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Question 1 (10 marks) We discussed variadic functions in class. Recall that these are functions that
can be called with a variable number of function arguments and are supported in many languages,
including Java, C, and many more. Also recall that efficient access to function arguments and local
variables of functions in statically scoped languages is achieved by deciding at compile time the offset
relative to the frame pointer where each argument and variable is stored. This condition clearly
cannot be preserved completely when the number of function arguments can vary. However, it can be
preserved for all required function arguments and for local variables.

Propose an organization of the stack frame of a function call that meets the following requirements:

• All required function arguments can be found at a fixed offset from the frame pointer.

• All local function arguments can be found at a fixed offset from the frame pointer.

• The sequence of variable function arguments can be iterated over in C style (see the slides).

• The variable function arguments are stored directly in the stack frame, not in a separate array.

• The stack frame organization plays nicely with the standard function call sequence discussed in
class: The caller pushes arguments and the return address onto the stack. The callee constructs
the space for its local variables. Destruction of the stack frame happens in reverse.

Discuss briefly how to determine the offset of required function arguments and local variables relative
to the frame pointer, given your proposed organization of the stack frame. Also describe the call
sequence of calling a variadic function.

For this question, you may come up with your own solution or, provided that you cite the source, find
information online on how C implements variadic functions.

Question 2 (5 marks) Whether two types are structurally equivalent is ultimately a matter of inter-
pretation: the language designer decides which differences between two types are significant and
which ones are not. On page 304 of the textbook, the following algorithm for determining structural
equivalence of two types A and B is given:1 Every type T can be represented as a string sT defined
inductively:

• If T is a built-in type, sT is its name.

• If T is a composite of a sequence of subtypes T1, . . . , Tk, then sT consists of the type constructor
used to construct T followed by the strings sT1

, . . . , sTk
.

For example, the string sT for the following type T is “struct char pointer int”:

struct T {
char x;
int *y;

};

1This is not a verbatim copy of the algorithm given in the textbook but a more rigorous inductive description that
captures the same notion of structural type equivalence.
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Two types A and B are structurally equivalent if and only if sA = sB.

(a) Argue why you cannot use this definition of type equivalence to decide whether the following
two types A and B are equivalent:

struct A {
char x;
struct B *y;

};

struct B {
char x;
struct A *y;

};

(b) (10 bonus marks) Here is an alternative definition of type equivalence. Every composite type
provides element selectors as mechanisms to access the parts it is composed of. For example, the
type B defined in part (a) provides the element selectors .x and .y to access its constituent parts;
an array type provides [] to access its elements. By applying element selectors recursively, we
can define valid sequences of element selectors. For an object of type B in part (a), for example, the
sequences .y.y.y.y and .y.y.y.x are valid and lead to objects of type B and char, respectively.
The sequence .y.y.x.y is not valid because .y.y.x leads to an object of type char, which does
not have a part accessible through the selector .y. Now we define that two types A and B are
equivalent if they have the same (possibly infinite) set of valid sequences of element selectors
and each such sequence that leads to a built-in type from A leads to the same built-in type from B
and vice versa. It is not hard to see that, based on this definition, the two types A and B in part
(a) are structurally equivalent because both have a set of valid sequences of element selectors
consisting of the sequences .x, .y, .y.x, .y.y, .y.y.x, .y.y.y, . . . and each such sequence
ending in .x leads to an object of type char.

Provide an algorithm for testing whether two types are structurally equivalent using this definition.
(While the set of valid sequences of element selectors of a type may be infinite, it can be
represented using a finite structure and can be manipulated efficiently.) Argue that your algorithm
is correct, that is, that it classifies two types as structurally equivalent if and only if they are
according to the definition just given. (Hint: Try to model valid sequences of element selectors
using a DFA and try to decide whether the two DFAs constructed for two types model the same
language of type selectors.)
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