
INTRODUCTION TO HASKELL
PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018

Dalhousie University

1/81



HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

• Functions are first-class values: Can be passed as function arguments,
returned from functions.

• Variables are (normally) immutable.
• Deeply grounded in the mathematics of computing.
• Effectful computations are modelled in a functional manner.
• Elegant and concise.
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VALUES AND FUNCTIONS

In Haskell, functions are values and values are (nullary) functions.

C++:

int x = 2;

Haskell:

x :: Int
x = 2

int x() {
return 2;

}

x :: Int
x = 2

int add(int x, int y) {
return x + y;

}

add :: Int -> Int -> Int
add x y = x + y
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LOCAL VARIABLES

Local variables are useful in many programming languages to store intermediate
results.

Haskell is no different.

The following two pieces of code behave identically:

veclen :: (Float, Float) -> Float
veclen (x, y) = sqrt(xx + yy)

where xx = x * x
yy = y * y

veclen :: (Float, Float) -> Float
veclen (x, y) = let xx = x * x

yy = y * y
in sqrt(xx + yy)

4/81



VARIABLES ARE IMMUTABLE

C++: Haskell:

int four() {
int x = 2;
x = x + 2;
return x;

}

four :: Int
four = x

where x = 2
x = x + 2

… returns 4. … gives a compile-time error.
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CONTROL CONSTRUCTS

if-then-else:

abs :: Int -> Int
abs x = if x < 0 then (-x) else x

case:

is-two-or-five :: Int -> Bool
is-two-or-five x = case x of

2 -> True
5 -> True
_ -> False

The else-branch is mandatory! Why? _ is a wildcard that matches any
value.
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PATTERNS

fibonacci :: Int -> Int
fibonacci n = case n of

0 -> 1
1 -> 1
_ -> fibonacci (n-1) + fibonacci (n-2)

Idiomatic Haskell uses multiple function definitions for this:

fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n = fibonacci (n-1) + fibonacci (n-2)

fibonacci n = fibonacci (n-1) + fibonacci (n-2)
fibonacci 0 = 1
fibonacci 1 = 1

Pattern matching: The first equation whose formal arguments match the
arguments of the invocation is used.
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PATTERNS

fibonacci :: Int -> Int
fibonacci n = case n of

0 -> 1
1 -> 1
_ -> fibonacci (n-1) + fibonacci (n-2)

Idiomatic Haskell uses multiple function definitions for this:

fibonacci n = fibonacci (n-1) + fibonacci (n-2)
fibonacci 0 = 1
fibonacci 1 = 1 This gives an infinite loop!

Pattern matching: The first equation whose formal arguments match the
arguments of the invocation is used.
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PATTERN GUARDS

Pattern guards: Patterns can be combined with conditions on when they match.

abs :: Int -> Int
abs x | x < 0 = -x

| otherwise = x

sign :: Int -> Int
sign 0 = 0
sign x | x < 0 = -1

| otherwise = 1

Pattern guards can also be applied to branches of a case-statement.
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LOOPS?

Loops are impossible in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C++:

Efficient

int factorial(int n) {
int fac = 1;
for (int i = 1; i <= n; ++i)

fac *= i;
return fac;

}

Recursive C++:

Inefficient

int factorial(int n) {
if (n <= 1)
return 1;

else
return n * factorial(n-1);

}

Haskell:

Inefficient

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
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LOOPS?

Loops are impossible in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C++: Efficient
int factorial(int n) {

int fac = 1;
for (int i = 1; i <= n; ++i)

fac *= i;
return fac;

}

Recursive C++: Inefficient
int factorial(int n) {

if (n <= 1)
return 1;

else
return n * factorial(n-1);

}

Haskell: Inefficient
factorial :: Int -> Int
factorial 0 = 1
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MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of
the same function, the compiler converts these recursive calls into a loop.

Not tail-recursive:

factorial 0 = 1
factorial n = n * factorial (n-1)

• Stack size = depth of
recursion

• Overhead to maintain
the stack

Tail-recursive:

factorial n = factorial' n 1

factorial' 0 f = f
factorial' n f = factorial' (n-1) (n*f)

• Constant stack size
• No overhead to
maintain the stack
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DATA TYPES

Primitive types:

• Int, Rational, Float, Char

Collection types:

• Lists, tuples, arrays, String (list of Char)

Custom types:

• Algebraic types (similar to struct in C)
• Type aliases (similar to typedef in C)
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LISTS

Lists are ubiquitous in Haskell because they match the recursive world view of
functional languages:

A list

• Is empty or
• Consists of an element, its head, followed by a list, its tail.

