INTRODUCTION TO HASKELL

PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018
Dalhousie University

HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

- Functions are first-class values: Can be passed as function arguments, returned from functions.

HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

- Functions are first-class values: Can be passed as function arguments, returned from functions.
- Variables are (normally) immutable.

HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

- Functions are first-class values: Can be passed as function arguments, returned from functions.
- Variables are (normally) immutable.
- Deeply grounded in the mathematics of computing.

HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

- Functions are first-class values: Can be passed as function arguments, returned from functions.
- Variables are (normally) immutable.
- Deeply grounded in the mathematics of computing.
- Effectful computations are modelled in a functional manner.

HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE

- Functions are first-class values: Can be passed as function arguments, returned from functions.
- Variables are (normally) immutable.
- Deeply grounded in the mathematics of computing.
- Effectful computations are modelled in a functional manner.
- Elegant and concise.

VALUES AND FUNCTIONS

In Haskell, functions are values and values are (nullary) functions.

VALUES AND FUNCTIONS

In Haskell, functions are values and values are (nullary) functions.

$$
\begin{aligned}
& \text { C++: } \\
& \text { int } x=2 \text {; }
\end{aligned}
$$

Haskell:

$$
\begin{aligned}
& x:: \operatorname{Int} \\
& x=2
\end{aligned}
$$

VALUES AND FUNCTIONS

In Haskell, functions are values and values are (nullary) functions.

C++:	Haskell:
int $x=2 ;$	$x::$ Int
	$x=2$
int $x()\{$	$x::$ Int
\quad return 2;	$x=2$

VALUES AND FUNCTIONS

In Haskell, functions are values and values are (nullary) functions.

C++:
int $x=2 ;$
int $x()$ \{ return 2;
\}
int add(int x, int $y)$ \{ return $x+y$;
\}

Haskell:

$$
\begin{aligned}
& x:: \operatorname{Int} \\
& x=2
\end{aligned}
$$

x :: Int

$$
x=2
$$

add :: Int -> Int -> Int

$$
\text { add } x y=x+y
$$

LOCAL VARIABLES

Local variables are useful in many programming languages to store intermediate results.

Haskell is no different.

The following two pieces of code behave identically:

```
veclen :: (Float, Float) -> Float
veclen (x, y) = sqrt(xx + yy)
    where xx = x * x
    yy = y * y
veclen :: (Float, Float) -> Float
veclen (x, y) = let xx = x * x
    yy = y * y
    in sqrt(xx + yy)
```


VARIABLES ARE IMMUTABLE

C++:
 int four() \{
 int $x=2 ;$
 $x=x+2 ;$
 return x;
 \}

... returns 4.

Haskell:

```
four :: Int
four = x
    where x = 2
        x = x + 2
```

... gives a compile-time error.

VARIABLES ARE IMMUTABLE

$$
\begin{aligned}
& \text { C++: } \\
& \text { int four () }\{ \\
& \text { int } x=2 \text {; } \\
& x=x+2 ; \\
& \text { return } x ;
\end{aligned}
$$

... returns 4.

Haskell:

```
four :: Int
four = x2
    where x1 = 2
    x2 = x1 + 2
```

... works.

VARIABLES ARE IMMUTABLE

$$
\begin{aligned}
& \text { C++: } \\
& \text { int four () }\{ \\
& \text { int } x=2 \text {; } \\
& x=x+2 ; \\
& \text { return } x ;
\end{aligned}
$$

... returns 4.

Haskell:

```
four :: Int
four = x2
    where x2 = x1 + 2
    x1 = 2
```

... also works.

CONTROL CONSTRUCTS

if-then-else:

```
abs :: Int -> Int
abs x = if x < 0 then (-x) else x
```


CONTROL CONSTRUCTS

if-then-else:

```
abs :: Int -> Int
abs x = if x < 0 then (-x) else x
```

The else-branch is mandatory! Why?

CONTROL CONSTRUCTS

if-then-else:

```
abs :: Int -> Int
abs x = if x < 0 then (-x) else x
```

case:
is-two-or-five :: Int -> Bool
is-two-or-five x = case x of
2 -> True
5 -> True
_ -> False

The else-branch is mandatory! Why?

CONTROL CONSTRUCTS

if-then-else:

```
abs :: Int -> Int
abs x = if x < 0 then (-x) else x
```

The else-branch is mandatory! Why?
case:
is-two-or-five : : Int -> Bool
is-two-or-five $x=$ case x of 2 -> True 5 -> True
_ -> False
_ is a wildcard that matches any value.

PATTERNS

```
fibonacci :: Int -> Int
fibonacci n = case n of
    0 -> 1
    1 -> 1
    _ -> fibonacci (n-1) + fibonacci (n-2)
```


PATTERNS

$$
\begin{aligned}
& \text { fibonacci }:: \text { Int } \rightarrow \text { Int } \\
& \text { fibonacci } n=\text { case } n \text { of } \\
& \quad \begin{aligned}
0 & -> \\
1 & -> \\
\quad & ->\text { fibonacci }(n-1)+\text { fibonacci }(n-2)
\end{aligned}
\end{aligned}
$$

Idiomatic Haskell uses multiple function definitions for this:

```
fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n = fibonacci (n-1) + fibonacci (n-2)
```


PATTERNS

$$
\begin{aligned}
& \text { fibonacci :: Int }->\text { Int } \\
& \text { fibonacci } n=\text { case } n \text { of } \\
& \qquad \begin{aligned}
0 & -> \\
1 & -> \\
\quad & ->\text { fibonacci }(n-1)+\text { fibonacci }(n-2)
\end{aligned}
\end{aligned}
$$

Idiomatic Haskell uses multiple function definitions for this:

```
fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n = fibonacci (n-1) + fibonacci (n-2)
```

Pattern matching: The first equation whose formal arguments match the arguments of the invocation is used.

PATTERNS

```
fibonacci :: Int -> Int
fibonacci n = case n of
    0 -> 1
    1 -> 1
    _ -> fibonacci (n-1) + fibonacci (n-2)
```

Idiomatic Haskell uses multiple function definitions for this:

```
fibonacci n = fibonacci (n-1) + fibonacci (n-2)
fibonacci 0 = 1
fibonacci 1 = 1
    This gives an infinite loop!
```

Pattern matching: The first equation whose formal arguments match the arguments of the invocation is used.

PATTERN GUARDS

Pattern guards: Patterns can be combined with conditions on when they match.

```
abs :: Int -> Int
abs x | x < 0 = -x
    | otherwise = x
```


PATTERN GUARDS

Pattern guards: Patterns can be combined with conditions on when they match.

```
abs :: Int -> Int
abs x | x< 0 = -x
    | otherwise = x
sign :: Int -> Int
sign 0 = 0
sign x | x < 0 = -1
    | otherwise = 1
```


PATTERN GUARDS

Pattern guards: Patterns can be combined with conditions on when they match.

```
abs :: Int -> Int
abs x | x< 0 = -x
    | otherwise = x
sign :: Int -> Int
sign 0 = 0
sign x | x < 0 = -1
    | otherwise = 1
```

Pattern guards can also be applied to branches of a case-statement.

LOOPS?

Loops are impossible in a functional language. Why?

LOOPS?

Loops are impossible in a functional language. Why? What about iteration?

LOOPS?

Loops are impossible in a functional language. Why? What about iteration?

Iteration becomes recursion.

LOOPS?

Loops are impossible in a functional language. Why?
What about iteration?
Iteration becomes recursion.
Iterative C++:
int factorial(int n) \{
int fac = 1;
for (int i = 1; i <= n; ++i) fac *= i;
return fac;
\}

LOOPS?

Loops are impossible in a functional language. Why?

What about iteration?
Iteration becomes recursion.

Iterative C++:

int factorial(int n) \{
int fac = 1;
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i) fac *= i;
return fac;
\}

Recursive C++:

```
int factorial(int n) {
    if (n <= 1)
        return 1;
    else
        return n * factorial(n-1);
}
```


LOOPS?

Loops are impossible in a functional language. Why?
What about iteration?
Iteration becomes recursion.

Iterative C++:

int factorial(int n) \{
int fac = 1;
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i) fac *= i;
return fac;
\}
Haskell:
factorial :: Int -> Int
factorial $0=1$
factorial $n=n *$ factorial (n-1)
Recursive C++:

```
int factorial(int n) {
    if (n <= 1)
        return 1;
    else
        return n * factorial(n-1);
}
```


LOOPS?

Loops are impossible in a functional language. Why?
What about iteration?
Iteration becomes recursion.

Iterative C++:

 Efficient
 int factorial(int n) \{
int fac = 1;
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i) fac *= i;
return fac;
\}
Haskell:
factorial :: Int -> Int
factorial 0 = 1
factorial $n=n *$ factorial (n-1)
Inefficient
nt

```
Recursive C++:
    Inefficient
int factorial(int n) {
    if (n <= 1)
        return 1;
        else
        return n * factorial(n-1);
}
```


Inefficient

MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of the same function, the compiler converts these recursive calls into a loop.

MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of the same function, the compiler converts these recursive calls into a loop.

Not tail-recursive:
factorial $0=1$
factorial n = n * factorial (n-1)

MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of the same function, the compiler converts these recursive calls into a loop.

Not tail-recursive:
factorial $0=1$
factorial n = n * factorial (n-1)

Tail-recursive:
factorial n = factorial' n 1
factorial' 0 f = f
factorial' n f = factorial' ($\mathrm{n}-1$) ($\mathrm{n} * \mathrm{f}$)

MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of the same function, the compiler converts these recursive calls into a loop.

Not tail-recursive:

```
factorial 0 = 1
factorial n = n * factorial (n-1)
- Stack size = depth of
recursion
- Overhead to maintain the stack
```

Tail-recursive:

```
factorial n = factorial' n 1
```

factorial' 0 f = f
factorial' n f = factorial' (n-1) (n*f)

MAKING RECURSION EFFICIENT: TAIL RECURSION

Tail recursion: When the last statement in a function is a recursive invocation of the same function, the compiler converts these recursive calls into a loop.

Not tail-recursive:

```
factorial 0 = 1
factorial n = n * factorial (n-1)
```

- Stack size = depth of recursion
- Overhead to maintain the stack

Tail-recursive:
factorial n = factorial' n 1
factorial' 0 f = f
factorial' n f $=$ factorial' $(\mathrm{n}-1)(\mathrm{n} * \mathrm{f})$

- Constant stack size
- No overhead to maintain the stack

DATA TYPES

Primitive types:

- Int, Rational, Float, Char

Collection types:

- Lists, tuples, arrays, String (list of Char)

Custom types:

- Algebraic types (similar to struct in C)
- Type aliases (similar to typedef in C)

LISTS

Lists are ubiquitous in Haskell because they match the recursive world view of functional languages:

A list

- Is empty or
- Consists of an element, its head, followed by a list, its tail.

