Functional Programming in Haskell

CSCI 3136
Principles of Programming Languages

Faculty of Computer Science
Dalhousie University

Winter 2013
Everything we will talk about here can be done in C or even assembly language.

The question is not whether it can be done but how easily it can be done.

It’s all about expressiveness of the language.
Functional vs. Imperative Programming

Imperative programming:

The program specifies what the computer should do.

Functional programming:

The program specifies what the value of a function should be. The exact sequence of steps to compute this value is left unspecified. This is one form of *declarative programming*.

Consequences:

- Need mechanisms to specify execution order when necessary
- Code correctness and memoization
- Lazy evaluation
- …
Examples

C

```c
int two() {
    return 2;
}

int timestwo(int x) {
    return 2*x;
}
```

Haskell

```haskell
two :: Int
    two = 2

timestwo :: Int -> Int
    timestwo x = 2 * x

Polymorphism

```heavenly_text```

```haskell
timestwo' :: Num a => a -> a
    timestwo' x = 2 * x
```

```heavenly_text```

### Currying

```haskell
timestwo'' :: Num a => a -> a
 timestwo'' = (*) 2
```
Control Constructs

if-then-else

abs :: Int -> Int
abs x = if x < 0 then (-x) else x

The else-branch is *mandatory*. Why?
Control Constructs

if-then-else

abs :: Int -> Int
abs x = if x < 0 then (-x) else x

The else-branch is *mandatory*. Why?

case

is-two-or-five :: Int -> Bool
is-two-or-five x = case x of
    2 -> True
    5 -> True
    _ -> False

_ is a wildcard that matches any value.
Loops?

Loops make no sense in a functional language. Why?
Loops?

Loops make no sense in a functional language. Why?

What about iteration?
Loops?

Loops make no sense in a functional language. Why?

What about iteration?

Iteration becomes recursion.
Loops?

Loops make no sense in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C

```c
int factorial(int n) {
 int fac = 1;
 int i;
 for(i = 1; i <= n; i++)
 fac *= i;
 return fac;
}
```

Recursive C

```c
int factorial(int n) {
 if(n <= 1)
 return 1;
 else
 return n * factorial(n - 1);
}
```
Loops?

Loops make no sense in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C

```c
int factorial(int n) {
 int fac = 1;
 int i;
 for(i = 1; i <= n; i++)
 fac *= i;
 return fac;
}
```

Recursive C

```c
int factorial(int n) {
 if(n <= 1)
 return 1;
 else
 return n * factorial(n - 1);
}
```

Haskell

```haskell
factorial :: Int -> Int
factorial x = if x <= 1 then 1 else x * factorial (x - 1)
```
Loops?

Loops make no sense in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C       Efficient       Recursive C
int factorial(int n) {
    int fac = 1;
    int i;
    for( i = 1; i <= n; i++)
        fac *= i;
    return fac;
}

Haskell

factorial :: Int -> Int
factorial x = if x <= 1 then 1 else x * factorial (x - 1)
Loops?

Loops make no sense in a functional language. Why?

What about iteration?

Iteration becomes recursion.

Iterative C

```
int factorial(int n) {
 int fac = 1;
 int i;
 for(i = 1; i <= n; i++)
 fac *= i;
 return fac;
}
```

Efficient

Recursive C

```
int factorial(int n) {
 if(n <= 1)
 return 1;
 else
 return n * factorial(n - 1);
}
```

Inefficient

Haskell

```
factorial :: Int -> Int
factorial x = if x <= 1 then 1 else x * factorial (x - 1)
```

Inefficient
Making Recursion Efficient: Tail Recursion

When the last statement in a function is a recursive invocation of the same function, the compiler can convert these recursive calls into a loop.

Not tail recursive

```haskell
factorial :: Int -> Int
factorial x = if x <= 1 then 1 else x * factorial (x - 1)
```

- Stack size = depth of recursion
- Overhead to maintain the stack
Making Recursion Efficient: Tail Recursion

When the last statement in a function is a recursive invocation of the same function, the compiler can convert these recursive calls into a loop.

Not tail recursive

```haskell
factorial :: Int -> Int
factorial x = if x <= 1 then 1 else x * factorial (x - 1)
```

- Stack size = depth of recursion
- Overhead to maintain the stack

Tail recursive

```haskell
factorial :: Int -> Int
factorial x = factorial’ x 1

factorial’ :: Int -> Int -> Int
factorial’ 1 p = p
factorial’ x p = factorial’ (x-1) (x*p)
```

- Constant stack size
- No overhead to maintain the stack
Patterns

Haskell allows multiple definitions of the same function. All must have the same type. It uses the first one that matches the actual parameters. The formal parameters are patterns that need to be matched by the actual parameters.

\[\text{factorial'} :: \text{Int} \to \text{Int} \to \text{Int}\]
\[\text{factorial'} 1 \ p = p\]
\[\text{factorial'} x \ p = \text{factorial'} (x-1) (x*p)\]
Patterns

Haskell allows multiple definitions of the same function.
All must have the same type.
It uses the first one that matches the actual parameters.
The formal parameters are patterns that need to be matched by the actual parameters.

```
factorial' :: Int -> Int -> Int
factorial' 1 p = p
factorial' x p = factorial' (x-1) (x*p)
```

This is identical to the following single function definition using a case statement.

```
factorial' :: Int -> Int -> Int
factorial' x p = case x of
 1 -> p
 _ -> factorial' (x-1) (x*p)
```
Arrays

Haskell does support arrays, but they’re slow.

(One way to) create an array:

\[
a = \text{listArray} (1, 10) \ [1 .. 10]
\]

Access array element in constant time:

\[
a \! 4
\]

> 4
Arrays

Haskell does support arrays, but they’re slow.

(One way to) create an array:

\[
a = \text{listArray} (1, 10) [1 .. 10]
\]

Access array element in constant time:

\[
a ! 4
\]

> 4

Array update in linear time (!!!):

\[
b = a \setminus [(4, 8), (6, 9)]
\]

\[
b ! 4
\]

> 8

\[
b ! 6
\]

> 9

\[
b ! 1
\]

> 1

Array update creates a copy of the original array with the specified elements changed.

Why?
Lists

To Haskell (Scheme, Lisp, ...), lists are what arrays are to C.

Lists are defined recursively and, thus, match the recursive world view of functional programming:

A list

- Is empty or
- Consists of an element followed by a list
Lists

To Haskell (Scheme, Lisp, …), lists are what arrays are to C.

Lists are defined recursively and, thus, match the recursive world view of functional programming:

A list

• Is empty or
• Consists of an element followed by a list

In Haskell:

```haskell
emptyList = []
oneElementList = 1 : emptyList	
twoElementList = 2 : oneElementList
```
Lists

To Haskell (Scheme, Lisp, ...), lists are what arrays are to C.

Lists are defined recursively and, thus, match the recursive world view of functional programming:

A list

- Is empty or
- Consists of an element followed by a list

In Haskell:

```haskell
emptyList = []
oneElementList = 1 : emptyList	woElementList = 2 : oneElementList
```

List comprehensions

