use

all_different([X,Y,Z]) or all_distinct([X,Y,Z])

to ensure X, Y, and Z are distinct.

This works for any arbitrary list.

Usually, all_distinct is the better choice.

• all_distinct propagates more strongly.
• all_different is (in the short term) more efficient.
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ALL-DIFFERENT CONSTRAINTS (2)

?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]),
all_distinct(Vs).

false.

?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]),
all_different(Vs).

_896 in 1\/3..4,
all_different([_896, _902, _908, _914, _920, _926]),
_902 in 1..2\/4,
_908 in 1..2\/4,
_914 in 1..3,
_920 in 1..3,
_926 in 1..6.
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THE DIFFERENCE BETWEEN CONSTRAINT PROGRAMMING AND BACKTRACKING

The standard solution search in Prolog employs backtracking. The order in which
different variable assignments are tried depends entirely on the structure of the
predicates we specify and may require “imperative” tuning to achieve decent
performance.

clpfd employs some low-level wizardry to ensure variables are fixed the moment
existing constraints and other variable assignments leave us with only one
possible value. This in turn may force other variables to have only one possible
value left, so they are fixed in turn, and so on.

This is called constraint propagation and is at the heart of efficient constraint
solvers. Depending on the problem, it can be orders of magnitude faster than
simple backtracking.
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DETERMINISTIC CLAUSE GRAMMARS

… are Prolog’s means to parse input.

We need to talk about them, but not before we introduce context-free grammars
in the context of syntatic analysis.
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