LISTS

Lists are ubiquitous in Haskell because they match the recursive world view of functional languages:

A list

- Is empty or
- Consists of an element, its head, followed by a list, its tail.

In Haskell:

LIST COMPREHENSIONS

$[1,2,3]$

LIST COMPREHENSIONS

$$
\begin{array}{ll}
{[1,2,3]} \\
{[1 . .10]}
\end{array} \quad--[1,2,3,4,5,6,7,8,9,10]
$$

LIST COMPREHENSIONS

$$
\begin{array}{ll}
{[1,2,3]} \\
{[1 . .10]} & --[1,2,3,4,5,6,7,8,9,10] \\
{[1 \ldots]} & -- \text { the infinite list }[1,2,3, \ldots]
\end{array}
$$

LIST COMPREHENSIONS

$$
\begin{array}{ll}
{[1,2,3]} \\
{[1 . .10]} & --[1,2,3,4,5,6,7,8,9,10] \\
{[1 \ldots]} & -- \text { the infinite list }[1,2,3, \ldots] \\
{[2,4 \ldots 10]} & --[2,4,6,8,10]
\end{array}
$$

LIST COMPREHENSIONS

```
[1, 2, 3]
[1 .. 10] -- [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1 ..] -- the infinite list [1, 2, 3, ...]
[2, 4 .. 10] -- [2, 4, 6, 8, 10]
[(x, y) | x <- [0..8], y <- [0..8], even x || even y]
-- The list of coordinates
```

--
-- \cdot.
--
--
-••••

POLYMORPHISM (1)

Many functions and data types in Haskell are polymorphic (can be applied to arbitrary types, in a type-safe manner).

POLYMORPHISM (1)

Many functions and data types in Haskell are polymorphic (can be applied to arbitrary types, in a type-safe manner).

The idea is the same as generics/templates, but the use is more light-weight:

POLYMORPHISM (1)

Many functions and data types in Haskell are polymorphic (can be applied to arbitrary types, in a type-safe manner).

The idea is the same as generics/templates, but the use is more light-weight:

C++/Java/Scala: Do I have a good enough reason to implement this function or class as a generic/template?

POLYMORPHISM (1)

Many functions and data types in Haskell are polymorphic (can be applied to arbitrary types, in a type-safe manner).

The idea is the same as generics/templates, but the use is more light-weight:

C++/Java/Scala: Do I have a good enough reason to implement this function or class as a generic/template?

Haskell: Do I have a good reason not to make this function or type polymorphic?

POLYMORPHISM (2)

```
C++:
template <typename T>
std::vector<T> concat(const std::vector<T> &xs,
                const std::vector<T> &ys) {
    std::vector<T> result(xs);
    for (auto &y : ys)
        result.push_back(y);
    return result;
}
```


POLYMORPHISM (2)

```
C++:
template <typename T>
std::vector<T> concat(const std::vector<T> &xs,
                                const std::vector<T> &ys) {
    std::vector<T> result(xs);
    for (auto &y : ys)
        result.push_back(y);
    return result;
}
```

Haskell:

```
concat :: [t] -> [t] -> [t]
concat [] ys = ys
concat (x:xs) ys = x : concat xs ys
```


MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

```
C++:
template <typename T>
T sum(const std::vector<T> &xs) {
    T total = 0;
    for (auto x : xs)
        total += x;
    return total;
}
```


MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

```
C++:
template <typename T>
T sum(const std::vector<T> &xs) {
    T total = 0;
    for (auto x : xs)
        total += x;
    return total;
}
```

- (Relatively) obscure message when using the template with a type T that does not support addition.

MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

```
C++:
template <typename T>
T sum(const std::vector<T> &xs) {
    T total = 0;
    for (auto x : xs)
        total += x;
    return total;
}
- (Relatively) obscure message when using the template with a type T that does not support addition.
```


Haskell:

```
sum :: [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
```


MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

C++:

template <typename T>
T sum(const std::vector<T> \&xs) \{
T total = 0; for (auto x : xs)
total += x;
return total;
\}

- (Relatively) obscure message when using the template with a type T that does not support addition.

Haskell:

```
sum :: [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
```

- Function must specify what "interface" it expects from its argument types.

MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

C++:

template <typename T>
T sum(const std::vector<T> \&xs) \{ T total = 0; for (auto x : xs)
total += x;
return total;
\}

- (Relatively) obscure message when using the template with a type T that does not support addition.

Haskell:

```
sum :: [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
sum :: Num t => [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
```

- Function must specify what "interface" it expects from its argument types.

MAKING POLYMORPHISM TYPE-SAFE: TYPE CLASSES

C++:

template <typename T>
T sum(const std::vector<T> \&xs) \{
T total = 0;
for (auto x : xs)
total += x;
return total;
\}

- (Relatively) obscure message when using the template with a type T that does not support addition.

Haskell:

```
sum :: [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
sum :: Num t => [t] -> t
sum [] = 0
sum (x:xs) = x + sum xs
```

- Function must specify what "interface" it expects from its argument types.
- Use of function not satisfying type constraints reported upon use.

COMMON TYPE CLASSES

Eq:

- Supports equality testing using == and /=

Ord: (Requires Eq)

- Supports ordering using $<,>,<=$, and $>=$

Num:

- Supports +, -, *, abs, ..., not /!

Show:

- Supports conversion to a string using show

Read:

- Supports conversion from a string using read

DECONSTRUCTING LISTS

Inspecting the contents of lists is often done using patterns, but we can also explicitly ask for the head or tail of a list:

```
head :: [t] -> t
head (x:_) = x
head _ = error "Cannot take head of empty list"
tail :: [t] -> t
tail (_:xs) = xs
tail _ = error "Cannot take tail of empty list"
```


MORE LIST FUNCTIONS

-- Concatenate two lists
$[1,2]++[3,4,5]==[1$.. 5]

MORE LIST FUNCTIONS

> -- Concatenate two lists
> $[1,2]++[3,4,5]==[1 . .5]$
> -- Concatenate a list of lists concat $[[1,2],[3],[4,5]]==[1 . .5]$

MORE LIST FUNCTIONS

-- Concatenate two lists
$[1,2]++[3,4,5]==[1 \ldots 5]$
-- Concatenate a list of lists concat [[1, 2], [3], [4, 5]] == [1 .. 5]
-- Take the first 5 elements of the list take 5 [1 .. 10] == [1 .. 5]

MORE LIST FUNCTIONS

-- Concatenate two lists
$[1,2]++[3,4,5]==[1$.. 5]
-- Concatenate a list of lists concat [[1, 2], [3], [4, 5]] == [1 .. 5]
-- Take the first 5 elements of the list take 5 [1 .. 10] == [1 .. 5]
-- Drop the first 5 elements of the list drop 5 [1 .. 10] == [6 .. 10]

MORE LIST FUNCTIONS

-- Concatenate two lists
$[1,2]++[3,4,5]==[1$.. 5]
-- Concatenate a list of lists concat [[1, 2], [3], [4, 5]] == [1 .. 5]
-- Take the first 5 elements of the list take 5 [1 .. 10] == [1 .. 5]
-- Drop the first 5 elements of the list drop 5 [1 .. 10] == [6 .. 10]
-- Split the list after the 5th element splitAt 5 [1 .. 10] = ([1 .. 5], [6 .. 10])

TUPLES

Lists can hold an arbitrary number of elements of the same type:

```
l = [1 .. 10] -- l :: [Int]
l' = 'a' : l -- error!
```

Tuples can hold a fixed number of elements of potentially different types:
t = ('a', 1, [2, 3]) -- t : (Char, Int, [Int])

OPERATIONS FOR PAIRS AND TUPLES

$$
\begin{aligned}
& \text { fst }:(\mathrm{a}, \mathrm{~b})->\mathrm{a} \\
& \text { snd }:(\mathrm{a}, \mathrm{~b})->\mathrm{b} \\
& \text { fst }(\mathrm{x}, ~-)=\mathrm{x} \\
& \text { snd }\left(_, y\right)=y
\end{aligned}
$$

OPERATIONS FOR PAIRS AND TUPLES

```
fst :: (a, b) -> a
snd :: (a, b) -> b
fst (x, _) = x
snd (_, y) = y
(,) :: a -> b -> (a, b)
(,) x y = (x,y)
```


OPERATIONS FOR PAIRS AND TUPLES

$$
\begin{aligned}
& \text { fst :: (a, b) -> a } \\
& \text { snd :: (a, b) -> b } \\
& \text { fst }(x,-)=x \\
& \text { snd }\left(_, y\right)=y \\
& (,):: a->b->(a, b) \\
& (,) x y=(x, y) \\
& (,,,):: a->b->c->d->(a, b, c, d) \\
& (,,,) w x y z=(w, x, y, z)
\end{aligned}
$$

LISTS AND TUPLES: THE FANTASTIC DUO

Zipping and unzipping: From a pair of lists to a list of pairs and back.
zip ['a', 'b', 'c'] [1 .. 10] == [('a',1), ('b',2), ('c',3)]
-- The result has the length of the shorter of the two lists

LISTS AND TUPLES: THE FANTASTIC DUO

Zipping and unzipping: From a pair of lists to a list of pairs and back.
zip $[' a ', ~ ' b ', ~ ' c '][1 \ldots 10]==[(' a ', 1),(' b ', 2),(' c ', 3)]$
-- The result has the length of the shorter of the two lists
unzip [('a',1), ('b',2), ('c',3)] = (['a', 'b', 'c'], [1, 2, 3])

LISTS AND TUPLES: THE FANTASTIC DUO

Zipping and unzipping: From a pair of lists to a list of pairs and back.
zip ['a', 'b', 'c'] [1 .. 10] == [('a',1), ('b',2), ('c',3)]
-- The result has the length of the shorter of the two lists
unzip [('a',1), ('b',2), ('c',3)] = (['a', 'b', 'c'], [1, 2, 3])

Zipping with a function:
zipWith ($\backslash x y \rightarrow x+y$) $[1,2,3][4,5,6]==[5,7,9]$

ARRAYS (1)

Arrays do exist in Haskell and do have their uses because they support constant-time access.

However, arrays are (normally) immutable, so updates are expensive.

ARRAYS (1)

Arrays do exist in Haskell and do have their uses because they support constant-time access.

However, arrays are (normally) immutable, so updates are expensive.

Creating arrays:

$\operatorname{array}(1,3)[(3, ' a '),(1, ' b '),(2, ' c ')]$

'b'	'c'	'a'
1	2	3

ARRAYS (1)

Arrays do exist in Haskell and do have their uses because they support constant-time access.