```haskell
a = [1, 2, 3]
b = [1 .. 10]
c = [1, 3 .. 10]
d = [x | x <- [1 .. 10], odd x]
```
Working with Lists

Decomposing a list

\[ a = [1 .. 10] \]
\[
\text{head } a
> 1
\]
\[
\text{tail } a
> [2, 3, 4, 5, 6, 7, 8, 9, 10]
\]

Adding elements

\[ 1 : [2 .. 10] \]
\[
> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
\]

List concatenation

\[ [1, 2, 3] ++ [4, 5] \]
\[
> [1, 2, 3, 4, 5]
\]
“Iterating” over Lists

Many iterative processes can be expressed as a combination of a few common idioms.

**Mapping:** Apply a function to each element of a sequence independently

\[
a = [1 .. 10] \\
\text{map } (* 2) [1 .. 10] \\
> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
\]

**Folding:** Accumulate the elements in a list

\[
a = [1 .. 10] \\
\text{foldr } (+) 0 a \\
> 55
\]

**Filtering:** Compute the sublist of all elements that satisfy a certain condition

\[
a = [1 .. 10] \\
\text{filter even } a \\
> [2, 4, 6, 8, 10]
\]
Implementing Iteration Constructs

\[
\text{map :: (} \text{a} \to \text{b}) \to [\text{a}] \to [\text{b}] \\
\text{map } _{-} [\text{]} = [] \\
\text{map } f (\text{x:xs}) = (f \text{ x}) : (\text{map } f \text{ xs})
\]
Implementing Iteration Constructs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = (f x) : (map f xs)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ b [] = b
foldr f b (a:as) = f a (foldr b as)
Implementing Iteration Constructs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = (f x) : (map f xs)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ b [] = b
foldr f b (a:as) = f a (foldr b as)

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs) | p x = x : (filter p xs)
| otherwise = filter p xs
The name *functional programming* comes from the fact that *functions are first-class values*, the entire focus is on functions:

- Functions can be passed as arguments to functions
- Functions can be returned as the results of function calls
- We can construct new functions from existing ones at runtime
- ...
Pairs and Tuples

Lists have a limitation: all elements must be of the same type.

```haskell
l :: [Int]
l = [1 .. 10]
l' = 'a' : l
```

Lengthy error message about a type mismatch between Int and Char
Pairs and Tuples

Lists have a limitation: all elements must be of the same type.

```haskell
l :: [Int]
l = [1 .. 10]
l' = 'a' : l
```
Lengthy error message about a type mismatch between Int and Char

This problem does not arise in Lisp or Scheme. Why?
Pairs and Tuples

Lists have a limitation: all elements must be of the same type.

```haskell
l :: [Int]
l = [1 .. 10]
l' = 'a' : l
```

Lengthy error message about a type mismatch between `Int` and `Char`

This problem does not arise in Lisp or Scheme. Why?

Pairs and tuples allow us to group things of different types.

```haskell
a :: (Int, Char)
a = (1, 'x')
b :: (Int, Char, String)
b = (2, 'y', "something")
```
Pairs and Tuples

Lists have a limitation: all elements must be of the same type.

\[ l :: [\text{Int}] \]
\[ l = [1 .. 10] \]
\[ l' = 'a' : l \]

Lengthy error message about a type mismatch between Int and Char

This problem does not arise in Lisp or Scheme. Why?

Pairs and tuples allow us to group things of different types.

\[ a :: (\text{Int, Char}) \]
\[ a = (1, 'x') \]
\[ b :: (\text{Int, Char, String}) \]
\[ b = (2, 'y', "something") \]

Pairs and tuples in turn have a limitation lists do not have: the number of elements is fixed.
Functions for Pairs and Tuples

Pairs

\[ \text{fst} :: (a, b) \rightarrow a \]
\[ \text{fst} (x, _) = x \]

\[ \text{snd} :: (a, b) \rightarrow a \]
\[ \text{snd} (_, x) = x \]
Pairs

\[
\begin{align*}
\text{fst} & : (a, b) \rightarrow a \\
\text{fst} (x, _) & = x \\
\text{snd} & : (a, b) \rightarrow a \\
\text{snd} (_, x) & = x \\
(,) & : a \rightarrow b \rightarrow (a, b) \\
(,) x y & = (x, y)
\end{align*}
\]
Functions for Pairs and Tuples

Pairs

\[
\text{fst} :: (a, b) -> a \\
\text{fst} (x, _) = x
\]

\[
\text{snd} :: (a, b) -> a \\
\text{snd} (_, x) = x
\]

\[
(,) :: a -> b -> (a, b) \\
(,) x y = (x, y)
\]

Tuples

\[
(,,,,) :: a -> b -> c -> d -> (a, b, c, d) \\
(,,,,) w x y z = (w, x, y, z)
\]
Zipping and Unzipping

Zipping two lists together

```
zip [1, 2, 3] [’a’, ’b’]
> [(1, ’a’), (2, ’b’)]
```
Zipping and Unzipping

Zipping two lists together

```
zip [1, 2, 3] ['a', 'b']
> [(1, 'a'), (2, 'b')]
```

Unzipping a list of pairs