In Haskell:

emptyList = []
oneElementList = 1 : emptyList
twoElementList = 2 : oneElementList null12

emptyList
oneElementList

twoElementList
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LIST COMPREHENSIONS

[1, 2, 3]

[1 .. 10] -- [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1 ..] -- the infinite list [1, 2, 3, ...]
[2, 4 .. 10] -- [2, 4, 6, 8, 10]

[(x, y) | x <- [0..8], y <- [0..8], even x || even y]
-- The list of coordinates
-- .........
-- . . . . .
-- .........
-- . . . . .
-- .........
-- . . . . .
-- .........
-- . . . . .
-- .........
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POLYMORPHISM (1)

Many functions and data types in Haskell are polymorphic (can be applied to
arbitrary types, in a type-safe manner).

The idea is the same as generics/templates, but the use is more light-weight:

C++/Java/Scala: Do I have a good enough reason to implement this function or
class as a generic/template?

Haskell: Do I have a good reason not to make this function or type polymorphic?
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POLYMORPHISM (2)

C++:

template <typename T>
std::vector<T> concat(const std::vector<T> &xs,

const std::vector<T> &ys) {
std::vector<T> result(xs);
for (auto &y : ys)

result.push_back(y);
return result;

}

Haskell:

concat :: [t] -> [t] -> [t]
concat [] ys = ys
concat (x:xs) ys = x : concat xs ys
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MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

C++:

template <typename T>
T sum(const std::vector<T> &xs) {

T total = 0;
for (auto x : xs)

total += x;
return total;

}

Haskell:

sum :: [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs

sum :: Num t => [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs

• (Relatively) obscure message
when using the template with
a type T that does not
support addition.

• Function must specify what
“interface” it expects from its
argument types.

• Use of function not satisfying type
constraints reported upon use.
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COMMON TYPE CLASSES

Eq:

• Supports equality testing using == and /=

Ord: (Requires Eq)

• Supports ordering using <, >, <=, and >=

Num:

• Supports +, -, *, abs, …, not /!

Show:

• Supports conversion to a string using show

Read:

• Supports conversion from a string using read
17/81



DECONSTRUCTING LISTS

Inspecting the contents of lists is often done using patterns, but we can also
explicitly ask for the head or tail of a list:

head :: [t] -> t
head (x:_) = x
head _ = error "Cannot take head of empty list"

tail :: [t] -> t
tail (_:xs) = xs
tail _ = error "Cannot take tail of empty list"

18/81



MORE LIST FUNCTIONS

-- Concatenate two lists
[1, 2] ++ [3, 4, 5] == [1 .. 5]

-- Concatenate a list of lists
concat [[1, 2], [3], [4, 5]] == [1 .. 5]

-- Take the first 5 elements of the list
take 5 [1 .. 10] == [1 .. 5]

-- Drop the first 5 elements of the list
drop 5 [1 .. 10] == [6 .. 10]

-- Split the list after the 5th element
splitAt 5 [1 .. 10] = ([1 .. 5], [6 .. 10])
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TUPLES

Lists can hold an arbitrary number of elements of the same type:

l = [1 .. 10] -- l :: [Int]
l' = 'a' : l -- error!

Tuples can hold a fixed number of elements of potentially different types:

t = ('a', 1, [2, 3]) -- t :: (Char, Int, [Int])

20/81



OPERATIONS FOR PAIRS AND TUPLES

fst :: (a, b) -> a
snd :: (a, b) -> b
fst (x, _) = x
snd (_, y) = y

(,) :: a -> b -> (a, b)
(,) x y = (x, y)

(,,,) :: a -> b -> c -> d -> (a, b, c, d)
(,,,) w x y z = (w, x, y, z)
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LISTS AND TUPLES: THE FANTASTIC DUO

Zipping and unzipping: From a pair of lists to a list of pairs and back.

zip ['a', 'b', 'c'] [1 .. 10] == [('a',1), ('b',2), ('c',3)]
-- The result has the length of the shorter of the two lists

unzip [('a',1), ('b',2), ('c',3)] = (['a', 'b', 'c'], [1, 2, 3])

Zipping with a function:

zipWith (\x y -> x + y) [1, 2, 3] [4, 5, 6] == [5, 7, 9]
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ARRAYS (1)

Arrays do exist in Haskell and do have their uses because they support
constant-time access.