However, arrays are (normally) immutable, so updates are expensive.

Creating arrays:

$$
\begin{aligned}
& \operatorname{array}(1,3)[(3, ' a '),(1, ' b '),(2, ' c ')] \\
& \text { listArray ('a','c') }[3,1,2]
\end{aligned}
$$

' b '	'c'	'a'
1	2	3

3	1	2
a^{\prime}	b^{\prime}	c^{\prime}

ARRAYS (2)

Accessing array elements:

let $a=$ listArray (1,3) ['a', 'b', 'c']

ARRAYS (2)

Accessing array elements:

$$
\begin{aligned}
& \text { let } a=\text { listArray }(1,3)[' a ', ~ ' b ', ~ ' c '] \\
& \text { a ! } 1==\text { 'a' } \\
& \text { a ! } 3==' c '
\end{aligned}
$$

ARRAYS (2)

Accessing array elements:

$$
\begin{aligned}
& \text { let } a=\text { listArray }(1,3)[' a ', ' b ', ~ ' c '] \\
& a!1==' a ' \\
& a!3==' c ' \\
& \text { elems } a==[' a ', ' b ', ' c ']
\end{aligned}
$$

ARRAYS (2)

Accessing array elements:

$$
\begin{aligned}
& \text { let } a=\text { listArray }(1,3)[' a ', ~ ' b ', ~ ' c '] \\
& a!1==' a ' \\
& \text { a ! } 3==\text { 'c' } \\
& \text { elems a == ['a', 'b', 'c'] } \\
& \text { assocs a == [(1,'a'), (2,'b'), (3,'c')] }
\end{aligned}
$$

ARRAYS (2)

Accessing array elements:

$$
\begin{aligned}
& \text { let } a=\text { listArray }(1,3)[' a ', ~ ' b ', ~ ' c '] \\
& a!1==' a ' \\
& a!3==' c ' \\
& \text { elems a == ['a', 'b', 'c'] } \\
& \text { assocs a == [(1,'a'), (2,'b'), (3,'c')] }
\end{aligned}
$$

"Updating" arrays:
a // [(2,'a'), (1,'d')] == listArray (1,3) ['d', 'a', 'c']

ARRAYS (2)

Accessing array elements:

$$
\begin{aligned}
& \text { let } a=\text { listArray }(1,3)[' a ', ~ ' b ', ~ ' c '] \\
& \text { a }!1==' a ' \\
& \text { a ! } 3==' c ' \\
& \text { elems } a==[' a ', ~ ' b ', ~ ' c '] ~ \\
& \text { assocs a == [(1,'a'), (2,'b'), (3,'c')] }
\end{aligned}
$$

"Updating" arrays:
a // [(2,'a'), (1,'d')] == listArray (1,3) ['d', 'a', 'c']
(//) does not update the original array but creates a new array with the specified elements changed. Why?

ARRAYS: A MORE INTERESTING EXAMPLE

Counting characters in a text:

```
countChars :: String -> [(Char, Int)]
countChars txt = filter nonZero (assocs counts)
    where counts = accumArray (+) 0 ('a','z')
                                    (zip txt (repeat 1))
nonZero (_, c) = c > 0
countChars "mississippi" == [('i',4), ('m',1), ('p',2), ('s',4)]
```


CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.

CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.
A simple enum type:
data Colors = Red | Green | Blue

CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.
A simple enum type:

```
data Colors = Red | Green | Blue
    deriving (Eq, Ord, Ix)
```


CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.
A simple enum type:

```
data Colors = Red | Green | Blue
    deriving (Eq, Ord, Ix)
```

A binary tree:

```
data Tree t = Leaf
    | Node { item :: t
    , left, right :: Tree t
```


CUSTOM ALGEBRAIC DATA TYPES

Custom algebraic data types (similar to classes/structs) are defined using data.
A simple enum type:

```
data Colors = Red | Green | Blue
    deriving (Eq, Ord, Ix)
```

A binary tree:

```
data Tree t = Leaf
    | Node { item :: t
    , left, right :: Tree t
```

fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree \quad... -- work with (item tree), (left tree),
-- and (right tree)
updItem tree $x=\operatorname{tree}\{$ item $=x\}$

WHEN "DATA" IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:
type Point = (Float, Float)
type PointList = [Point]
Point and (Float, Float) can be used 100\% interchangeably.

WHEN "DATA" IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:

```
type Point = (Float, Float)
type PointList = [Point]
```

Point and (Float, Float) can be used 100\% interchangeably.

IDs are integers but adding or multiplying them makes no sense:

```
newtype ID = ID Int
    deriving (Eq, Ord)
```


WHEN "DATA" IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:

```
type Point = (Float, Float)
type PointList = [Point]
```

Point and (Float, Float) can be used 100\% interchangeably.

IDs are integers but adding or multiplying them makes no sense:

```
newtype ID = ID Int
    deriving (Eq, Ord)
```

- Internally, an ID is represented as an integer. With data, there would have been some space overhead.

WHEN "DATA" IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:

```
type Point = (Float, Float)
type PointList = [Point]
```

Point and (Float, Float) can be used 100\% interchangeably.

IDs are integers but adding or multiplying them makes no sense:

```
newtype ID = ID Int
    deriving (Eq, Ord)
```

- Internally, an ID is represented as an integer. With data, there would have been some space overhead.
- Without the deriving clause, ID does not support any operations.

WHEN "DATA" IS TOO COSTLY

Type aliases similar to typedef or using in C/C++ are defined using type:

```
type Point = (Float, Float)
type PointList = [Point]
```

Point and (Float, Float) can be used 100\% interchangeably.

IDs are integers but adding or multiplying them makes no sense:

```
newtype ID = ID Int
    deriving (Eq, Ord)
```

- Internally, an ID is represented as an integer. With data, there would have been some space overhead.
- Without the deriving clause, ID does not support any operations.
- The deriving clause says that IDs should inherit equality and ordering from its underlying type.

@-PATTERNS

```
fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),
```

- fun1 can refer to the parts of the tree but not to the whole tree.
- fun2 has access to the whole tree but needs to take extra steps to access its parts.
- Sometimes, we'd like to have both.

@-PATTERNS

```
fun1 (Tree x l r) = ... -- work with x, l, and r
fun2 tree = ... -- work with (item tree), (left tree),
```

- fun1 can refer to the parts of the tree but not to the whole tree.
- fun2 has access to the whole tree but needs to take extra steps to access its parts.
- Sometimes, we'd like to have both.

Merging two sorted lists:

$$
\begin{aligned}
& \text { merge : : Ord } \mathrm{t}=\text { [t] }->\text { [t] }->\text { [t] } \\
& \text { merge [] ys }=y s \\
& \text { merge } x s \text { [] }=x s \\
& \text { merge } x \text { sa(x:xs') ys@(y:ys') | } y<x=y \text { : merge } x s \text { ys' } \\
& \text { | otherwise }=x \text { : merge } x s^{\prime} y s
\end{aligned}
$$

ANONYMOUS FUNCTIONS

Anonymous functions are often called λ-expressions.
Haskell people think that \looks close enough to λ.
So an anonymous function for additing two elements together would be
\x y $\rightarrow \mathrm{x}+\mathrm{y}$.

ANONYMOUS FUNCTIONS

Anonymous functions are often called λ-expressions.
Haskell people think that \looks close enough to λ.
So an anonymous function for additing two elements together would be
\x y $\rightarrow \mathrm{x}+\mathrm{y}$.
The normal function definition
add $x y=x+y$
is just syntactic sugar for
add $=\ x y$-> $x+y$

ANONYMOUS FUNCTIONS

Anonymous functions are often called λ-expressions.
Haskell people think that \looks close enough to λ.
So an anonymous function for additing two elements together would be \x y $\rightarrow \mathrm{x}+\mathrm{y}$.

The normal function definition
add $x y=x+y$
is just syntactic sugar for
add $=\ x y \operatorname{x}+\mathrm{y}$
or, as we will see soon, for

$$
\text { add }=\backslash x->\backslash y->x+y
$$

COMMON ITERATION PATTERNS (1)

Many things we do using loops in imperative languages are instances of some common patterns.

Expressing these patterns explicitly instead of hand-crafting them using loops makes our code more readable.

COMMON ITERATION PATTERNS (2)

Mapping: Transform a list into a new list by applying a function to every element:

$$
\operatorname{map}(\backslash x->2 * x)[1 \text {.. 10] }==[2,4 \text {.. 20] }
$$

COMMON ITERATION PATTERNS (2)

Mapping: Transform a list into a new list by applying a function to every element: $\operatorname{map}(\backslash x->2 * x)[1$.. 10] $==[2,4$. 20]

Folding: Accumulate the elements of a list into a single value:
foldr ($\backslash x$ y $->x+y$) 0 [1 . . 10] == 55
-- the sum of the list elements

COMMON ITERATION PATTERNS (2)

Mapping: Transform a list into a new list by applying a function to every element: $\operatorname{map}(\backslash x->2 * x)[1$.. 10] $==[2,4$.. 20]

Folding: Accumulate the elements of a list into a single value:
foldr ($\backslash x$ y $->x+y$) 0 [1 .. 10] == 55
-- the sum of the list elements

Filtering: Extract the list elements that meet a given condition:
filter odd [1 .. 10] == [1, 3, 5, 7, 9]

IMPLEMENTING ITERATION CONSTRUCTS

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map}-[] \\
& \operatorname{map} f(x: x s) \\
& =f]
\end{aligned}
$$

IMPLEMENTING ITERATION CONSTRUCTS

```
map ::(a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b as = go b as
    where go b [] = b
        go b (a:as') = f a (go b as')
```


IMPLEMENTING ITERATION CONSTRUCTS

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f(x:xs) = f x : map f xs
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b as = go b as
    where go b [] = b
        go b (a:as') = f a (go b as')
filter :: (t -> Bool) -> [t] -> [t]
filter _ [] = []
filter p (x:xs) | p x = x : filter p xs
    | otherwise = filter p xs
```


CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

"Flipping" all pairs in a list:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs
    where }\operatorname{swap}(a,b)=(b,a
```


CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

"Flipping" all pairs in a list:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs
    where swap (a,b) = (b,a)
```

A little less verbose:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map (\(a,b) -> (b,a)) xs
```


CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

"Flipping" all pairs in a list:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs
    where swap (a,b) = (b,a)
```

A little less verbose:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map (\(a,b) -> (b,a)) xs
```

Highly compressed:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
```


CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

"Flipping" all pairs in a list:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs
    where swap (a,b) = (b,a)
```

A little less verbose:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map (\(a,b) -> (b,a)) xs
```

Highly compressed:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
```


CURRIED FUNCTIONS AND PARTIAL APPLICATION (1)

"Flipping" all pairs in a list:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map swap xs
    where swap (a,b) = (b,a)
```

A little less verbose:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems xs = map (\(a,b) -> (b,a)) xs
```

This is (almost) what you'd do in practice.