```
unzip [(1, 'a'), (2, 'b')]
> ([1, 2], ['a', 'b'])
```
Zipping and Unzipping

Zipping two lists together
zip [1, 2, 3] ['a', 'b']
> [(1, 'a'), (2, 'b')]

Unzipping a list of pairs
unzip [(1, 'a'), (2, 'b')]
> ([1, 2], ['a', 'b'])

Variants
zipWith (*) [1, 2, 3] [4, 5, 6]
> [4, 10, 18]

zip3 [1, 2] ['a', 'b'] [[1, 2], [3, 4, 5]]
> [(1, 'a', [1, 2]), (2, 'b', [3, 4, 5])]

...
Anonymous Functions

When we write

\[
f \ x \ y = x \times y,
\]

this is just syntactic sugar for

\[
f = \ x \ y \rightarrow x \times y
\]
Anonymous Functions

When we write

\[ f \ x \ y = x \times y, \]

this is just syntactic sugar for

\[ f = \lambda \ x \ y \rightarrow x \times y \]

\[ \lambda \ x \ y \rightarrow x \times y \] is an *anonymous function*.
Anonymous Functions

When we write

\[
\text{f } x \ y = x \ast y,
\]

this is just syntactic sugar for

\[
f = \ \lambda \ x \ y \rightarrow x \ast y
\]

\[
\lambda \ x \ y \rightarrow x \ast y \text{ is an anonymous function.}
\]

Mapping over a list

\[
\text{swapelems} :: [(a, b)] \\
\rightarrow [(b, a)]
\]

\[
\text{swapelems} \ \text{xs} = \ \text{map} \ \text{swap} \ \text{xs}
\]

where

\[
\text{swap } (x, y) = (y, x)
\]
Anonymous Functions

When we write

\[ f \ x \ y = x \times y, \]

this is just syntactic sugar for

\[ f = \ \lambda \ x \ y \rightarrow x \times y \]

\( \lambda \ x \ y \rightarrow x \times y \) is an **anonymous function**.

Mapping over a list

\begin{align*}
\text{swapelems} &:: \ [(a, b)] \rightarrow [(b, a)] \\
\text{swapelems} \ x &s = \text{map swap} \ x \\
\text{where} & \quad \text{map} \ (\ \lambda (x, y) \rightarrow (y, x)) \ x \\
\text{swap} & (x, y) = (y, x)
\end{align*}
Anonymous Functions

When we write

\[ f \ x \ y = x \times y, \]

this is just syntactic sugar for

\[ f = \lambda \ x \ y \rightarrow x \times y \]

\[ \lambda \ x \ y \rightarrow x \times y \] is an *anonymous function*.

Mapping over a list

\[ \text{swapelems} :: [(a, b)] \rightarrow [(b, a)] \]

\[ \text{swapelems} \ xs = \text{map} \ \text{swap} \ xs \]

where

\[ \text{swap} (x, y) = (y, x) \]

\[ \text{swapelems} :: [(a, b)] \rightarrow [(b, a)] \]

\[ \text{swapelems} = \text{map} \ \text{(uncurry \ . \ flip \$ (\_))} \]

Huh?
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \rightarrow b \rightarrow c \rightarrow d \]
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \to b \to c \to d \]

Why not

\[ f :: (a, b, c) \to d \]
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \rightarrow b \rightarrow c \rightarrow d \]

Why not

\[ f :: (a, b, c) \rightarrow d? \]

They’re different, but they have one thing in common: neither is really a multi-argument function.
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \rightarrow b \rightarrow c \rightarrow d \]

Why not

\[ f :: (a, b, c) \rightarrow d? \]

They’re different, but they have one thing in common: neither is really a multi-argument function.

\[ f :: \text{a} \rightarrow \text{b} \rightarrow \text{c} \rightarrow \text{d} \] is a function with one argument of type \text{a} and whose result is . . .

. . . a function with one argument of type \text{b} and whose result is . . .

. . . a function with one argument of type \text{c} and whose result is of type \text{d}.
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \rightarrow (b \rightarrow (c \rightarrow d)) \]

Why not

\[ f :: (a, b, c) \rightarrow d? \]

They’re different, but they have one thing in common: neither is really a multi-argument function.

\[ f :: a \rightarrow b \rightarrow c \rightarrow d \]

is a function with one argument of type a and whose result is . . .

. . . a function with one argument of type b and whose result is . . .

. . . a function with one argument of type c and whose result is of type d.
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \to (b \to (c \to d)) \]

Why not

\[ f :: (a, b, c) \to d? \]

They’re different, but they have one thing in common: neither is really a multi-argument function.

\[ f :: a \to b \to c \to d \] is a function with one argument of type \( a \) and whose result is . . .

. . . a function with one argument of type \( b \) and whose result is . . .

. . . a function with one argument of type \( c \) and whose result is of type \( d \).

\[ f :: (a, b, c) \to d \] is a function with one argument of type \((a, b, c)\) and whose result is a value of type \( d \).
Partial Function Application and Currying

Here is how we write multi-argument functions.

\[ f :: a \rightarrow (b \rightarrow (c \rightarrow d)) \]

Why not

\[ f :: (a, b, c) \rightarrow d? \]

They’re different, but they have one thing in common: neither is really a multi-argument function.

\[ f :: a \rightarrow b \rightarrow c \rightarrow d \] is a function with one argument of type \( a \) and whose result is . . .

. . . a function with one argument of type \( b \) and whose result is . . .

. . . a function with one argument of type \( c \) and whose result is of type \( d \).

\[ f :: (a, b, c) \rightarrow d \] is a function with one argument of type \((a, b, c)\) and whose result is a value of type \( d \).

We call \( f :: a \rightarrow b \rightarrow c \rightarrow d \) a curried function.
Applying Curried Functions

\[ f \ x \ y \ z \] really means \((f \ x) \ y\) \(z\), that is,

Apply \(f\) to \(x\).
Apply the resulting function to \(y\).
Apply the resulting function to \(z\).

And that’s the final result . . . which could happen to be itself a function!
Why Are Curried Functions Better?

Multiplying all elements in a list by two.
Why Are Curried Functions Better?

Multiplying all elements in a list by two.

**Without currying:**

```haskell
timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2 * x) xs
```
Why Are Curried Functions Better?

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2 * x) xs

With currying (part 1):

(*) is itself a function of type

(*) :: Num a => a -> a -> a

It maps its first argument \(x\) to a function \(f\) that multiplies its argument \(y\) by \(x\).
Why Are Curried Functions Better?

Multiplying all elements in a list by two.

Without currying:

timestwo :: [Int] -> [Int]
timestwo xs = map (\x -> 2 * x) xs

With currying (part 1):

(*) is itself a function of type
(*) :: Num a => a -> a -> a
It maps its first argument x to a function f that multiplies its argument y by x.

timestwo xs = map (* 2) xs
Why Are Curried Functions Better?

With currying (part 2):

map is a function of type

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
\]

It maps its first argument (a function \( f \)) to a function \( m \) that applies \( f \) to each element in its argument list.
Why Are Curried Functions Better?

With currying (part 2):

map is a function of type

\[
\text{map} :: (a \to b) \to [a] \to [b]
\]

It maps its first argument (a function \( f \)) to a function \( m \) that applies \( f \) to each element in its argument list.

\[
timestwo = \text{map} \ (\ast \ 2)
\]
Why Are Curried Functions Better?

With currying (part 2):
map is a function of type
map :: (a -> b) -> [a] -> [b]
It maps its first argument (a function f) to a function m that applies f to each element in its argument list.

timestwo = map (* 2)

This is often called point-free programming. The focus is on building functions from functions rather than specifying the value a function produces on a particular argument.
Point-free programming cannot work without function composition:

```haskell
multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)
```
Point-free programming cannot work without function composition:

```
multiplyevens :: [Int] -> [Int]
multiplyevens xs = map (* 2) (filter even xs)
```

**Function composition:**

```
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)
```
Function Composition

Point-free programming cannot work without function composition:

\[
multiplyevens :: [\text{Int}] \rightarrow [\text{Int}] 
multiplyevens \; xs = \text{map} \; (* \; 2) \; (\text{filter} \; \text{even} \; xs)
\]

**Function composition:**

\[
(\cdot) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c 
f \cdot g = \lambda x \rightarrow f \; (g \; x)
\]

\[
multiplyevens = \text{map} \; (* \; 2) \; . \; \text{filter} \; \text{even}
\]
A Few Useful Functions

($) :: (a -> b) -> a -> b  -- f $ x applies f to x
flip :: (a -> b -> c) -> b -> a -> c  -- Flips the function arguments
curry :: ((a, b) -> c) -> a -> b -> c  -- Curries a function whose argument is a pair
uncurry :: (a -> b -> c) -> (a, b) -> c  -- Collapses the first two arguments of the given function into a single pair
A Few Useful Functions

($) :: (a -> b) -> a -> b -- f $ x applies f to x

flip :: (a -> b -> c) -> b -> a -> c -- Flips the function arguments

curry :: ((a, b) -> c) -> a -> b -> c -- Curries a function whose argument is a pair

uncurry :: (a -> b -> c) -> (a, b) -> c -- Collapses the first two arguments of the given function into a single pair

Why the need for an application operator?
Function application binds more tightly than function composition, which binds more tightly than the ($) operator.

f :: a -> b

f :: a -> b

g :: b -> c

x :: a

g . f $ x :: c

g . f x -- type error
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))

flip :: (a -> b -> c) -> b -> a -> c

flip :: (a -> b -> c) -> b -> a -> c
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))

flip :: (a -> b -> c) -> b -> a -> c
uncurry :: (b -> a -> c) -> (b, a) -> c
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))

flip :: (a -> b -> c) -> b -> a -> c
uncurry :: (b -> a -> c) -> (b, a) -> c
uncurry . flip :: (a -> b -> c) -> (b, a) -> c
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))

flip :: (a -> b -> c) -> b -> a -> c
uncurry :: (b -> a -> c) -> (b, a) -> c
uncurry . flip :: (a -> b -> c) -> (b, a) -> c
(,) :: a -> b -> (a, b)
swapelems :: [(a, b)] -> [(b, a)]
swapelems = map (uncurry . flip $ (,))

flip :: (a -> b -> c) -> b -> a -> c
uncurry :: (b -> a -> c) -> (b, a) -> c
uncurry . flip :: (a -> b -> c) -> (b, a) -> c
(,) :: a -> b -> (a, b)
uncurry . flip $ (,) :: (b, a) -> (a, b)
Back to `swapelems`

\[
\text{swapelems} ::= [(a, b)] \rightarrow [(b, a)]
\]
\[
\text{swapelems} = \text{map (uncurry . flip $ (,) )}
\]

\[
\text{flip}:: (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c
\]
\[
\text{uncurry}:: (b \rightarrow a \rightarrow c) \rightarrow (b, a) \rightarrow c
\]
\[
\text{uncurry . flip}:: (a \rightarrow b \rightarrow c) \rightarrow (b, a) \rightarrow c
\]
\[
(,):: a \rightarrow b \rightarrow (a, b)
\]
\[
\text{uncurry . flip $ (,):: (b, a) \rightarrow (a, b)}
\]

Now try to do this in C, C++, Java, …!
The algorithm

mergesort :: Ord a => [a] -> [a]
mergesort [] = []
mergesort = uncurry merge
    . both mergesort
    . divide
    where both f (x, y) = (f x, f y)

-- Merge two sorted lists
merge :: Ord a => [a] -> [a] -> [a]

-- Distribute n elements into two lists of length n/2
divide :: [a] -> ([a], [a])
Mergesort

Merging two lists is easy:

```haskell
merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge xs@(x:xs') ys@(y:ys') | x < y = x : merge xs' ys
 | otherwise = y : merge xs ys'
```

Functional Programming in Haskell
CSCI 3136: Principles of Programming Languages
Mergesort

Merging two lists is easy:

merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge xs@(x:xs') ys@(y:ys') | x < y = x : merge xs' ys
| otherwise = y : merge xs ys'

Evenly splitting a list without getting its length is a bit trickier:

divide :: [a] -> ([a], [a])
divide [] = ([], [])
divide [x] = ([x], [])
divide (x:y:zs) = (x:xs, y:ys) where (xs, ys) = divide zs
Quicksort

Normally we’d use a random pivot, but generating random numbers involves side effects. Why?

So we use the simple strategy: pick the first element as pivot.
Quicksort

Normally we’d use a random pivot, but generating random numbers involves side effects. Why?

So we use the simple strategy: pick the first element as pivot.

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs
    where
        (ys, zs) = partition (< x) xs
Quicksort

Normally we’d use a random pivot, but generating random numbers involves side effects. Why?

So we use the simple strategy: pick the first element as pivot.

```haskell
quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs
 where
 (ys, zs) = partition (< x) xs
```

partition is part of the standard library. If it wasn’t, we could implement it as follows:

```haskell
partition :: (a -> Bool) -> [a] -> ([a], [a])
partition p [] = ([], [])
partition p (x:xs) | p x = (x:ys, ns)
 | otherwise = (ys, x:ns)
 where (ys, ns) = partition xs
```
Polymorphism and Type Variables

A function to access the head of a list of integers:

```haskell
head :: [Int] -> Int
head [] = undefined
head (x:_) = x
```
Polymorphism and Type Variables

A function to access the head of a list of integers:

```haskell
head :: [Int] -> Int
head [] = undefined
head (x:_ = x

This function cannot be applied to a list of floating point numbers!
Polymorphism and Type Variables

A function to access the head of a list of integers:

head :: [Int] -> Int
head [] = undefined
head (x:_) = x

This function cannot be applied to a list of floating point numbers!

A function to access the head of a list of floating point numbers:

head :: [Double] -> Double
head [] = undefined
head (x:_) = x
Polymorphism and Type Variables

A function to access the head of a list of integers:

```haskell
head :: [Int] -> Int
head [] = undefined
head (x:_ ) = x
```

This function cannot be applied to a list of floating point numbers!

A function to access the head of a list of floating point numbers:

```haskell
head :: [Double] -> Double
head [] = undefined
head (x:_ ) = x
```

The behaviour is exactly the same, so why do we need two functions?
Polymorphism and Type Variables

A function to access the head of a list of integers:

```haskell
head :: [Int] -> Int
head [] = undefined
head (x:_ ) = x
```

This function cannot be applied to a list of floating point numbers!

A function to access the head of a list of floating point numbers:

```haskell
head :: [Double] -> Double
head [] = undefined
head (x:_ ) = x
```

The behaviour is exactly the same, so why do we need two functions?

A variant that works for any type of list elements:

```haskell
head :: [a] -> a
head [] = undefined
head (x:_ ) = x
```
Type Classes

Quicksort for arbitrary element types — does not work:

quicksort :: [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs
 where
 (ys, zs) = partition (< x) xs
Type Classes

Quicksort for element types that provide an ordering:

```haskell
quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs
    where
        (ys, zs) = partition (< x) xs
```

The `Ord` type class:

```haskell
class Eq a => Ord a where
    compare :: a -> a -> Ordering
    (<) :: a -> a -> Bool
    (<=) :: a -> a -> Bool
    (>) :: a -> a -> Bool
    (>=) :: a -> a -> Bool
    min :: a -> a -> a
    max :: a -> a -> a
```

The `Eq` type class:

```haskell
class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool
```
Type Classes

Quicksort for element types that provide an ordering:

```haskell
quicksort :: Ord a => [a] -> [a]
quicksort []     = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs
    where
        (ys, zs) = partition (< x) xs
```

The Ord type class:

```haskell
class Eq a => Ord a where
    compare :: a -> a -> Ordering
    (<)    :: a -> a -> Bool
    (<=)   :: a -> a -> Bool
    (>)    :: a -> a -> Bool
    (>=)   :: a -> a -> Bool
    min    :: a -> a -> a
    max    :: a -> a -> a
```

The Eq type class:

```haskell
class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool
```

Note how this is very similar to Java interfaces.
Lazy Evaluation

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its line number.
Lazy Evaluation

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its line number.

The hard way:

\[
\text{splitInput :: String} \rightarrow [(\text{Int}, \text{String})] \\
\text{splitInput text} = \text{zip ns ls} \\
\text{where} \\
\hspace{1em} \text{ls} = \text{lines text} \\
\hspace{1em} \text{ns} = [1 \ldots \text{length ls}]
\]
Lazy Evaluation

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its line number.

The hard way:

```haskell
splitInput :: String -> [(Int, String)]
splitInput text = zip ns ls
  where
    ls = lines text
    ns = [1 .. length ls]
```

The easy way:

```haskell
splitInput :: String -> [(Int, String)]
splitInput = zip [1 ..] . lines
```
Lazy Evaluation

Assume we write a parser and want to provide line numbers in our error messages. We need to annotate each input line with its line number.