However, arrays are (normally) immutable, so updates are expensive.

Creating arrays:

array (1,3) [(3,'a'), (1,'b'), (2,'c')] ’b’ ’c’ ’a’
1 2 3

listArray ('a','c') [3,1,2] 3 1 2
’a’ ’b’ ’c’
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ARRAYS (2)

Accessing array elements:

let a = listArray (1,3) ['a', 'b', 'c']

a ! 1 == 'a'
a ! 3 == 'c'

elems a == ['a', 'b', 'c']

assocs a == [(1,'a'), (2,'b'), (3,'c')]

“Updating” arrays:

a // [(2,'a'), (1,'d')] == listArray (1,3) ['d', 'a', 'c']

(//) does not update the original array but creates a new array with the
specified elements changed. Why?
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ARRAYS: A MORE INTERESTING EXAMPLE

Counting characters in a text:

countChars :: String -> [(Char, Int)]
countChars txt = filter nonZero (assocs counts)

where counts = accumArray (+) 0 ('a','z')
(zip txt (repeat 1))

nonZero (_, c) = c > 0

countChars "mississippi" == [('i',4), ('m',1), ('p',2), ('s',4)]
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CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

A simple enum type:
data Colors = Red | Green | Blue

deriving (Eq, Ord, Ix)

A binary tree:

data Tree t = Leaf
| Node { item :: t

, left, right :: Tree t
}

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

-- and (right tree)
updItem tree x = tree { item = x }

26/81



CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

A simple enum type:
data Colors = Red | Green | Blue

deriving (Eq, Ord, Ix)

A binary tree:

data Tree t = Leaf
| Node { item :: t

, left, right :: Tree t
}

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

-- and (right tree)
updItem tree x = tree { item = x }

26/81



CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

A simple enum type:
data Colors = Red | Green | Blue

deriving (Eq, Ord, Ix)

A binary tree:

data Tree t = Leaf
| Node { item :: t

, left, right :: Tree t
}

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

-- and (right tree)
updItem tree x = tree { item = x }

26/81



CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

A simple enum type:
data Colors = Red | Green | Blue

deriving (Eq, Ord, Ix)

A binary tree:

data Tree t = Leaf
| Node { item :: t

, left, right :: Tree t
}

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

-- and (right tree)
updItem tree x = tree { item = x }

26/81



CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

A simple enum type:
data Colors = Red | Green | Blue

deriving (Eq, Ord, Ix)

A binary tree:

data Tree t = Leaf
| Node { item :: t

, left, right :: Tree t
}

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

-- and (right tree)
updItem tree x = tree { item = x }

26/81



WHEN “DATA” IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:

type Point = (Float, Float)
type PointList = [Point]

Point and (Float, Float) can be used 100% interchangeably.

IDs are integers but adding or multiplying them makes no sense:

newtype ID = ID Int
deriving (Eq, Ord)

• Internally, an ID is represented as an integer. With data, there would have been
some space overhead.

• Without the deriving clause, ID does not support any operations.
• The deriving clause says that IDs should inherit equality and ordering from its
underlying type.
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@-PATTERNS

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),

• fun1 can refer to the parts of the tree but not to the whole tree.
• fun2 has access to the whole tree but needs to take extra steps to access its
parts.

• Sometimes, we’d like to have both.

Merging two sorted lists:

merge :: Ord t => [t] -> [t] -> [t]
merge [] ys = ys
merge xs [] = xs
merge xs@(x:xs') ys@(y:ys') | y < x = y : merge xs ys'

| otherwise = x : merge xs' ys
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ANONYMOUS FUNCTIONS

Anonymous functions are often called λ-expressions.
Haskell people think that \ looks close enough to λ.

So an anonymous function for additing two elements together would be
\x y -> x + y.

The normal function definition

add x y = x + y

is just syntactic sugar for

add = \x y -> x + y

or, as we will see soon, for

add = \x -> \y -> x + y
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COMMON ITERATION PATTERNS (1)

Many things we do using loops in imperative languages are instances of some
common patterns.