Highly compressed:

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
```

 ???

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f :: a -> b -> c -> d.
Why not
$f::(a, b, c)->d ?$

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as f :: a -> b -> c -> d.

Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f :: a -> b -> c -> d.
Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f :: a -> b -> c -> d.
Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

- ... a function with one argument of type b and whose result is ...

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f :: a -> b -> c -> d.
Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

- ... a function with one argument of type b and whose result is ...
- ... a function with one argument of type c and whose result is of type d.

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f : : a -> (b $->(c->d)$).
Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

- ... a function with one argument of type b and whose result is ...
- ... a function with one argument of type c and whose result is of type d.

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as

$$
f:: a->(b->(c->d)) .
$$

Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

- ... a function with one argument of type b and whose result is ...
- ... a function with one argument of type c and whose result is of type d.
$\mathrm{f}: ~(\mathrm{a}, \mathrm{b}, \mathrm{c})->\mathrm{d}$ has one argument of type (a, b, c) and its result is of type d.

CURRIED FUNCTIONS AND PARTIAL APPLICATION (2)

We write a multi-argument function as
f : : a -> (b \rightarrow (c -> d) .
Why not

$$
f::(a, b, c)->d ?
$$

They're different, but they have one thing in common: neither is really a multi-argument function!
f : : a -> b -> c -> d has one argument of type a and its result is ...

- ... a function with one argument of type b and whose result is ...
- ... a function with one argument of type cand whose result is of type d.
f : : ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) -> d has one argument of type ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and its result is of type d.

We call f : : a -> b $->$ c $->$ d a curried function.

CURRIED FUNCTIONS AND PARTIAL APPLICATION (3)

$f x y z$ really means ((f x) y) z, that is,

- Apply f to x.
- Apply the resulting function to y.
- Apply the resulting function to z.

And that's the final result ... which could itself be a function!

WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.

WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.
Without currying:

```
timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs
```


WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.
Without currying:
timestwo :: [Int] -> [Int]
timestwo xs = map ($\backslash x->2 * x$) xs

With currying (part 1):

WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.
Without currying:

```
timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs
```

With currying (part 1):

- (*) is a function of type (*) : : Num $t \Rightarrow t \rightarrow t->t$.

WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.
Without currying:

```
timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs
```

With currying (part 1):

- (*) is a function of type (*) : : Num $\mathrm{t} \Rightarrow \mathrm{t} \rightarrow \mathrm{t} \rightarrow \mathrm{t}$.
- It maps its first argument x to a function that multiplies its second argument y by x.

WHY ARE CURRIED FUNCTIONS BETTER? (1)

Multiplying all elements in a list by two.
Without currying:

```
timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2*x) xs
```

With currying (part 1):

- (*) is a function of type (*) : : Num $t \Rightarrow t->t->t$.
- It maps its first argument x to a function that multiplies its second argument y by x.
timestwo xs = map (* 2) xs

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

- map is a function of type map : : (a -> b) -> [a] -> [b].

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

- map is a function of type map : : (a -> b) -> [a] -> [b].
- It maps its first argument, a function f, to a function m that applies f to every element in its argument list.

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

- map is a function of type map : : (a -> b) -> [a] -> [b].
- It maps its first argument, a function f, to a function m that applies f to every element in its argument list.
timestwo $=\operatorname{map}(* 2)$

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

- map is a function of type map : : (a -> b) -> [a] -> [b].
- It maps its first argument, a function f, to a function m that applies f to every element in its argument list.
timestwo = map (* 2)

This is called point-free programming. The focus is on building functions from functions instead of specifying the value of a function for a particular argument.

WHY ARE CURRIED FUNCTIONS BETTER? (2)

With currying (part 2):

- map is a function of type map : : (a -> b) -> [a] -> [b].
- It maps its first argument, a function f, to a function m that applies f to every element in its argument list.
timestwo $=\operatorname{map}(* 2)$

This is called point-free programming. The focus is on building functions from functions instead of specifying the value of a function for a particular argument.

Revisiting foldr:

$$
\begin{aligned}
& \text { foldr : : (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f = go } \\
& \text { where go b [] = b } \\
& \text { go } b\left(a: a s^{\prime}\right)=f a(g o b a s ')
\end{aligned}
$$

FUNCTION COMPOSITION

Point-free programming cannot work without function composition:

```
multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)
```


FUNCTION COMPOSITION

Point-free programming cannot work without function composition:

```
multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)
```

Function composition:
(.) :: (b $->\mathrm{c})$-> (a $->\mathrm{b})->(\mathrm{a}->\mathrm{c})$
(f.g) $x=f(g x)$

FUNCTION COMPOSITION

Point-free programming cannot work without function composition:

```
multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)
```

Function composition:
(.) :: (b -> c) -> (a $->\mathrm{b})->(\mathrm{a}->\mathrm{c})$ (f.g) $x=f(g x)$
multiplyevens $=\operatorname{map}(* 2)$. filter even

A FEW USEFUL FUNCTIONS

(\$) :: (a $->\mathrm{b})->\mathrm{a}->\mathrm{b} \quad--\mathrm{f} \$ \mathrm{x}==\mathrm{f} x$

A FEW USEFUL FUNCTIONS

$$
\begin{array}{ll}
\text { (\$) :: (a -> b) }->a->b & --f \$ x==f x \\
\text { flip }::(a->b->c)->(b->a->c) & -- \text { Exchange the first two } \\
& \text {-- function arguments }
\end{array}
$$

A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { \$ } x==f x \\
& \text { flip :: (a -> b }->\mathrm{c}) \text {-> (b }->\mathrm{a}->\mathrm{c}) \text {-- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry :: }((a, b)->c)->(a->b->c) \quad--C u r r y ~ a ~ f u n c t i o n ~ w h o s e ~ \\
& \text {-- argument is a pair }
\end{aligned}
$$

A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { f } x==f x \\
& \text { flip :: (a -> b -> c) -> (b -> a -> c) -- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry : : (} \mathrm{a}, \mathrm{~b} \text {) -> c) -> (a }->\mathrm{b}->\mathrm{c}) \text {-- Curry a function whose } \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a }->\mathrm{b}->\mathrm{c}) \text {-> }((\mathrm{a}, \mathrm{~b}) \text {-> c) -- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { \$ } x==f x \\
& \text { flip :: (a -> b }->\mathrm{c}) \text {-> (b }->\mathrm{a}->\mathrm{c}) \text {-- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry : : }((a, b)->c)->(a->b->c) \quad--C u r r y ~ a ~ f u n c t i o n ~ w h o s e ~ \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a }->\mathrm{b}->\mathrm{c}) \text {-> }((\mathrm{a}, \mathrm{~b}) \text {-> c) -- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

Why the need for a function application operator?

A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { \$ } x==f x \\
& \text { flip :: (a -> b }->\mathrm{c}) \text {-> (b }->\mathrm{a}->\mathrm{c}) \text {-- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry : : }((a, b)->c)->(a->b->c) \quad--C u r r y ~ a ~ f u n c t i o n ~ w h o s e ~ \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a }->\mathrm{b}->\mathrm{c}) \text {-> }((\mathrm{a}, \mathrm{~b}) \text {-> } \mathrm{c}) \text {-- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

Why the need for a function application operator?
Function application binds more tightly than function composition, which binds more tightly than (\$):

A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { f } x==f x \\
& \text { flip :: (a -> b }->\mathrm{c}) \text {-> (b }->\mathrm{a}->\mathrm{c}) \text {-- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry :: }((a, b)->c)->(a->b->c) \quad--C u r r y ~ a ~ f u n c t i o n ~ w h o s e ~ \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a -> b -> c) -> ((a,b) -> c) -- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

Why the need for a function application operator?
Function application binds more tightly than function composition, which binds more tightly than (\$):

```
f :: a -> b
g :: b -> c
x :: a
```


A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad--\mathrm{f} \text { \$ }==\mathrm{f} x \\
& \text { flip :: (a -> b -> c) -> (b -> a -> c) -- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry :: }((a, b)->c)->(a->b->c) \quad--C u r r y ~ a ~ f u n c t i o n ~ w h o s e ~ \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a }->\mathrm{b}->\mathrm{c}) \text {-> }((\mathrm{a}, \mathrm{~b}) \text {-> } \mathrm{c}) \text {-- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

Why the need for a function application operator?
Function application binds more tightly than function composition, which binds more tightly than (\$):

```
f :: a -> b
g :: b -> c
x :: a
g . f $ x :: c
```


A FEW USEFUL FUNCTIONS

$$
\begin{aligned}
& \text { (\$) :: (a -> b) -> a -> b } \quad-\quad \text { \$ } x==f x \\
& \text { flip :: (a -> b -> c) -> (b -> a -> c) -- Exchange the first two } \\
& \text {-- function arguments } \\
& \text { curry : : }((a, b)->c)->(a->b->c) \text {-- Curry a function whose } \\
& \text {-- argument is a pair } \\
& \text { uncurry : : (a -> b -> c) -> ((a,b) -> c) -- Collapse two function } \\
& \text {-- arguments into a pair }
\end{aligned}
$$

Why the need for a function application operator?
Function application binds more tightly than function composition, which binds more tightly than (\$):
f : : a -> b
g :: b -> c
x : : a
g . f \$ x : : c
g . f x -- error!

BACK TO SWAPELEMS

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
```


BACK TO SWAPELEMS

$$
\begin{aligned}
& \text { swapelems :: [(a,b)] -> }[(b, a)] \\
& \text { swapelems }=\operatorname{map} \text { (uncurry . flip } \$(,)) \\
& \text { flip } \quad::(b->a \rightarrow c) \rightarrow(a \rightarrow b->c)
\end{aligned}
$$

BACK TO SWAPELEMS

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
flip
uncurry
::(b -> a -> c) -> (a -> b -> c)
::(a -> b -> c) -> ((a,b) -> c)
```


BACK TO SWAPELEMS

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
flip
    ::(b -> a -> c) -> (a -> b -> c)
uncurry
    ::(a -> b -> c) -> ((a,b) -> c)
uncurry . flip
::(b -> a -> c) -> ((a,b) -> c)
```


BACK TO SWAPELEMS

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
flip
uncurry
uncurry . flip
(, )
```

```
::(b -> a -> c) -> (a -> b -> c)
```

::(b -> a -> c) -> (a -> b -> c)
::(a -> b -> c) -> ((a,b) -> c)
::(a -> b -> c) -> ((a,b) -> c)