The hard way:

```
splitInput :: String -> [(Int, String)]
splitInput text = zip ns ls
    where
        ls = lines text
        ns = [1 .. length ls]
```

The easy way:

```
splitInput :: String -> [(Int, String)]
splitInput = zip [1 ..] . lines
```

The list of Fibonacci numbers:

```
fibonacci :: [Int]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)
```
BFS Numbering
BFS Numbering

The naïve solution:

- Build a list of the nodes in level order
- Number them in order
- Reassemble the tree

I refuse to turn this into code; it’s messy.
BFS Numbering

The tree type:

```haskell
data Tree a = Empty
  | Node a (Tree a) (Tree a)
```

Functional Programming in Haskell
CSCI 3136: Principles of Programming Languages
The tree type:

```
data Tree a = Empty
    | Node a (Tree a) (Tree a)
```

The main procedure:

```
bfs' :: ([Int], Tree a) -> ([Int], Tree Int)
bfs' (nums, Empty) = (nums, Empty)
bfs' (num : nums, Node _ l r) = (num+1 : nums'', Node num l' r')
    where (nums', l') = bfs' (nums, l)
          (nums'', r') = bfs' (nums', r)
```
BFS Numbering

The tree type:

```haskell
data Tree a = Empty
              | Node a (Tree a) (Tree a)
```

The main procedure:

```haskell```
```haskell
bfs' :: ([Int], Tree a) -> ([Int], Tree Int)
bfs' (nums, Empty) = (nums, Empty)
bfs' (num : nums, Node _ l r) = (num+1 : nums'', Node num l' r')
 where (nums', l') = bfs' (nums, l)
 (nums'', r') = bfs' (nums', r)
```

The magic wand: laziness

```haskell
bfs :: Tree a -> Tree Int
bfs t = t'
 where (nums, t') = bfs' (1 : nums, t)
```
Three kinds of folds:

Right-to-left

\[
\text{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\
\text{foldr} f x [] = x \\
\text{foldr} f x (y:ys) = f y (\text{foldr} x ys)
\]
The Pitfalls of Laziness

Three kinds of folds:

Right-to-left

\[
\text{foldr} :: (a \to b \to b) \to b \to [a] \to b
\]
\[
\text{foldr} \ f \ x \ [] = x
\]
\[
\text{foldr} \ f \ x \ (y:ys) = f \ y \ (\text{foldr} \ x \ ys)
\]

Left-to-right, lazy

\[
\text{foldl} :: (a \to b \to a) \to a \to [b] \to a
\]
\[
\text{foldl} \ f \ x \ [] = x
\]
\[
\text{foldl} \ f \ x \ (y:ys) = \text{foldl} \ (f \ x \ y) \ ys
\]
The Pitfalls of Laziness

Three kinds of folds:

Right-to-left

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f x [] = x
foldr f x (y:ys) = f y (foldr x ys)

Left-to-right, lazy

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f x [] = x
foldl f x (y:ys) = foldl (f x y) ys

Left-to-right, strict

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f x [] = x
foldl' f x (y:ys) = let x' = f x y
                       in x' `seq` foldl' f x' ys
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[ \text{foldr } (+) 0 [1 \ldots n] \]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\text{foldr \ (+) \ 0 \ [1 \ldots n] \ O(n)}
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\text{foldr } (+) \ 0 \ [1 \ldots n] \quad O(n)
\]

\[
\begin{align*}
\text{foldr } (+) \ 0 \ [1 \ldots 5] \\
&\quad \text{Recursive call} \\
\text{foldr } (+) \ 0 \ [2 \ldots 5] \\
&\quad \text{Recursive call} \\
\text{foldr } (+) \ 0 \ [3 \ldots 5] \\
&\quad \text{Recursive call} \\
\text{foldr } (+) \ 0 \ [4 \ldots 5] \\
&\quad \text{Recursive call} \\
\text{foldr } (+) \ 0 \ [5] \\
&\quad \text{Recursive call} \\
\text{foldr } (+) \ 0 \ []
\end{align*}
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[ \text{foldr} \ (+) \ 0 \ [1 \ .. \ n] \quad O(n) \]

- **foldr (+) 0 [1 .. 5]**
  - Recursive call
  - **foldr (+) 0 [2 .. 5]**
    - Recursive call
    - **foldr (+) 0 [3 .. 5]**
      - Recursive call
      - **foldr (+) 0 [4 .. 5]**
        - Recursive call
        - **foldr (+) 0 [5]**
          - Recursive call
          - **foldr (+) 0 []**
            - 0
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[ \text{foldr } (+) \text{ } 0 \text{ } [1 \ldots n] \quad O(n) \]

\[
\text{foldr } (+) \text{ } 0 \text{ } [1 \ldots 5] \\
\quad \downarrow \text{Recursive call} \\
\text{foldr } (+) \text{ } 0 \text{ } [2 \ldots 5] \\
\quad \downarrow \text{Recursive call} \\
\text{foldr } (+) \text{ } 0 \text{ } [3 \ldots 5] \\
\quad \downarrow \text{Recursive call} \\
\text{foldr } (+) \text{ } 0 \text{ } [4 \ldots 5] \\
\quad \downarrow \text{Recursive call} \\
\text{foldr } (+) \text{ } 0 \text{ } [5] \\
\quad \quad \downarrow \text{Recursive call} \\
\text{foldr } (+) \text{ } 0 \text{ } [] \\
\quad \quad \quad \quad \downarrow \text{Recursive call} \\
\begin{array}{c}
(+) \ 5 \\
\hline
0
\end{array}
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

foldr (+) 0 [1 .. n] \(O(n)\)
The Pitfalls of Laziness

Space usage of summing a list of integers:

```haskell
foldr (+) 0 [1 .. n] \(O(n) \)
```

```
foldr (+) 0 [1 .. 5]
 \((+) 1 \)
 Recursive call
foldr (+) 0 [2 .. 5]
 \((+) 2 \)
 Recursive call
foldr (+) 0 [3 .. 5]
 \((+) 3 \)
 Recursive call
foldr (+) 0 [4 .. 5]
 \((+) 4 \)
 Recursive call
foldr (+) 0 [5]
 \((+) 5 \)
 Recursive call
foldr (+) 0 []
 0
```
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\begin{align*}
\text{foldr} \ (+) \ 0 \ [1 \ldots n] \quad &O(n) \\
\text{foldl} \ (+) \ 0 \ [1 \ldots n] \quad &O(n)
\end{align*}
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[ \text{foldr} \ (+) \ 0 \ [1 \ldots n] \quad O(n) \]
\[ \text{foldl} \ (+) \ 0 \ [1 \ldots n] \quad O(n) \]
The Pitfalls of Laziness

Space usage of summing a list of integers:

foldr (+) 0 [1 .. n] \(O(n)\)
foldl (+) 0 [1 .. n] \(O(n)\)

foldl (+) 0 [1 .. 5]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\text{foldr} \ (+) \ 0 \ [1 \ldots \ n] \quad O(n) \\
\text{foldl} \ (+) \ 0 \ [1 \ldots \ n] \quad O(n)
\]

\[
\text{foldl} \ (+) \ 0 \ [1 \ldots \ 5] \\
\text{→} \quad \text{foldl} \ (+) \ (0 + 1) \ [2 \ldots \ 5]
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\text{foldr} \ (+) \ 0 \ [1 \ldots n] \quad O(n) \\
\text{foldl} \ (+) \ 0 \ [1 \ldots n] \quad O(n)
\]

\[
\text{foldl} \ (+) \ 0 \ [1 \ldots 5] \\
\rightarrow \text{foldl} \ (+) \ (0 + 1) \ [2 \ldots 5] \\
\rightarrow \text{foldl} \ (+) \ ((0 + 1) + 2) \ [3 \ldots 5]
\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

$$\text{foldr} \ (+) \ 0 \ [1 \ldots n] \quad O(n)$$
$$\text{foldl} \ (+) \ 0 \ [1 \ldots n] \quad O(n)$$

$$\text{foldl} \ (+) \ 0 \ [1 \ldots 5]$$
$$\quad \rightarrow \text{foldl} \ (+) \ (0 + 1) \ [2 \ldots 5]$$
$$\quad \rightarrow \text{foldl} \ (+) \ ((0 + 1) + 2) \ [3 \ldots 5]$$
$$\quad \rightarrow \text{foldl} \ (+) \ (((0 + 1) + 2) + 3) \ [4 \ldots 5]$$
$$\quad \rightarrow \text{foldl} \ (+) \ ((((0 + 1) + 2) + 3) + 4) \ [5]$$
$$\quad \rightarrow \text{foldl} \ (+) \ ((((0 + 1) + 2) + 3) + 4) + 5) \ []$$
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[\text{foldr} \ (+) \ 0 \ [1 \ldots n] \quad O(n)\]
\[\text{foldl} \ (+) \ 0 \ [1 \ldots n] \quad O(n)\]

\[\text{foldl} \ (+) \ 0 \ [1 \ldots 5]\]
\[\quad \rightarrow \text{foldl} \ (+) \ (0 + 1) \ [2 \ldots 5]\]
\[\quad \rightarrow \text{foldl} \ (+) \ ((0 + 1) + 2) \ [3 \ldots 5]\]
\[\quad \rightarrow \text{foldl} \ (+) \ (((0 + 1) + 2) + 3) \ [4 \ldots 5]\]
\[\quad \rightarrow \text{foldl} \ (+) \ ((((0 + 1) + 2) + 3) + 4) \ [5]\]
\[\quad \rightarrow \text{foldl} \ (+) \ ((((0 + 1) + 2) + 3) + 4) + 5) []\]
\[\quad \rightarrow ((((0 + 1) + 2) + 3) + 4) + 5)\]
The Pitfalls of Laziness

Space usage of summing a list of integers:

foldr (+) 0 [1 .. n] \( O(n) \)
foldl (+) 0 [1 .. n] \( O(n) \)

foldl (+) 0 [1 .. 5]
\[\rightarrow \text{foldl } (+) (0 + 1) [2 .. 5] \]
\[\rightarrow \text{foldl } (+) ((0 + 1) + 2) [3 .. 5] \]
\[\rightarrow \text{foldl } (+) (((0 + 1) + 2) + 3) [4 .. 5] \]
\[\rightarrow \text{foldl } (+) ((((0 + 1) + 2) + 3) + 4) [5] \]
\[\rightarrow \text{foldl } (+) (((((0 + 1) + 2) + 3) + 4) + 5) [] \]
\[\rightarrow ((((0 + 1) + 2) + 3) + 4) + 5) \]
The Pitfalls of Laziness

Space usage of summing a list of integers:

\[
\begin{align*}
\text{foldr} \; (+) \; 0 \; [1 \ldots n] & \quad O(n) \\
\text{foldl} \; (+) \; 0 \; [1 \ldots n] & \quad O(n) \\
\text{foldl'} \; (+) \; 0 \; [1 \ldots n] & \quad O(1) \\
\end{align*}
\]

\[
\begin{align*}
\text{foldl'} \; (+) \; 0 \; [1 \ldots 5] & \\
\rightarrow \text{foldl'} \; (+) \; 1 \; [2 \ldots 5] & \\
\rightarrow \text{foldl'} \; (+) \; 3 \; [3 \ldots 5] & \\
\rightarrow \text{foldl'} \; (+) \; 6 \; [4 \ldots 5] & \\
\rightarrow \text{foldl'} \; (+) \; 10 \; [5] & \\
\rightarrow \text{foldl'} \; (+) \; 15 \; [] & \\
\rightarrow 15 & \\
\end{align*}
\]
Types

Built-in types:

Int, Rational, Float, Char, String ([Char]), lists, pairs, ...
Types

Built-in types:
Int, Rational, Float, Char, String ([Char]), lists, pairs, ...

Enumeration types:
data Colour = Red | Blue | Green | Yellow
Types

Built-in types:
Int, Rational, Float, Char, String ([Char]), lists, pairs, ...

Enumeration types:
data Colour = Red | Blue | Green | Yellow

Parameterized types:
data Tree a = Empty | Node a (Tree a) (Tree a)
data Either a b = Left a | Right b
data Maybe a = Just a | Nothing
Types

Built-in types:
Int, Rational, Float, Char, String (\([\text{Char}]\)), lists, pairs, ...

Enumeration types:
data Colour = Red | Blue | Green | Yellow

Parameterized types:
data Tree a = Empty | Node a (Tree a) (Tree a)
data Either a b = Left a | Right b
data Maybe a = Just a | Nothing

Types with accessor functions:
data Person = Person { name :: String, age :: Int , address :: String }
Types

Built-in types:
Int, Rational, Float, Char, String ([Char]), lists, pairs, ...

Enumeration types:
data Colour = Red | Blue | Green | Yellow

Parameterized types:
data Tree a = Empty | Node a (Tree a) (Tree a)
data Either a b = Left a | Right b
data Maybe a = Just a | Nothing

Types with accessor functions:
data Person = Person { name :: String, age :: Int
, address :: String }

p = Person { name = "Norbert Zeh", age = "100"
, address = "Halifax" }
name p -- "Norbert Zeh"
q = p { age = "39" }
The Unrealistic Dream of No Side Effects

Advantage of disallowing side effects:

• The value of a function depends only on its arguments. Two invocations of the function with the same arguments are guaranteed to produce the same result.

• Theoreticians like this because it makes formal reasoning about code correctness easier.

• Practical benefit: Once you’ve tested a function and verified that it produces the correct result, it is guaranteed to produce the correct result at least on the inputs you tested.
The Unrealistic Dream of No Side Effects

Advantage of disallowing side effects:

- The value of a function depends only on its arguments. Two invocations of the function with the same arguments are guaranteed to produce the same result.
- Theoreticians like this because it makes formal reasoning about code correctness easier.
- Practical benefit: Once you’ve tested a function and verified that it produces the correct result, it is guaranteed to produce the correct result at least on the inputs you tested.

The need for side effects:

- Interactions with the real world require side effects. Without this interaction, programs are useless.
- Storing state in data structures and updating these data structures requires side effects.
- ...
The IO Monad

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad. It is not a function.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.
The IO Monad

-- Read a character from stdin and return it
getChar :: IO Char

This is an action in the IO monad. It is not a function.

A monad is a structure that allows us to sequence actions.

The IO monad is the monad that allows us to interact with the outside world.

Every Haskell program must have a main function of type
main :: IO ()

• When you start the program, this action is executed.
• It may be composed of smaller IO actions that are sequenced together.
• These actions call pure functions to carry out the part of the computation
  that is purely functional.
• The aim is to create a clear separation between the part of the computation
  that has side effects (which needs to be expressed as monadic actions) and
  the part that does not (which is expressed using pure functions).
IO Monad: Example

database :: [(String, Int)]
database = [("Norbert", 39), ("Luca", 9), ("Mateo", 1)]

lookup :: Eq a => a -> [(a, b)] -> Maybe b
lookup x [] = Nothing
lookup x ((k, v):vs) | x == k = Just v
    | otherwise = lookup x vs

main :: IO ()
main = do
    name <- getLine
    if name == "quit"
        then return ()
        else do let age = lookup name database
            maybe (putStrLn $ "I don’t know the age of " ++
                    name ++ ".")
            (\a -> putStrLn $ "The age of " ++ name ++
                    " is " ++ show a ++ ".")
            age
    main
Monads

class Monad m where
    (>>=) :: forall a b . m a -> (a -> m b) -> m b
    (>>) :: forall a b . m a -> m b -> m b
    return :: a -> m a
    fail    :: String -> m a
Monads

class Monad m where

    (>>=) :: forall a b . m a -> (a -> m b) -> m b
    (>>)  :: forall a b . m a -> m b -> m b
    return :: a -> m a
    fail   :: String -> m a

Examples:

readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn

getLine :: IO String
putStrLn :: String -> IO ()
Monads

class Monad m where
    (>>=) :: forall a b . m a -> (a -> m b) -> m b
    (>>) :: forall a b . m a -> m b -> m b
    return :: a -> m a
    fail :: String -> m a

Examples:

readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn

getLine :: IO String
putStrLn :: String -> IO ()

sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn
class Monad m where
    (>>=) :: forall a b . m a -> (a -> m b) -> m b
    (>>) :: forall a b . m a -> m b -> m b
    return :: a -> m a
    fail :: String -> m a

Examples:

readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn

getLine :: IO String
putStrLn :: String -> IO ()

sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn

printTwoLines :: String -> String -> IO ()
printTwoLines a b = putStrLn a >> putStrLn b
class Monad m where

    (>>=) :: forall a b . m a -> (a -> m b) -> m b
    (>>) :: forall a b . m a -> m b -> m b
    return :: a -> m a
    fail :: String -> m a

Examples:

readAndEcho :: IO ()
readAndEcho = getLine >>= putStrLn

getLine :: IO String
putStrLn :: String -> IO ()

sillyPrint :: IO ()
sillyPrint = return "This is printed" >>= putStrLn

printTwoLines :: String -> String -> IO ()
printTwoLines a b = putStrLn a >> putStrLn b

failIfOdd :: Int -> IO ()
failIfOdd x = if even x then return () else fail "x is odd"
Do Notation

Standard monadic composition of actions sure isn’t pretty:

```haskell
getAndPrintTwoStrings :: IO ()
getAndPrintTwoStrings = getString >>= \
 getString >>= \
 putStrLn $ "S1 = " ++ s1 >>
 putStrLn $ "S2 = " ++ s2
```

do-notation makes this much easier to write:

```haskell
getAndPrintTwoStrings :: IO ()
getAndPrintTwoStrings = do
 s1 <- getString
 s2 <- getString
 putStrLn $ "S1 = " ++ s1
 putStrLn $ "S2 = " ++ s2
```

A preprocessing step translates this into the form above and then compiles the above code.
Lazy I/O

Assume we want to copy a file “input” into a file “output”.

This one works:

```haskell
main :: IO ()
main = do
 infile <- openFile "input" ReadMode
 outfile <- openFile "output" WriteMode
 txt <- hGetContents infile
 hPutStr outfile txt
 hClose infile
 hClose outfile
```
Lazy I/O

Assume we want to copy a file “input” into a file “output”.

This one works:

```haskell
main :: IO ()
main = do
 infile <- openFile "input" ReadMode
 outfile <- openFile "output" WriteMode
 txt <- hGetContents infile
 hPutStr outfile txt
 hClose infile
 hClose outfile
```

This one doesn’t:

```haskell
main :: IO ()
main = do
 infile <- openFile "input" ReadMode
 outfile <- openFile "output" WriteMode
 txt <- hGetContents infile
 hPutStr outfile txt
 hClose outfile
 hClose infile
```

Functional Programming in Haskell
CSCI 3136: Principles of Programming Languages
Lazy I/O

Assume we want to copy a file “input” into a file “output”.

This one works:

```haskell
main :: IO ()
main = do
 infile <- openFile "input" ReadMode
 outfile <- openFile "output" WriteMode
 txt <- hGetContents infile
 hPutStr outfile txt
 hClose infile
 hClose outfile
```

This one doesn’t:

```haskell
main :: IO ()
main = do
 infile <- openFile "input" ReadMode
 outfile <- openFile "output" WriteMode
 txt <- hGetContents infile
 hClose infile
 hPutStr outfile txt
 hClose outfile
```

`hGetContents` has no reason to actually read the input file before it is closed. Once we try to write the file contents to the output file, the input file is closed already, and trying to populate `txt` from the input file we encounter an EOF.
Pure Computations with State

It is common to have a computation that is pure in the sense that its result depends only on the inputs, but it needs to maintain state during its execution.

```haskell
seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = fst (genseq seed n)

genseq :: Int -> Int -> ([Int], Int)
genseq seed 0 = ([], seed)
genseq seed n = (x:xs, seed’)
 where
 (x, seed’) = generateRandomNumberAndSeedAndSeed seed
 (xs, seed’’) = genseq seed’ (n - 1)

main :: IO ()
main = do
 let xs = seededRandomSequence 15321 100
 ...
```
A Non-Solution: Lift the Computation into the IO Monad

seededRandomSequence :: Int -> Int -> IO [Int]
seededRandomSequence seed n = do
  st <- newIORef seed
  mapM (const $ gennum st) [1 .. n]

gennum :: (IORef Int) -> IO Int
gennum st = do
  seed <- readIORef st
  let (x, seed’) = generateRandomNumberAndSeed seed
  writeIORef st seed’
  return x

main :: IO ()
main = do
  xs <- seededRandomSequence 15321 100
  ...
Solution: Use the State Monad

```haskell
import Control.Monad.State

type St = State Int

seededRandomSequence :: Int -> Int -> [Int]
seededRandomSequence seed n = evalState (genseq n) seed

genseq :: Int -> St [Int]
genseq n = mapM (const gennum) [1 .. n]

gennum :: St Int
gennum = do
 seed <- get
 let (x, seed') = generateRandomNumberAndSeed seed
 put seed'
 return x

main :: IO ()
main = do
 let xs = seededRandomSequence 15321 100
```

Functional Programming in Haskell
CSCI 3136: Principles of Programming Languages
The State Monad

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where
  a >>= b = State $\s \rightarrow \text{let } (x, s') = \text{runState } a \ s \\
  \text{in } \text{runState } (b \ x) \ s'

a >> b = a >>= \text{const } b

return x = State $ \s \rightarrow (x, s)

fail = error
The State Monad

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where
  a >>= b = State $\ s -> let (x, s') = runState a s
             in  runState (b x) s'
  a >>= b = a >>= const b
  return x = State $ \ s -> (x, s)
  fail = error

get :: State s s
get = State $ \ s -> (s, s)

put :: s -> State s ()
p = State $ \ _ -> ()

modify :: (s -> s) -> State s ()
modify f = State $ \ s -> ()

evaluate :: State s a -> s -> a
evaluate st = fst . runState st
Error Handling with Maybe and Either

A type for computations that may fail to produce a result:

```haskell
data Maybe a = Just a | Nothing
```
Error Handling with Maybe and Either

A type for computations that may fail to produce a result:

```haskell
data Maybe a = Just a | Nothing
```

Default values for failed computations:

```haskell
maybe :: a -> (b -> a) -> Maybe b -> a
```

Example:

```haskell
maybe 2 (* 2) Nothing -- 2
maybe 2 (* 2) (Just 3) -- 6
```
Error Handling with Maybe and Either

A type for computations that may fail to produce a result:

```haskell
data Maybe a = Just a | Nothing
```

Default values for failed computations:

```haskell
maybe :: a -> (b -> a) -> Maybe b -> a
```

Example:

```haskell
maybe 2 (* 2) Nothing -- 2
maybe 2 (* 2) (Just 3) -- 6
```

Sequencing computations that may fail:

```haskell
lookup :: Eq a => a -> [(a, b)] -> Maybe b
```

```haskell
a :: [(String, Int)]
b :: [(Int, Bool)]
```

```haskell
let x = lookup "John Doe" a
 y = maybe Nothing (flip lookup b) x
 z = maybe False id y
```
Maybe is a monad:

```haskell
instance Monad Maybe where
 (Just x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
 Nothing >>= _ = Nothing
 (Just _) >> a = a -- (>>) :: m a -> m b -> m b
 Nothing >> _ = Nothing
 return = Just -- return :: a -> m a
 fail _ = Nothing -- fail :: String -> m a
```
Error Handling with Maybe and Either

Maybe is a monad:

```haskell
instance Monad Maybe where
 (Just x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
 Nothing >>= _ = Nothing
 (Just _) >>= a = a -- (>>>) :: m a -> m b -> m b
 Nothing >>= _ = Nothing
 return = Just -- return :: a -> m a
 fail _ = Nothing -- fail :: String -> m a
```

Sequencing computations that may fail:

```haskell
lookup :: Eq a => a -> [(a, b)] -> Maybe b

a :: [(String, Int)]
b :: [(Int, Bool)]

let y = lookup "John Doe" a >>= flip lookup b
 z = maybe False id y
```
Error Handling with Maybe and Either

Maybe is a monad:

```haskell
instance Monad Maybe where
 (Just x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
 Nothing >>= _ = Nothing
 (Just _) >> a = a -- (>>) :: m a -> m b -> m b
 Nothing >> _ = Nothing
 return = Just -- return :: a -> m a
 fail _ = Nothing -- fail :: String -> m a
```

Sequencing computations that may fail:

```haskell
lookup :: Eq a => a -> [(a, b)] -> Maybe b

a :: [(String, Int)]
b :: [(Int, Bool)]

let y = do x <- lookup "John Doe" a
 lookup x b
 z = maybe False id y
```
A type for computations with two kinds of outcomes:

data Either a b = Left a | Right b
Error Handling with Maybe and Either

A type for computations with two kinds of outcomes:

data Either a b = Left a | Right b

Unifying the two result types:

either :: (a -> c) -> (b -> c) -> Either a b -> c

Example:

either (== 'a') (== 1) (Left 'b') -- False
neither (== 'a') (== 1) (Right 1) -- True
A type for computations with two kinds of outcomes:

\[
\text{data } \text{Either } a b = \text{Left } a \mid \text{Right } b
\]

Unifying the two result types:

\[
\text{either } :: (a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow \text{Either } a b \rightarrow c
\]

Example:

\[
\text{either } (== 'a') (== 1) (\text{Left } 'b') \rightarrow \text{False}
\]
\[
\text{either } (== 'a') (== 1) (\text{Right } 1) \rightarrow \text{True}
\]

Sequencing computations that may fail:

\[
\text{scan } :: \text{String} \rightarrow \text{Either String [Token]}
\]
\[
\text{parse } :: \text{[Token]} \rightarrow \text{Either String ParseTree}
\]

let toks = scan text
    tree = either Left parse toks
either putStrLn doSomethingWithParseTree tree
(Either String) is a monad:

instance Monad (Either String) where
  (Right x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
  (Left e) >>= _ = Left e
  (Right _) >>= a = a -- (>>) :: m a -> m b -> m b
  (Left e) >>= _ = Left e
  return = Right -- return :: a -> m a
  fail = Left -- fail :: String -> m a
(Either String) is a monad:

```
instance Monad (Either String) where
 (Right x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
 (Left e) >>= _ = Left e
 (Right _) >>= a = a -- (>>) :: m a -> m b -> m b
 (Left e) >>= _ = Left e
 return = Right -- return :: a -> m a
 fail = Left -- fail :: String -> m a
```

Sequencing computations that may fail:

```
scan :: String -> Either String [Token]
parse :: [Token] -> Either String ParseTree

let tree = scan text >>= parse
either putStrLn doSomethingWithParseTree tree
```
Error Handling with Maybe and Either

(Either String) is a monad:

```haskell
instance Monad (Either String) where
 (Right x) >>= a = a x -- (>>=) :: m a -> (a -> m b) -> m b
 (Left e) >>= _ = Left e
 (Right _) >>= a = a -- (>>>) :: m a -> m b -> m b
 (Left e) >>= _ = Left e
 return = Right -- return :: a -> m a
 fail = Left -- fail :: String -> m a
```

Sequencing computations that may fail:

```haskell
scan :: String -> Either String [Token]
parse :: [Token] -> Either String ParseTree

let tree = do toks <- scan text
 parse toks
 either putStrLn doSomethingWithParseTree tree
```
Lists as a Monad

[] is a monad:

instance Monad [] where
    xs >>= a = concatMap a xs
    xs >> a = concatMap (const a) xs
    return x = [x]
    fail _ = []
Lists as a Monad

[] is a monad:

```haskell
instance Monad [] where
 xs >>= a = concatMap a xs
 xs >> a = concatMap (const a) xs
 return x = [x]
 fail _ = []
```

```haskell
transFunc :: [((State, Symbol), [State])]
accStates :: [State]
startState :: State

runNFA :: [Symbol] -> [State]
runNFA = foldM go startState
 where go s x = epsClose s >>= flip goChar x >>= epsClose
 epsClose s = s : (goEps s >>= epsClose)
 goEps s = maybe [] id $ lookup (s, E) transFunc
 goChar s x = maybe [] id $ lookup (s, x) transFunc

isInLanguage :: [Symbol] -> Bool
isInLanguage = any ('elem' accStates) . runNFA
```
module A (Transparent(..), Opaque, toOpaque, fromOpaque) where

data Transparent = T { x, y :: Int }
data Opaque = O { ox, oy :: Int }

toOpaque :: Transparent -> Opaque
toOpaque (Transparent a b) = Opaque a b

fromOpaque :: Opaque -> Transparent
fromOpaque (Opaque a b) = Transparent a b
module A (Transparent(..), Opaque, toOpaque, fromOpaque) where

data Transparent = T { x, y :: Int }
data Opaque = O { ox, oy :: Int }

toOpaque :: Transparent -> Opaque
toOpaque (Transparent a b) = Opaque a b

fromOpaque :: Opaque -> Transparent
fromOpaque (Opaque a b) = Transparent a b

module B where

import A

t = T 1 2
o = toOpaque t
t’ = fromOpaque o
(a, b) = (x t’, y t’)
(c, d) = (ox o, oy o) -- Error
module A (a, b) where
...

module B (c, d) where
...

module E where

import A (a)
import A as C hiding (a)
import qualified B as D

b -- refers to A’s b
C.b -- also refers to A’s b
a -- refers to A’s a
C.a -- error, hidden
D.c -- refers to B’s c
c -- error, B must be used qualified
Why Do I Like Haskell?

• Think a lot, type little
• Large standard library
• hackage.haskell.org
  Central repository of lots of add-on modules I can use
• Superb documentation