Expressing these patterns explicitly instead of hand-crafting them using loops
makes our code more readable.
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COMMON ITERATION PATTERNS (2)

Mapping: Transform a list into a new list by applying a function to every element:

map (\x -> 2*x) [1 .. 10] == [2, 4 .. 20]

Folding: Accumulate the elements of a list into a single value:

foldr (\x y -> x + y) 0 [1 .. 10] == 55
-- the sum of the list elements

Filtering: Extract the list elements that meet a given condition:

filter odd [1 .. 10] == [1, 3, 5, 7, 9]
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IMPLEMENTING ITERATION CONSTRUCTS

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b as = go b as

where go b [] = b
go b (a:as') = f a (go b as')

filter :: (t -> Bool) -> [t] -> [t]
filter _ [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs
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CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

“Flipping” all pairs in a list:

swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs

where swap (a,b) = (b,a)

A little less verbose:

swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map (\(a,b) -> (b,a)) xs

This is (almost) what
you’d do in practice.

Highly compressed:

swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))

???
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CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as

f :: a -> b -> c -> d.

Why not

f :: (a, b, c) -> d?

They’re different, but they have one thing in common: neither is really a
multi-argument function!

f :: a -> b -> c -> d has one argument of type a and its result is …

• … a function with one argument of type b and whose result is …
• … a function with one argument of type c and whose result is of type d.

f :: (a, b, c) -> d has one argument of type (a, b, c) and its result is of
type d.

We call f :: a -> b -> c -> d a curried function.
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f :: (a, b, c) -> d has one argument of type (a, b, c) and its result is of
type d.

We call f :: a -> b -> c -> d a curried function.
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CURRIED FUNCTIONS AND PARTIAL APPLICATION (3)

f x y z really means ((f x) y) z, that is,

• Apply f to x.
• Apply the resulting function to y.
• Apply the resulting function to z.

And that’s the final result … which could itself be a function!
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WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.
• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.
• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.
• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.

• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.
• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs

With currying (part 1):

• (*) is a function of type (*) :: Num t => t -> t -> t.
• It maps its first argument x to a function that multiplies its second argument
y by x.

timestwo xs = map (* 2) xs

36/81



WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

• map is a function of type map :: (a -> b) -> [a] -> [b].
• It maps its first argument, a function f, to a function m that applies f to every
element in its argument list.

timestwo = map (* 2)

This is called point-free programming. The focus is on building functions from
functions instead of specifying the value of a function for a particular argument.

Revisiting foldr:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = go

where go b [] = b
go b (a:as') = f a (go b as')
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FUNCTION COMPOSITION

Point-free programming cannot work without function composition:

multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)

Function composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

multiplyevens = map (* 2) . filter even
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A FEW USEFUL FUNCTIONS

($) :: (a -> b) -> a -> b -- f $ x == f x

flip :: (a -> b -> c) -> (b -> a -> c) -- Exchange the first two
-- function arguments

curry :: ((a,b) -> c) -> (a -> b -> c) -- Curry a function whose
-- argument is a pair

uncurry :: (a -> b -> c) -> ((a,b) -> c) -- Collapse two function
-- arguments into a pair

Why the need for a function application operator?

Function application binds more tightly than function composition, which binds
more tightly than ($):
f :: a -> b
g :: b -> c
x :: a
g . f $ x :: c
g . f x -- error!
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BACK TO SWAPELEMS

swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))

flip :: (b -> a -> c) -> (a -> b -> c)
uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry . flip :: (b -> a -> c) -> ((a,b) -> c)
(,) :: b -> a -> (b,a)
uncurry . flip $ (,) :: (a,b) -> (b,a)
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DEFINING AND USING TYPE CLASSES

Sequences: Containers that can be “flattened” to a list:

class Sequence s where
flatten :: s t -> [t]
flatMap :: (a -> b) -> s a -> [b]
flatMap f = map f . flatten

generalizedFilter :: Sequence s => (t -> Bool) -> s t -> [t]
generalizedFilter p = filter p . flatten
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DEFINING INSTANCES OF TYPE CLASSES

Lists are sequences:

instance Sequence [] where
flatten = id
flatMap = map

So are arrays:

instance Sequence (Array ix) where
flatten = elems

… and binary trees:

instance Sequence Tree where
flatten Leaf = []
flatten (Tree x l r) = flatten l ++ [x] ++ flatten r
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MAYBE: A SAFER NULL

Maybe t can be used as the result of functions that may fail:

lookup :: Eq a => a -> [(a,b)] -> Maybe b

data Maybe t = Just t
| Nothing
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WORKING WITH MAYBE

Using patterns:

formattedLookup :: (Eq a, Show a, Show b) => a -> [(a,b)] -> String
formattedLookup x ys = format (lookup x ys)

where format Nothing = "Key " ++ show x ++ " not found"
format (Just y) = "Key " ++ show x ++ " stores value "