```
::(b -> a -> c) -> ((a,b) -> c)
```

::(b -> a -> c) -> ((a,b) -> c)
:: b -> a -> (b,a)

```
:: b -> a -> (b,a)
```


BACK TO SWAPELEMS

```
swapelems :: [(a,b)] -> [(b,a)]
swapelems = map (uncurry . flip $ (,))
flip
    ::(b -> a -> c) -> (a -> b -> c)
uncurry
    ::(a -> b -> c) -> ((a,b) -> c)
uncurry . flip
    ::(b -> a -> c) -> ((a,b) -> c)
(, )
:: b -> a -> (b,a)
uncurry . flip $(,) :: (a,b) -> (b,a)
```


DEFINING AND USING TYPE CLASSES

Sequences: Containers that can be "flattened" to a list:
class Sequence s where
flatten :: s t -> [t]
flatMap :: (a -> b) -> s a -> [b]
flatMap $f=\operatorname{map} f$. flatten

DEFINING AND USING TYPE CLASSES

Sequences: Containers that can be "flattened" to a list:

```
class Sequence s where
    flatten :: s t -> [t]
    flatMap :: (a -> b) -> s a -> [b]
    flatMap f = map f . flatten
```

generalizedFilter : : Sequence s => (t -> Bool) -> s t -> [t]
generalizedFilter p = filter p . flatten

DEFINING INSTANCES OF TYPE CLASSES

Lists are sequences:
instance Sequence [] where
flatten = id
flatMap = map

DEFINING INSTANCES OF TYPE CLASSES

Lists are sequences:
instance Sequence [] where
flatten = id
flatMap = map
So are arrays:
instance Sequence (Array ix) where flatten = elems

DEFINING INSTANCES OF TYPE CLASSES

Lists are sequences:
instance Sequence [] where
flatten = id
flatMap = map
So are arrays:
instance Sequence (Array ix) where
flatten = elems
... and binary trees:
instance Sequence Tree where

$$
\begin{array}{ll}
\text { flatten Leaf } & =[] \\
\text { flatten (Tree } x ~ l r) & =\text { flatten } l++[x]++ \text { flatten } r
\end{array}
$$

MAYBE: A SAFER NULL

Maybe t can be used as the result of functions that may fail:
lookup :: Eq a => a -> [(a,b)] -> Maybe b

MAYBE: A SAFER NULL

Maybe t can be used as the result of functions that may fail:
lookup :: Eq a => a -> [(a,b)] -> Maybe b

$$
\begin{aligned}
\text { data Maybe t } & =\text { Just t } \\
& \mid \text { Nothing }
\end{aligned}
$$

WORKING WITH MAYBE

Using patterns:
formattedLookup : : (Eq a, Show a, Show b) => a -> [(a,b)] -> String formattedLookup x ys = format (lookup x ys)
where format Nothing = "Key " ++ show x ++ " not found"

$$
\begin{aligned}
\text { format (Just } y)=\text { "Key " } & ++ \text { show } x++ \text { " stores value " } \\
& ++ \text { show } y
\end{aligned}
$$

WORKING WITH MAYBE

Using patterns:
formattedLookup :: (Eq a, Show a, Show b) => a -> [(a,b)] -> String formattedLookup x ys = format (lookup x ys)
where format Nothing = "Key " ++ show x ++ " not found" format (Just y) = "Key " ++ show x ++ " stores value " ++ show y

Using maybe:
maybe :: b -> (a -> b) -> Maybe a -> b
maybe def _ Nothing = def
maybe _ $f($ Just $x)=f x$

WORKING WITH MAYBE

Using patterns:
formattedLookup :: (Eq a, Show a, Show b) => a -> [(a,b)] -> String formattedLookup x ys = format (lookup x ys)
where format Nothing = "Key " ++ show x ++ " not found" format (Just y) = "Key " ++ show x ++ " stores value " ++ show y

Using maybe:
maybe :: b -> (a -> b) -> Maybe a -> b
maybe def _ Nothing = def
maybe _ $f($ Just $x)=f x$
lookupWithDefault : : Eq a \Rightarrow a $->\mathrm{b}$-> $[(\mathrm{a}, \mathrm{b})]$-> b
lookupWithDefault x y ys = maybe y id (lookup x ys)

EITHER: CAPTURING DIFFERENT OUTCOMES

Either a b can be used as the result of computations that may produce two different outcomes:

```
data Either a b = Left a
    | Right b
tagEvensAndOdds :: [Int] -> [Either Int Int]
tagEvensAndOdds = map tag
    where tag x | even x = Left x
        | otherwise = Right x
```


WORKING WITH EITHER

Using patterns:

```
addOrMultiply :: [Int] -> [Int]
addOrMultiply = map aom . tagEvensAndOdds
    where aom (Left even) = even + 2
    aom (Right odd) = 2 * odd
```


WORKING WITH EITHER

Using patterns:

```
addOrMultiply :: [Int] -> [Int]
addOrMultiply = map aom . tagEvensAndOdds
    where aom (Left even) = even + 2
    aom (Right odd) = 2 * odd
```

Using either:
either :: (a -> c) -> (b -> c) -> Either a b -> c
either f _ (Left x) $=f x$
either _ g (Right y) = g y
addOrMultiply = map (either (+ 2) (* 2)) . tagEvensAndOdds

FUNCTORS: AN ABSTRACTION FOR CONTAINERS

map allows us to apply a function to every list element, but we cannot map over the elements of a binary tree.

FUNCTORS: AN ABSTRACTION FOR CONTAINERS

map allows us to apply a function to every list element, but we cannot map over the elements of a binary tree.

What if I want to apply a function to Maybe some value?

FUNCTORS: AN ABSTRACTION FOR CONTAINERS

map allows us to apply a function to every list element, but we cannot map over the elements of a binary tree.

What if I want to apply a function to Maybe some value?

The Functor type class captures containers:
class Functor f where
fmap :: (a $->$ b) $->$ f $a \rightarrow f b$

EXAMPLES OF FUNCTORS

The list type is a functor:
instance Functor [] where
fmap = map

EXAMPLES OF FUNCTORS

The list type is a functor:
instance Functor [] where
fmap = map

So is Maybe:
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) $=$ Just ($f x$)

EXAMPLES OF FUNCTORS

The list type is a functor:
instance Functor [] where
fmap = map

So is Maybe:
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) $=$ Just ($f x$)
... and the binary tree type:
instance Functor Tree where
fmap _ Leaf = Leaf
fmap \bar{f} (Tree $x \quad l$) $=\operatorname{Tree}(f x)(f m a p h i)(f m a p ~ f r)$

LAZY EVALUATION

What takes longer?

- let l1 = [1 .. 10]
- let l2 = [1 .. 10000000]
- let 13 = [1 ..]

LAZY EVALUATION

What takes longer?

- let l1 = [1 .. 10]
- let l2 = [1 .. 10000000]
- let l3 = [1 ..]

They all take constant time!

LAZY EVALUATION

What takes longer?

- let l1 = [1 .. 10]
- let l2 = [1 .. 10000000]
- let l3 = [1 ..]

They all take constant time!

Haskell evaluates expressions lazily:

- Expressions are evaluated only when their value is needed.
- The evaluated value is cached, in case it's needed again.

LAZY EVALUATION

What takes longer?

- let l1 = [1 .. 10]
- let l2 = [1 .. 10000000]
- let l3 = [1 ..]

They all take constant time!
Haskell evaluates expressions lazily:

- Expressions are evaluated only when their value is needed.
- The evaluated value is cached, in case it's needed again.
head 11 produces 1 and changes the representation of 11 to 1 : [2 .. 10].

LAZY EVALUATION

What takes longer?

- let l1 = [1 .. 10]
- let l2 = [1 .. 10000000]
- let 13 = [1 ..]

They all take constant time!
Haskell evaluates expressions lazily:

- Expressions are evaluated only when their value is needed.
- The evaluated value is cached, in case it's needed again.
head 11 produces 1 and changes the representation of 11 to 1 : [2 .. 10].
Useful consequence: We can define infinite data structures as long as we only work with finite portions of them.

WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

Elegance!

WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

Elegance!

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its number.

WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

Elegance!

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its number.

The hard way:

```
splitInput :: String -> [(Int, String)]
splitInput text = zip ns ls
    where ls = lines text
        ns = [1 .. length ls]
```


WHY ARE INFINITE DATA STRUCTURES USEFUL? (1)

Elegance!

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its number.

The hard way:

```
splitInput :: String -> [(Int, String)]
splitInput text = zip ns ls
    where ls = lines text
        ns = [1 .. length ls]
```

The easy way:

```
splitInput :: String -> [(Int, String)]
splitInput = zip [1..] . lines
```


WHY ARE INFINITE DATA STRUCTURES USEFUL? (2)

The inifinite sequence of Fibonacci numbers:

```
fibonacci :: [Int]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)
```


WHY ARE INFINITE DATA STRUCTURES USEFUL? (2)

The inifinite sequence of Fibonacci numbers:

```
fibonacci :: [Int]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)
```

The first 10 Fibonacci numbers:
take 10 fibonacci $==[1,1,2,3,5,8,13,21,34,55]$

MORE LAZINESS: USING VALUES BEFORE THEY'RE COMPUTED (1)

BFS numbering of a binary tree

MORE LAZINESS: USING VALUES BEFORE THEY'RE COMPUTED (1)

BFS numbering of a binary tree

The naive solution:

- Build a list of nodes in level order
- Number the nodes
- Reassemble the tree

I refuse to turn this into code; it's messy.

MORE LAZINESS: USING VALUES BEFORE THEY'RE COMPUTED (2)

bfs' :: ([Int], Tree t) -> ([Int], Tree Int)
bfs' (nums, Leaf) = (nums, Leaf)
bfs' (num:nums, Tree _ l r) = (num+1 : nums'', Tree num l' r')
where (nums', l') = bfs' (nums, l)
(nums'', r') = bfs' (nums', r)

MORE LAZINESS: USING VALUES BEFORE THEY'RE COMPUTED (3)

bfs :: Tree t -> Tree Int
bfs t = t'
where (nums, t') = bfs' (1 : nums, t)

LISTS AS CONTROL STRUCTURES (1)

Many computations are about transforming collections of items.

LISTS AS CONTROL STRUCTURES (1)

Many computations are about transforming collections of items.
It would be clearest to express such sequences of transformations explicitly, but explictly building up these collections (vectors, lists, ...) is often costly.

LISTS AS CONTROL STRUCTURES (1)

Many computations are about transforming collections of items.
It would be clearest to express such sequences of transformations explicitly, but explictly building up these collections (vectors, lists, ...) is often costly.
\Rightarrow We often build up complicated loops to avoid materializing intermediate collections.

LISTS AS CONTROL STRUCTURES (1)

Many computations are about transforming collections of items.
It would be clearest to express such sequences of transformations explicitly, but explictly building up these collections (vectors, lists, ...) is often costly.
\Rightarrow We often build up complicated loops to avoid materializing intermediate collections.

Laziness allows us to express computations as list transformations while still not materializing any intermediate lists.

LISTS AS CONTROL STRUCTURES (2)