++ show y

Using maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe def _ Nothing = def
maybe _ f (Just x) = f x

lookupWithDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupWithDefault x y ys = maybe y id (lookup x ys)

44/81



WORKING WITH MAYBE

Using patterns:

formattedLookup :: (Eq a, Show a, Show b) => a -> [(a,b)] -> String
formattedLookup x ys = format (lookup x ys)

where format Nothing = "Key " ++ show x ++ " not found"
format (Just y) = "Key " ++ show x ++ " stores value "

++ show y

Using maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe def _ Nothing = def
maybe _ f (Just x) = f x

lookupWithDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupWithDefault x y ys = maybe y id (lookup x ys)

44/81



WORKING WITH MAYBE

Using patterns:

formattedLookup :: (Eq a, Show a, Show b) => a -> [(a,b)] -> String
formattedLookup x ys = format (lookup x ys)

where format Nothing = "Key " ++ show x ++ " not found"
format (Just y) = "Key " ++ show x ++ " stores value "

++ show y

Using maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe def _ Nothing = def
maybe _ f (Just x) = f x

lookupWithDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupWithDefault x y ys = maybe y id (lookup x ys)

44/81



EITHER: CAPTURING DIFFERENT OUTCOMES

Either a b can be used as the result of computations that may produce two
different outcomes:

data Either a b = Left a
| Right b

tagEvensAndOdds :: [Int] -> [Either Int Int]
tagEvensAndOdds = map tag

where tag x | even x = Left x
| otherwise = Right x
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WORKING WITH EITHER

Using patterns:

addOrMultiply :: [Int] -> [Int]
addOrMultiply = map aom . tagEvensAndOdds

where aom (Left even) = even + 2
aom (Right odd) = 2 * odd

Using either:

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f _ (Left x) = f x
either _ g (Right y) = g y

addOrMultiply = map (either (+ 2) (* 2)) . tagEvensAndOdds
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FUNCTORS: AN ABSTRACTION FOR CONTAINERS

map allows us to apply a function to every list element, but we cannot map over
the elements of a binary tree.

What if I want to apply a function to Maybe some value?

The Functor type class captures containers:

class Functor f where
fmap :: (a -> b) -> f a -> f b
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EXAMPLES OF FUNCTORS

The list type is a functor:

instance Functor [] where
fmap = map

So is Maybe:

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

… and the binary tree type:

instance Functor Tree where
fmap _ Leaf = Leaf
fmap f (Tree x l r) = Tree (f x) (fmap f l) (fmap f r)
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LAZY EVALUATION

What takes longer?

• let l1 = [1 .. 10]
• let l2 = [1 .. 10000000]
• let l3 = [1 ..]

They all take constant time!

Haskell evaluates expressions lazily:

• Expressions are evaluated only when their value is needed.
• The evaluated value is cached, in case it’s needed again.

head l1 produces 1 and changes the representation of l1 to 1 : [2 .. 10].

Useful consequence: We can define infinite data structures as long as we only
work with finite portions of them.
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WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

Elegance!

Assume we write a parser and want to provide line numbers in our error
messages. We need to annotate each input line with its number.

The hard way:

splitInput :: String -> [(Int, String)]
splitInput text = zip ns ls

where ls = lines text
ns = [1 .. length ls]

The easy way:

splitInput :: String -> [(Int, String)]
splitInput = zip [1..] . lines
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WHY ARE INFINITE DATA STRUCTURES USEFUL? (2)

The inifinite sequence of Fibonacci numbers:

fibonacci :: [Int]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)

The first 10 Fibonacci numbers:

take 10 fibonacci == [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

51/81



WHY ARE INFINITE DATA STRUCTURES USEFUL? (2)

The inifinite sequence of Fibonacci numbers:

fibonacci :: [Int]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)

The first 10 Fibonacci numbers:

take 10 fibonacci == [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

51/81



MORE LAZINESS: USING VALUES BEFORE THEY’RE COMPUTED (1)

BFS numbering of a binary tree

The naive solution:
• Build a list of nodes in level order
• Number the nodes
• Reassemble the tree

I refuse to turn this into code; it’s messy.
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MORE LAZINESS: USING VALUES BEFORE THEY’RE COMPUTED (2)

bfs' :: ([Int], Tree t) -> ([Int], Tree Int)
bfs' (nums, Leaf) = (nums, Leaf)
bfs' (num:nums, Tree _ l r) = (num+1 : nums'', Tree num l' r')

where (nums', l') = bfs' (nums, l)
(nums'', r') = bfs' (nums', r)

x1

x2 x2 + 1

x3 x3 + 1 x3 + 2

x4

x5 x5 + 1

x3 x3 + 3

x2 x2 + 2

x1 x1 + 1

x4 x4 + 1

x5 x5 + 2
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MORE LAZINESS: USING VALUES BEFORE THEY’RE COMPUTED (3)

bfs :: Tree t -> Tree Int
bfs t = t'

where (nums, t') = bfs' (1 : nums, t)
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MORE LAZINESS: USING VALUES BEFORE THEY’RE COMPUTED (3)
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LISTS AS CONTROL STRUCTURES (1)

Many computations are about transforming collections of items.

It would be clearest to express such sequences of transformations explicitly, but
explictly building up these collections (vectors, lists, …) is often costly.

⇒ We often build up complicated loops to avoid materializing intermediate
collections.

Laziness allows us to express computations as list transformations while still not
materializing any intermediate lists.
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LISTS AS CONTROL STRUCTURES (2)

filterAndMultiply :: [Bool] -> [Int] -> [Int] -> [Int]
filterAndMultiply keep items factors = map (*) kept factors

where kept = map snd keptPairs
keptPairs = filter fst pairs
pairs = zip keep items

zip pairs filter fst keptPairs map snd
keep

items kept
map (*)

factors

• Only one node of each list needed at any point in time.
• A good compiler will optimize the lists away.
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SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:

Right to left: foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = go
where go b [] = b

go b (x:xs) = f x (go b xs)

Left to right, lazy: foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f = go
where go a [] = a

go a (x:xs) = go (f a x) xs

Left to right, strict: foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f = go
where go a [] = a

go a (x:xs) = let y = f a x
in y `seq` go y xs

57/81



SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:

Right to left: foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = go
where go b [] = b

go b (x:xs) = f x (go b xs)

Left to right, lazy: foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f = go
where go a [] = a

go a (x:xs) = go (f a x) xs

Left to right, strict: foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f = go
where go a [] = a

go a (x:xs) = let y = f a x
in y `seq` go y xs

57/81



SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:

Right to left: foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = go
where go b [] = b

go b (x:xs) = f x (go b xs)

Left to right, lazy: foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f = go
where go a [] = a

go a (x:xs) = go (f a x) xs

Left to right, strict: foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f = go
where go a [] = a

go a (x:xs) = let y = f a x
in y `seq` go y xs

57/81



SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:

Right to left: foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f = go
where go b [] = b

go b (x:xs) = f x (go b xs)

Left to right, lazy: foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f = go
where go a [] = a

go a (x:xs) = go (f a x) xs

Left to right, strict: foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f = go
where go a [] = a

go a (x:xs) = let y = f a x
in y `seq` go y xs

57/81



SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

foldr (+) 0 [1..n]

O(n) spacefoldr (+) 0 [1..5]

foldr (+) 0 [2..5]

foldr (+) 0 [3..5]

foldr (+) 0 [4..5]

foldr (+) 0 [5]

foldr (+) 0 []

Recursive call

Recursive call

Recursive call

Recursive call

Recursive call

(+)

1 (+)

2 (+)

3 (+)

4 (+)

5 0
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SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:

foldl (+) 0 [1..n]

O(n) space

foldl (+) 0 [1..5]

→ foldl (+) (0+1) [2..5]

→ foldl (+) ((0+1) + 2) [3..5]

→ foldl (+) (((0+1) + 2) + 3) [4..5]

→ foldl (+) ((((0+1) + 2) + 3) + 4) [5]

→ foldl (+) (((((0+1) + 2) + 3) + 4) + 5) []

→ (((((0+1) + 2) + 3) + 4) + 5)

(+)

5(+)

4(+)

3(+)

2(+)

10
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SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]

→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]

→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]

→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]

→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]

→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n]

O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

foldl' (+) 0 [1..n] O(1) space

foldl' (+) 0 [1..5]
→ foldl' (+) 1 [2..5]
→ foldl' (+) 3 [3..5]
→ foldl' (+) 6 [4..5]
→ foldl' (+) 10 [5]
→ foldl' (+) 15 []

→ 15

60/81



THE UNREALISTIC DREAM OF NO SIDE EFFECTS

Advantages of disallowing side effects:

• The value of a function depends only on its arguments. Two invocations of
the function with the same arguments are guaranteed to produce the same
result.