```
filterAndMultiply :: [Bool] -> [Int] -> [Int] -> [Int]
filterAndMultiply keep items factors = map (*) kept factors
where kept = map snd keptPairs
    keptPairs = filter fst pairs
    pairs = zip keep items
```


LISTS AS CONTROL STRUCTURES (2)

```
filterAndMultiply :: [Bool] -> [Int] -> [Int] -> [Int]
filterAndMultiply keep items factors = map (*) kept factors
where kept = map snd keptPairs
    keptPairs = filter fst pairs
    pairs = zip keep items
```

keep
items \rightarrow zip-pairs \rightarrow filter fst - keptPairs \rightarrow map snd - kept $\xrightarrow[\text { factors } \rightarrow \text { map (*) }]{\rightarrow}$

LISTS AS CONTROL STRUCTURES (2)

```
filterAndMultiply :: [Bool] -> [Int] -> [Int] -> [Int]
filterAndMultiply keep items factors = map (*) kept factors
    where kept = map snd keptPairs
    keptPairs = filter fst pairs
    pairs = zip keep items
```

 keep
 items \rightarrow zip-pairs \rightarrow filter fst - keptPairs \rightarrow map snd $-\underset{\text { kept }}{\text { factors } \rightarrow \text { map (*) }} \rightarrow$

- Only one node of each list needed at any point in time.
- A good compiler will optimize the lists away.

SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:

SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:
Right to left:

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f = go } \\
& \text { where go b [] = b } \\
& \text { go } b(x: x s)=f x(\text { go } b x s)
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:
Right to left:

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f = go } \\
& \text { where go } b \text { [] }=b \\
& \text { go } b(x: x s)=f x(g o b x s) \\
& \text { foldl :: (a -> b -> a) -> a -> [b] -> a } \\
& \text { foldl f = go } \\
& \text { where go a [] = a } \\
& \text { go } a(x: x s)=\text { go (f a } x \text {) xs }
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (1)

Three kinds of folds:
Right to left:

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f = go } \\
& \text { where go b [] = b } \\
& \text { go } b(x: x s)=f x(g o b x s) \\
& \text { foldl :: (a -> b -> a) -> a -> [b] -> a } \\
& \text { foldl f = go } \\
& \text { where go a [] = a } \\
& \text { go a (x:xs) = go (f a x) xs }
\end{aligned}
$$

foldl' : : (a -> b -> a) -> a -> [b] -> a
foldl' f = go
where go a [] = a

$$
\begin{aligned}
\text { go } a(x: x s)= & \text { let } y=f a x \\
& \text { in } y \text { `seq` go } y \text { xs }
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:
foldr (+) 0 [1..n]

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:
foldr (+) 0 [1..n] foldr (+) 0 [1..5]

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:
foldr (+) 0 [1..n]

$$
\begin{gathered}
\text { foldr (+) } 0[1 . .5] \\
\quad \text { Recursive call } \\
\text { foldr (+) } 0[2 . .5]
\end{gathered}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] }
$$

$$
\begin{gathered}
\text { foldr (+) } 0 \text { [1. .5] } \\
\mid \text { Recursive call } \\
\text { foldr (+) } 0[2 . .5] \\
\mid \text { Recursive call } \\
\text { foldr (+) } 0 \text { [3. .5] }
\end{gathered}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] }
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] }
$$

$\begin{gathered} \text { foldr (+) } 0 \text { [1..5] } \\ \mid \text { Recursive call } \end{gathered}$
foldr (+) 0 [2..5]
Recursive call
foldr (+) 0 [3..5]
Recursive call
foldr (+) 0 [4..5]
Recursive call
foldr (+) 0 [5]

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

```
foldr (+) 0 [1..n]
\begin{tabular}{|c|}
\hline \[
\begin{gathered}
\text { foldr }(+) 0 \text { [1..5] } \\
\mid \text { Recursive call }
\end{gathered}
\] \\
\hline foldr (+) 0 [2..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [3..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [4..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [5] \\
\hline Recursive call \\
\hline foldr (+) 0 [] \\
\hline
\end{tabular}
```


SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

```
foldr (+) 0 [1..n]
\begin{tabular}{|c|}
\hline \[
\begin{gathered}
\text { foldr (+) } 0 \text { [1..5] } \\
\text { |Recursive call }
\end{gathered}
\] \\
\hline foldr (+) 0 [2..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [3..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [4..5] \\
\hline Recursive call \\
\hline foldr (+) 0 [5] \\
\hline
\end{tabular}
```


SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] }
$$

$$
\begin{aligned}
& \text { foldr (+) 0 [1..5] } \\
& \mid \text { Recursive call } \\
& \text { foldr (+) 0 [2..5] } \\
& \mid \text { Recursive call } \\
& \text { foldr (+) } 0 \text { [3. .5] } \\
& \mid \text { Recursive call } \\
& \text { foldr (+) 0 [4..5] }
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] }
$$

$$
\begin{gathered}
\text { foldr (+) } 0 \text { [1. .5] } \\
\mid \text { Recursive call } \\
\text { foldr (+) } 0[2 . .5] \\
\mid \text { Recursive call } \\
\text { foldr (+) } 0[3.5]
\end{gathered}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:
foldr (+) 0 [1..n]

$$
\begin{gathered}
\text { foldr (+) } 0[1 . .5] \\
\mid \text { Recursive call } \\
\text { foldr (+) } 0[2.5]
\end{gathered}
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] foldr (+) } 0 \text { [1..5] }
$$

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:
foldr (+) 0 [1..n]

SOME PITFALLS OF LAZINESS (2)

Space usage of summing a list of integers:

$$
\text { foldr (+) } 0 \text { [1..n] } O(n) \text { space }
$$

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) 0 [1..n]

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) $0[1 . . n]$
foldl (+) 0

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) 0 [1..n]
$\begin{aligned} & \text { foldl (+) } \\ \rightarrow & \text { foldl (+) }\end{aligned}$
[1..5]
[2..5]

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) 0 [1..n]

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) 0 [1..n]

	foldl (+)	0
\rightarrow foldl (+)	$(0+1)$	$[1.5]$
\rightarrow foldl (+)	$((0+1)+2)$	$[2 \ldots 5]$
\rightarrow foldl (+)	$(((0+1)+2)+3)$	$[4 . .5]$

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:

```
foldl (+) 0 [1..n]
```

	foldl (+)
\rightarrow	foldl (+)
\rightarrow	$(0+1)$
\rightarrow	foldl (+)
\rightarrow	$((0+1)+2)$
\rightarrow	foldl $(+)$

[1..5]
[2..5]
[3..5]
[4..5]
[5]

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:
foldl (+) 0 [1..n]

	foldl (+)	0
\rightarrow foldl (+)	$(0+1)$	$[1 . .5]$
\rightarrow foldl (+)	$((0+1)+2)$	$[3 . .5]$
\rightarrow foldl $(+)$	$(((0+1)+2)+3)$	$[4.5]$
\rightarrow foldl $(+)$	$((((0+1)+2)+3)+4)$	$[5]$
\rightarrow foldl $(+)(((((0+1)+2)+3)+4)+5)$	[]	

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:

$$
\text { foldl (+) } 0 \text { [1...n] }
$$

SOME PITFALLS OF LAZINESS (3)

Space usage of summing a list of integers:

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:
foldl' (+) 0 [1..n]

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:
foldl' (+) 0 [1..n]
foldl' (+) 0 [1..5]

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:
foldl' (+) 0 [1..n]

$$
\begin{aligned}
& f o l d l '(+) \\
\rightarrow & 0 \text { [1..5] } \\
\text { foldl' (+) } & 1[2 . .5]
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:
foldl' (+) 0 [1..n]

$$
\begin{aligned}
& f o l d l '(+) \\
\rightarrow & 0[1 . .5] \\
\rightarrow & \text { foldl' (+) } \\
\rightarrow & 1[2 . .5] \\
\text { foldl' (+) } & 3[3 . .5]
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

```
foldl' (+) 0 [1..n]
```

$$
\begin{aligned}
& \text { foldl' (+) } \\
\rightarrow & 0[1 . .5] \\
\rightarrow & \text { foldl' (+) } \\
\hline & 1[2 . .5] \\
\rightarrow & \text { foldl' }(+) \\
\rightarrow & 3[3 . .5] \\
\text { foldl' (+) } & 6[4 . .5]
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

```
foldl' (+) 0 [1..n]
```

$$
\begin{aligned}
& f o l d l '(+) \\
\rightarrow & 0 \text { [1..5] } \\
\rightarrow & \text { foldld' (+) } \\
\hline & 1[2 . .5] \\
\rightarrow & \text { foldl' (+) } \\
\rightarrow & 3[3 . .5] \\
\rightarrow & \text { foldl' }
\end{aligned}
$$

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

```
foldl' (+) 0 [1..n]
```

	$f o l d l '(+)$
\rightarrow	$0[1 . .5]$
\rightarrow	foldl' $(+)$
\rightarrow	$1[2 . .5]$
\rightarrow	foldl' $(+)$
\rightarrow	foldl'

SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:

```
foldl' (+) 0 [1..n]
```


SOME PITFALLS OF LAZINESS (4)

Space usage of summing a list of integers:
foldl' (+) 0 [1..n] O(1) space

THE UNREALISTIC DREAM OF NO SIDE EFFECTS

Advantages of disallowing side effects:

- The value of a function depends only on its arguments. Two invocations of the function with the same arguments are guaranteed to produce the same result.
- This makes understanding the code and formal reasoning about code correctness easier.

THE UNREALISTIC DREAM OF NO SIDE EFFECTS

Advantages of disallowing side effects:

- The value of a function depends only on its arguments. Two invocations of the function with the same arguments are guaranteed to produce the same result.
- This makes understanding the code and formal reasoning about code correctness easier.

The need fo side effects:

- Interactions with the real world require side effects. Without these interactions, why do we compute anything at all?

THE UNREALISTIC DREAM OF NO SIDE EFFECTS

Advantages of disallowing side effects:

- The value of a function depends only on its arguments. Two invocations of the function with the same arguments are guaranteed to produce the same result.
- This makes understanding the code and formal reasoning about code correctness easier.

The need fo side effects:

- Interactions with the real world require side effects. Without these interactions, why do we compute anything at all?
- Storing state in data structures and updating these data structures destructively requires side effects. These updates can be emulated non-destructively with a logarithmic slow-down, but that may be unacceptable in some applications.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world. Every Haskell program must have a main function of type main : : IO ().

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world.
Every Haskell program must have a main function of type main : : IO ().

- When you start the program, this action is executed.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world.
Every Haskell program must have a main function of type main : : IO ().

- When you start the program, this action is executed.
- It may be composed of smaller IO actions that are sequenced together.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world.
Every Haskell program must have a main function of type main : : IO ().

- When you start the program, this action is executed.
- It may be composed of smaller IO actions that are sequenced together.
- These actions call pure functions to carry out purely functional steps.

THE IO MONAD

-- Read a character from stdin and return it getChar : : IO Char

This is an action in the IO monad.
A monad is a structure that allows us to sequence actions.
The IO monad is the monad that allows us to interact with the outside world.
Every Haskell program must have a main function of type main : : IO ().

- When you start the program, this action is executed.
- It may be composed of smaller IO actions that are sequenced together.
- These actions call pure functions to carry out purely functional steps.
- The aim is to create a clear separation between steps that have side effects (and thus need to be expressed in some monad) and the steps that do not (and thus can be expressed using pure functions).

IO MONAD: EXAMPLE

```
database :: [(String, Int)]
database = [("Norbert", 44), ("Luca", 14), ("Mateo", 6)]
main :: IO ()
main = do name <- getLine
    if name == "quit"
    then return ()
    else putStrLn (msg name $ lookup name database)
    where msg name Nothing =
    "I don't know the age of " ++ name ++ "."
    msg name (Just age) =
        "The age of " ++ name ++ " is " ++ show age ++ "."
```


MONADS

```
class Monad m where
    return :: t -> m t
    fail :: String -> m t
    (>>=) :: m a -> (a -> m b) -> m b
    (>>) :: m a -> m b -> m b
```


MONADS

```
class Monad m where
    return :: t -> m t
    fail :: String -> m t
    (>>=) :: m a -> (a -> m b) -> m b
    (>>) :: m a -> m b -> m b
    fail = error
    f >> g = f >>= const g
const :: a -> b -> a
const x _ = x
```


MONADS: EXAMPLES

```
readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn
getLine :: IO String
putStrLn :: String -> IO ()
```


MONADS: EXAMPLES

```
readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn
getLine :: IO String
putStrLn :: String -> IO ()
sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn
```


MONADS: EXAMPLES

```
readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn
getLine :: IO String
putStrLn :: String -> IO ()
sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn
printTwoLines :: String -> String -> IO ()
printTwoLines a b = putStrLn a >> putStrLn b
```


MONADS: EXAMPLES

```
readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn
getLine :: IO String
putStrLn :: String -> IO ()
sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn
printTwoLines :: String -> String -> IO ()
printTwoLines a b = putStrLn a >> putStrLn b
failIfOdd :: Int -> IO ()
failIfOdd x = if even x then return () else fail "x is odd"
```


DO-NOTATION

Standard monadic composition of actions sure isn't pretty:

$$
\begin{aligned}
\text { getAndPrintTwoStrings : } & \text { IO () } & \\
\text { getAndPrintTwoStrings }= & \text { getString } & \text { >>= \s1 -> } \\
& \text { getString } & \gg=\backslash s 2->
\end{aligned}
$$

DO-NOTATION

Standard monadic composition of actions sure isn't pretty:

```
getAndPrintTwoStrings :: IO ()
getAndPrintTwoStrings = getString >>= \s1 ->
    getString >>= \s2 ->
    putStrLn ("S1 = " ++ s1) >>
    putStrLn ("S2 = " ++ s2)
```

do-notation makes this much easier to write:

$$
\begin{aligned}
& \text { getAndPrintTwoStrings = do s1 <- getString } \\
& \text { s2 <- getString } \\
& \text { putStrLn \$ "S1 = " ++ s1 } \\
& \text { putStrLn \$ "S2 = " ++ s2 }
\end{aligned}
$$

DO-NOTATION

Standard monadic composition of actions sure isn't pretty:

```
getAndPrintTwoStrings :: IO ()
getAndPrintTwoStrings = getString >>= \s1 ->
    getString >>= \s2 ->
    putStrLn ("S1 = " ++ s1) >>
    putStrLn ("S2 = " ++ s2)
```

do-notation makes this much easier to write:

```
getAndPrintTwoStrings = do s1 <- getString
    s2 <- getString
    putStrLn $ "S1 = " ++ s1
    putStrLn $ "S2 = " ++ s2
```

A preprocessing step translates this into the above form.

MUTABLE VARIABLES

The second use of the IO monad is to provide mutable variables and arrays for when we can't do without them:
-- Create and initialize a mutable variable of type t newIORef :: t -> IO (IORef t)
-- Read content of IORef
readIORef : : IORef t-> IO t
-- Update content of IORef writeIORef : : IORef t-> t -> IO ()
-- Modify content of IORef by applying pure function modifyIORef : : IORef t -> (t $->\mathrm{t})$-> IO ()

MUTABLE ARRAYS

-- Equivalents to array/listArray
newArray : : Ix i => (i, i) -> e -> IO (IOArray i e)
newArray_ : $\operatorname{Ix} \mathrm{i}=>(\mathrm{i}, \mathrm{i})->\quad$ IO (IOArray i e)
newListArray :: Ix i => (i, i) -> [e] -> IO (IOArray i e)

MUTABLE ARRAYS

-- Equivalents to array/listArray
newArray $\quad::$ Ix i $=>(i, i)->e \quad->$ IO (IOArray i e)
newArray_ : $\operatorname{Ix} \mathrm{i}=>(\mathrm{i}, \mathrm{i})->\quad$ IO (IOArray i e)
newListArray :: Ix i => (i, i) -> [e] -> IO (IOArray i e)
-- Reading (!) and writing (no pure equivalent)
readArray :: Ix i => IOArray i e -> i \quad IO e
writeArray :: Ix i => IOArray i e -> i -> e -> IO ()

MUTABLE ARRAYS

-- Equivalents to array/listArray
newArray $\quad::$ Ix i $=>(i, i)->e \quad->$ IO (IOArray i e)
newArray_ : $\operatorname{Ix} \mathrm{i}=>(i, i)->\quad I O$ (IOArray i e)
newListArray :: Ix i => (i, i) -> [e] -> IO (IOArray i e)
-- Reading (!) and writing (no pure equivalent)
readArray :: Ix i => IOArray i e -> i \quad IO e
writeArray :: Ix i => IOArray i e -> i -> e -> IO ()
-- Equivalents of elems/assocs
getElems :: Ix i => IOArray i e -> IO [e]
getAssocs :: Ix i => IOArray i e -> IO [(i, e)]

MUTABLE ARRAYS

-- Equivalents to array/listArray
newArray : : Ix i => (i, i) -> e -> IO (IOArray i e)
newArray_ : $\operatorname{Ix} \mathrm{i}=>(\mathrm{i}, \mathrm{i})->\quad$ IO (IOArray i e)
newListArray :: Ix i => (i, i) -> [e] -> IO (IOArray i e)
-- Reading (!) and writing (no pure equivalent)
readArray :: Ix i => IOArray i e -> i \quad IO e
writeArray :: Ix i => IOArray i e -> i -> e -> IO ()
-- Equivalents of elems/assocs
getElems :: Ix i => IOArray i e -> IO [e]
getAssocs :: Ix i => IOArray i e -> IO [(i, e)]
-- Turn immutable array into mutable one and vice versa
freeze :: Ix i => IOArray i e -> IO (Array i e)
thaw :: Ix i => Array i e -> IO (IOArray i e)

MUTABLE MEMORY IN PURE COMPUTATIONS?

The problem with IORefs and IOArrays is that any algorithm that uses them must live entirely in the IO monad.

What if we have a function without side effects whose efficient implementation needs mutable variables? We don't want to lift it into the IO monad.

MUTABLE MEMORY IN PURE COMPUTATIONS?

The problem with IORefs and IOArrays is that any algorithm that uses them must live entirely in the IO monad.

What if we have a function without side effects whose efficient implementation needs mutable variables? We don't want to lift it into the IO monad.

An illustrative (but bad) example:

```
sum :: [Int] -> IO Int
sum xs = do s <- newIORef 0
    mapM_(add s) xs
    readIORef s
    where add s x = modifyIORef s (+ x)
```


THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.
STArrays have the same (overloaded) interface as IOArrays.
The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are newSTRef, readSTRef, writeSTRef, and modifySTRef.

THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.
STArrays have the same (overloaded) interface as IOArrays.
The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are newSTRef, readSTRef, writeSTRef, and modifySTRef.

Imperative summation in the ST s monad:

```
sum :: [Int] -> ST s Int
sum xs = do s <- newSTRef 0
    mapM_(add s) xs
    readSTRef s
    where add s x = modifySTRef s (+ x)
```


THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.
STArrays have the same (overloaded) interface as IOArrays.
The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are newSTRef, readSTRef, writeSTRef, and modifySTRef.

Imperative summation in the ST s monad:

```
sumM xs = do s <- newSTRef 0
    mapM_(addM s) xs
    readSTRef s
addM s x = modifySTRef s (+ x)
```


THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.
STArrays have the same (overloaded) interface as IOArrays.
The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are newSTRef, readSTRef, writeSTRef, and modifySTRef.

Imperative summation in the ST s monad:

```
sum :: [Int] -> Int
sum xs = runST (sumM xs)
    where sumM xs = do s <- newSTRef 0
        mapM_(addM s) xs
        readSTRef s
        addM s x = modifySTRef s (+ x)
```


THE STRICT STATE MONAD ST

The strict state monad ST s offers STRefs and STArrays.
STArrays have the same (overloaded) interface as IOArrays.
The equivalents of newIORef, readIORef, writeIORef, and modifyIORef are newSTRef, readSTRef, writeSTRef, and modifySTRef.

Imperative summation in the ST s monad:

```
sum :: [Int] -> Int
sum xs = runST (sumM xs)
    where sumM xs = do s <- newSTRef 0
        mapM_(addM s) xs
        readSTRef s
        addM s x = modifySTRef s (+ x)
runST :: (forall s . ST s t) -> t
```


MONADS FOR ELEGANT CONTROL FLOW (1)

Monads can be used in pure computations to express control flow more elegantly.

MONADS FOR ELEGANT CONTROL FLOW (1)

Monads can be used in pure computations to express control flow more elegantly.

Warm-up: Pure functions

- Pure functions with function composition form a monad!

MONADS FOR ELEGANT CONTROL FLOW (1)

Monads can be used in pure computations to express control flow more elegantly.

Warm-up: Pure functions

- Pure functions with function composition form a monad!

Drop the luggage: Computations with state

- Often, a set of functions share a common state that they manipulate.
- In an object-oriented language, we'd wrap them in an object.
- In Haskell, we can either explicitly pass the state around or use the State monad.

MONADS FOR ELEGANT CONTROL FLOW (2)

Computations that can fail:

- Maybe can be used to express success using Just and failure using Nothing.
- Maybe is also a monad that captures the logic: If any step in this function fails, the function fails.

MONADS FOR ELEGANT CONTROL FLOW (2)

Computations that can fail:

- Maybe can be used to express success using Just and failure using Nothing.
- Maybe is also a monad that captures the logic: If any step in this function fails, the function fails.

Searching for a solution:

- The list type is a monad.
- Intuition: A list of values represents all possible outcomes of a computation. The next step should try to continue with each of them.

MONADS FOR ELEGANT CONTROL FLOW (2)

Computations that can fail:

- Maybe can be used to express success using Just and failure using Nothing.
- Maybe is also a monad that captures the logic: If any step in this function fails, the function fails.

Searching for a solution:

- The list type is a monad.
- Intuition: A list of values represents all possible outcomes of a computation. The next step should try to continue with each of them.

Many more:

- Reader, Writer, ...
- Monad transformers allow us to stack monads on top of each other, e.g., computations with state that may fail.

PURE FUNCTIONS AS A MONAD

instance Monad Identity where
$\begin{aligned} \text { return } & =\text { Identity } \\ \text { Identity } x \gg=f & =f x \\ \quad & =g\end{aligned} \quad--f:: a \quad->$ Identity b

PURE FUNCTIONS AS A MONAD

$\begin{aligned} & \text { instance Monad Identity where } \\ &=\text { Identity } \\ & \begin{aligned} & \text { return } \\ & \text { Identity } x \gg=f=f x \\ &=g\end{aligned} \quad--f:: a->\text { Identity } b\end{aligned}$

- We need Identity as a container type to refer to in the instance definition. The logic, however, is that of pure function composition.

PURE FUNCTIONS AS A MONAD

instance Monad Identity where

$$
\begin{aligned}
\text { return } & =\text { Identity } \\
\text { Identity } x \gg=f & =f x \\
& =g
\end{aligned}
$$

- We need Identity as a container type to refer to in the instance definition. The logic, however, is that of pure function composition.
- We provide a custom implementation of (>>) to improve efficiency: In the expression f >> g, we discard f's result and f has no side effects, so why run f at all.

PURE FUNCTIONS AS A MONAD

instance Monad Identity where

$$
\begin{aligned}
\text { return } & =\text { Identity } \\
\text { Identity } x \gg=f & =f x \\
& =g
\end{aligned}
$$

- We need Identity as a container type to refer to in the instance definition. The logic, however, is that of pure function composition.
- We provide a custom implementation of (>>) to improve efficiency: In the expression f >> g, we discard f's result and f has no side effects, so why run f at all.
- The Identity monad may not seem very useful, but it can be used as the basis for constructing stacks of monads using monad transformers.

COMPUTATIONS WITH STATE (1)

Compute a random sequence from a seed:

```
seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = fst (genseq seed n)
genseq :: Int -> Int -> ([Int], Int)
genseq seed 0 = ([], seed)
genseq seed n = (x:xs, seed'')
where (x, seed') = generateRandomNumberAndSeed seed
    (xs, seed'') = genseq seed' (n-1)
generateRandomNumberAndSeed :: Int -> (Int, Int)
generateRandomNumberAndSeed seed = ... -- Details unimportant for us
```


THE STATE MONAD

data State $s t=$ State $\{$ runState $:: s->(t, s)\}$

THE STATE MONAD

```
data State s t = State { runState :: s -> (t,s) }
evalState :: State s t -> s -> t
execState :: State s t -> s -> t
```


THE STATE MONAD

```
data State s t = State { runState :: s -> (t,s) }
evalState :: State s t -> s -> t
evalState f s = fst (runState f s)
execState :: State s t -> s -> t
execState f s = snd (runState f s)
```


THE STATE MONAD

```
data State s t = State { runState :: s -> (t,s) }
evalState :: State s t -> s -> t
evalState f s = fst (runState f s)
execState :: State s t -> s -> t
execState f s = snd (runState f s)
instance Monad (State s) where
    return x = State $ \s -> (x,s)
```


THE STATE MONAD

```
data State s t = State { runState :: s -> (t,s) }
evalState :: State s t -> s -> t
evalState f s = fst (runState f s)
execState :: State s t -> s -> t
execState f s = snd (runState f s)
instance Monad (State s) where
    return x = State $ \s -> (x,s)
    fail = error
```


THE STATE MONAD

```
data State s t = State { runState :: s -> (t,s) }
evalState :: State s t -> s -> t
evalState f s = fst (runState f s)
execState :: State s t -> s -> t
execState f s = snd (runState f s)
instance Monad (State s) where
    return x = State $ \s -> (x,s)
    fail = error
    x >>= f = State \s -> let (y, s') = runState x s
        in runState (f y) s'
```


ACCESSING THE CURRENT STATE

```
get :: State s s
put :: s -> State s ()
modify :: (s -> s) -> State s ()
```


ACCESSING THE CURRENT STATE

```
get :: State s s
get = State $ \s -> (s, s)
put :: s -> State s ()
put s = State $ const ((), s)
modify :: (s -> s) -> State s ()
modify f = State $ \s -> ((), f s)
```


COMPUTATIONS WITH STATE (2)

```
type Gen = State Int
seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed
genseq :: Int -> Gen [Int]
```


COMPUTATIONS WITH STATE (2)

```
type Gen = State Int
seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed
genseq :: Int -> Gen [Int]
genseq = mapM (const gennum) [1..n]
gennum :: Gen Int
```


COMPUTATIONS WITH STATE (2)

```
type Gen = State Int
seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed
genseq :: Int -> Gen [Int]
genseq = mapM (const gennum) [1..n]
gennum :: Gen Int
gennum = do seed <- get
    let (x,seed') = generateRandomNumberAndSeed seed
    put seed'
    return x
```


COMPUTATIONS THAT CAN FAIL

```
step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d
-- Sequence steps 1-3
threeSteps :: a -> Maybe d
```


COMPUTATIONS THAT CAN FAIL

```
step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d
-- Sequence steps 1-3
threeSteps :: a -> Maybe d
threeSteps x = result3
where result1 = step1 x
    result2 = maybe Nothing step2 result1
    result3 = maybe Nothing step3 result2
```


COMPUTATIONS THAT CAN FAIL

```
step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d
-- Sequence steps 1-3
threeSteps :: a -> Maybe d
threeSteps x = step1 x >>= step2 >>= step3
```

COMPUTATIONS THAT CAN FAIL

```
step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d
-- Sequence steps 1-3
threeSteps :: a -> Maybe d
threeSteps = step1 >=> step2 >=> step3
(>=>) ::(a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g
```


COMPUTATIONS THAT CAN FAIL

```
step1 :: a -> Maybe b
step2 :: b -> Maybe c
step3 :: c -> Maybe d
-- Sequence steps 1-3
threeSteps :: a -> Maybe d
threeSteps = step1 >=> step2 >=> step3
(>=>) ::(a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g
instance Monad Maybe where
    return = Just
    fail = const Nothing
    x >>= f = maybe Nothing f x
```


SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

Writing a number as a sum of non-decreasing positive numbers:

$$
\begin{aligned}
& \text { nonDecreasingSplit } 5 \text { == [[1,1,1,1,1], [1,1,1,2] } \\
& \text {, }[1,1,3],[1,2,2],[1,4],[2,3],[5]
\end{aligned}
$$

SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

Writing a number as a sum of non-decreasing positive numbers:

$$
\begin{aligned}
& \text { nonDecreasingSplit } 5==[\quad[1,1,1,1,1],[1,1,1,2] \\
& \text {, }[1,1,3],[1,2,2],[1,4],[2,3],[5] \\
& \text {] } \\
& \text { nonDecreasingSplit :: Int -> [[Int]] } \\
& \text { nonDecreasingSplit = split >=> splitRest } \\
& \text { where split } x \quad=\ldots \text { - } \text { split } x \text { into two values } y \text { and } z \\
& \text { splitRest (y, z) = ... -- split z into zs so that } \\
& \text {-- y:zs is non-decreasing }
\end{aligned}
$$

SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

Writing a number as a sum of non-decreasing positive numbers:

```
nonDecreasingSplit 5 == [ [1,1,1,1,1], [1,1,1,2]
    , [1,1,3], [1,2,2], [1,4], [2,3], [5]
    ]
nonDecreasingSplit :: Int -> [[Int]]
nonDecreasingSplit = split >=> splitRest
    where split x = [(y, x-y) | y <- [1..x]]
    splitRest (y, z) = ... -- split z into zs so that
    -- y:zs is non-decreasing
```


SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

Writing a number as a sum of non-decreasing positive numbers:

```
nonDecreasingSplit 5 == [ [1,1,1,1,1], [1,1,1,2]
    , [1,1,3], [1,2,2], [1,4], [2,3], [5]
    ]
nonDecreasingSplit :: Int -> [[Int]]
nonDecreasingSplit = split >=> splitRest
    where split x = [(y, x-y) | y <- [1..x]]
    splitRest (y, 0) = return [y]
    splitRest (y, z) = nonDecreasingSplit z >>= extendWith y
    extendWith y zs = ... -- Prepend y to zs if
    -- the result is non-decreasing
```


SEARCHING FOR A SOLUTION

Remember: A list ist interpreted as a collection of possible results of a computation.

Writing a number as a sum of non-decreasing positive numbers:

```
nonDecreasingSplit 5 == [ [1,1,1,1,1], [1,1,1,2]
    , [1,1,3], [1,2,2], [1,4], [2,3], [5]
    ]
nonDecreasingSplit :: Int -> [[Int]]
nonDecreasingSplit = split >=> splitRest
    where split x = [(y, x-y) | y <- [1..x]]
    splitRest (y, 0) = return [y]
    splitRest (y, z) = nonDecreasingSplit z >>= extendWith y
    extendWith y zsa(z:_) | y <= z = return (y:zs)
    | otherwise = fail "Decreasing"
```


THE LIST MONAD

```
instance Monad [] where
    return x = [x]
    fail = const []
    (>>=) = flip concatMap
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = concat (map f xs)
```


RESOURCES

- Lots of packages at hackage. haskell. org
- GHC documentation at https://downloads.haskell.org/~ghc/latest/docs/html/
- Hoogle at www.haskell.org/hoogle
- Books, tutorials, ... at www.haskell.org/documentation