• This makes understanding the code and formal reasoning about code
correctness easier.

The need fo side effects:

• Interactions with the real world require side effects. Without these
interactions, why do we compute anything at all?

• Storing state in data structures and updating these data structures
destructively requires side effects. These updates can be emulated
non-destructively with a logarithmic slow-down, but that may be
unacceptable in some applications.
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THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.

• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.

• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.

• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



THE IO MONAD

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type main :: IO ().

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out purely functional steps.
• The aim is to create a clear separation between steps that have side effects
(and thus need to be expressed in some monad) and the steps that do not
(and thus can be expressed using pure functions).

62/81



IO MONAD: EXAMPLE

database :: [(String, Int)]
database = [("Norbert", 44), ("Luca", 14), ("Mateo", 6)]

main :: IO ()
main = do name <- getLine

if name == "quit"
then return ()
else putStrLn (msg name $ lookup name database)

where msg name Nothing =
"I don't know the age of " ++ name ++ "."

msg name (Just age) =
"The age of " ++ name ++ " is " ++ show age ++ "."
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MONADS

class Monad m where
return :: t -> m t
fail :: String -> m t
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b

class Monad m where
return :: t -> m t
fail :: String -> m t
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b

fail = error
f >> g = f >>= const g

const :: a -> b -> a
const x _ = x
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MONADS: EXAMPLES

readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn

getLine :: IO String
putStrLn :: String -> IO ()

sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn

printTwoLines :: String -> String -> IO ()
printTwoLines a b = putStrLn a >> putStrLn b

failIfOdd :: Int -> IO ()
failIfOdd x = if even x then return () else fail "x is odd"
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DO-NOTATION

Standard monadic composition of actions sure isn’t pretty:

getAndPrintTwoStrings :: IO ()
getAndPrintTwoStrings = getString >>= \s1 ->

getString >>= \s2 ->
putStrLn ("S1 = " ++ s1) >>
putStrLn ("S2 = " ++ s2)

do-notation makes this much easier to write:

getAndPrintTwoStrings = do s1 <- getString
s2 <- getString
putStrLn $ "S1 = " ++ s1
putStrLn $ "S2 = " ++ s2

A preprocessing step translates this into the above form.
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MUTABLE VARIABLES

The second use of the IO monad is to provide mutable variables and arrays for
when we can’t do without them:

-- Create and initialize a mutable variable of type t
newIORef :: t -> IO (IORef t)

-- Read content of IORef
readIORef :: IORef t -> IO t

-- Update content of IORef
writeIORef :: IORef t -> t -> IO ()

-- Modify content of IORef by applying pure function
modifyIORef :: IORef t -> (t -> t) -> IO ()
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MUTABLE ARRAYS

-- Equivalents to array/listArray
newArray :: Ix i => (i, i) -> e -> IO (IOArray i e)
newArray_ :: Ix i => (i, i) -> IO (IOArray i e)
newListArray :: Ix i => (i, i) -> [e] -> IO (IOArray i e)

-- Reading (!) and writing (no pure equivalent)
readArray :: Ix i => IOArray i e -> i -> IO e
writeArray :: Ix i => IOArray i e -> i -> e -> IO ()

-- Equivalents of elems/assocs
getElems :: Ix i => IOArray i e -> IO [e]
getAssocs :: Ix i => IOArray i e -> IO [(i, e)]

-- Turn immutable array into mutable one and vice versa
freeze :: Ix i => IOArray i e -> IO ( Array i e)
thaw :: Ix i => Array i e -> IO (IOArray i e)
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MUTABLE MEMORY IN PURE COMPUTATIONS?

The problem with IORefs and IOArrays is that any algorithm that uses them
must live entirely in the IO monad.

What if we have a function without side effects whose efficient implementation
needs mutable variables? We don’t want to lift it into the IO monad.

An illustrative (but bad) example:

sum :: [Int] -> IO Int
sum xs = do s <- newIORef 0

mapM_ (add s) xs
readIORef s

where add s x = modifyIORef s (+ x)
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THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.

STArrays have the same (overloaded) interface as IOArrays.

The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are
newSTRef, readSTRef, writeSTRef, and modifySTRef.

Imperative summation in the ST s monad:

sum :: [Int] -> Int
sum xs = runST (sumM xs)

where sumM xs = do s <- newSTRef 0
mapM_ (addM s) xs
readSTRef s

addM s x = modifySTRef s (+ x)

runST :: (forall s . ST s t) -> t
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MONADS FOR ELEGANT CONTROL FLOW (1)

Monads can be used in pure computations to express control flow more elegantly.

Warm-up: Pure functions

• Pure functions with function composition form a monad!

Drop the luggage: Computations with state

• Often, a set of functions share a common state that they manipulate.
• In an object-oriented language, we’d wrap them in an object.
• In Haskell, we can either explicitly pass the state around or use the State
monad.
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MONADS FOR ELEGANT CONTROL FLOW (2)

Computations that can fail:

• Maybe can be used to express success using Just and failure using Nothing.
• Maybe is also a monad that captures the logic: If any step in this function
fails, the function fails.

Searching for a solution:

• The list type is a monad.
• Intuition: A list of values represents all possible outcomes of a computation.
The next step should try to continue with each of them.

Many more:

• Reader, Writer, …
• Monad transformers allow us to stack monads on top of each other, e.g.,
computations with state that may fail.
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PURE FUNCTIONS AS A MONAD

instance Monad Identity where
return = Identity
Identity x >>= f = f x -- f :: a -> Identity b
_ >> g = g

• We need Identity as a container type to refer to in the instance definition.
The logic, however, is that of pure function composition.

• We provide a custom implementation of (>>) to improve efficiency: In the
expression f >> g, we discard f’s result and f has no side effects, so why
run f at all.

• The Identity monad may not seem very useful, but it can be used as the
basis for constructing stacks of monads using monad transformers.
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COMPUTATIONS WITH STATE (1)

Compute a random sequence from a seed:

seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = fst (genseq seed n)

genseq :: Int -> Int -> ([Int], Int)
genseq seed 0 = ([], seed)
genseq seed n = (x:xs, seed'')
where (x, seed') = generateRandomNumberAndSeed seed

(xs, seed'') = genseq seed' (n-1)

generateRandomNumberAndSeed :: Int -> (Int, Int)
generateRandomNumberAndSeed seed = ... -- Details unimportant for us

74/81



THE STATE MONAD

data State s t = State { runState :: s -> (t,s) }

data State s t = State { runState :: s -> (t,s) }

evalState :: State s t -> s -> t
evalState f s = fst (runState f s)

execState :: State s t -> s -> t
execState f s = snd (runState f s)

instance Monad (State s) where
return x = State $ \s -> (x,s)
fail = error
x >>= f = State \s -> let (y, s') = runState x s

in runState (f y) s'
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ACCESSING THE CURRENT STATE

get :: State s s

put :: s -> State s ()

modify :: (s -> s) -> State s ()

get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ const ((), s)

modify :: (s -> s) -> State s ()
modify f = State $ \s -> ((), f s)
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COMPUTATIONS WITH STATE (2)

type Gen = State Int

seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed

genseq :: Int -> Gen [Int]

type Gen = State Int

seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed

genseq :: Int -> Gen [Int]
genseq = mapM (const gennum) [1..n]

gennum :: Gen Int
gennum = do seed <- get

let (x,seed') = generateRandomNumberAndSeed seed
put seed'
return x
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COMPUTATIONS THAT CAN FAIL

step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d

-- Sequence steps 1-3
threeSteps :: a -> Maybe d

step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d

-- Sequence steps 1-3
threeSteps :: a -> Maybe d
threeSteps = step1 >=> step2 >=> step3

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g

instance Monad Maybe where
return = Just
fail = const Nothing
x >>= f = maybe Nothing f x
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SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a
computation.

Writing a number as a sum of non-decreasing positive numbers:

nonDecreasingSplit 5 == [ [1,1,1,1,1], [1,1,1,2]
, [1,1,3], [1,2,2], [1,4], [2,3], [5]
]

nonDecreasingSplit :: Int -> [[Int]]
nonDecreasingSplit = split >=> splitRest

where split x = [(y, x-y) | y <- [1..x]]
splitRest (y, 0) = return [y]
splitRest (y, z) = nonDecreasingSplit z >>= extendWith y
extendWith y zs@(z:_) | y <= z = return (y:zs)

| otherwise = fail "Decreasing"
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THE LIST MONAD

instance Monad [] where
return x = [x]
fail = const []
(>>=) = flip concatMap

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = concat (map f xs)
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RESOURCES

• Lots of packages at hackage.haskell.org
• GHC documentation at
https://downloads.haskell.org/~ghc/latest/docs/html/

• Hoogle at www.haskell.org/hoogle
• Books, tutorials, … at www.haskell.org/documentation
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