Sample Solution

Assignment 8

CSCI 3110 — Summer 2014

(a) Observe that one of the neighbours of p_n must be p_{n-1}. Indeed, if p_n had neighbours p_i and p_j with $i < n - 1$ and $j < n - 1$, the tour would have to visit p_{n-1} on its way from p_i to p_1 or on its way from p_1 to p_j, but then one of these two paths wouldn’t be x-monotone.

Removing the edge from p_{n-1} to p_n gives us a tour from p_{n-1} to p_n that visits all n points, and this tour must of course be optimal, that is, its length is $L(n-1,n)$. This gives us the equation

$$L^* = L(n-1,n) + \|p_{n-1} - p_n\|.$$

(b) For a tour that starts at p_i, ends at p_j, and visits every point in $\{p_1, p_2, \ldots, p_j\}$ exactly once, observe that this tour consists of the edge $p_1 p_2$ if $(i,j) = (1,2)$. Thus, its length is $L(1,2) = \|p_1 - p_2\|$. If $j > 2$, we distinguish two cases:

If $j > i + 1$, then the neighbour of p_j on this tour must be p_{j-1} for the same reason why p_{n-1} is the neighbour of p_n in an optimal x-monotone tour that visits all points. Thus, we have

$$L(i,j) = L(i,j-1) + \|p_{i-1} - p_j\| \quad \text{if } j > i + 1.$$

If $j = i + 1$, then the neighbour of p_j must be a point p_h with $h < i$. We do not know which one it is, but whichever it is, the part of the tour from p_h to p_i must be an optimal tour that visits all points in $\{p_1, p_2, \ldots, p_i\}$. Thus, we have

$$L(j-1,j) = \min_{1 \leq h < j-1} (L(h,j-1) + \|p_h - p_j\|).$$

(c) The following is the algorithm, which takes the input points in an array.
MonotoneTravelingSalesman(P)

1 Sort the points in P by their x-coordinates
2 \(L[1,2] = \|P[1] - P[2]\| \)
3 for \(j = 3 \) to \(n \)
4 for \(i = 1 \) to \(j - 2 \)
5 \(L[i,j] = L[i,j-1] + \|P[j-1] - P[j]\| \)
6 \(L[j-1,j] = \infty \)
7 for \(h = 1 \) to \(j - 2 \)
8 \(L = L[h,j-1] + \|P[h] - P[j]\| \)
9 if \(L < L[j-1,j] \)
10 \(L[j-1,j] = L \)
11 \(L^* = L[n-1,n] + \|P[n-1] - P[n]\| \)
12 return \(L^* \)

The running time of this algorithm is clearly \(O(n^2) \) because line 1 takes \(O(n \lg n) \) time, lines 2, 11, and 12 take constant time, and lines 3–10 consist of an outer loop with \(n - 2 \) iterations with two inner loops with at most \(n - 2 \) iterations nested inside it. Its correctness follows because it simply evaluates the recurrence from part (b).

(d) To be able to construct an optimal tour, we only need to remember the optimal predecessor of \(P[j] \) in an optimal tour from \(P[j-1] \) to \(P[j] \). The following algorithm constructs a table \(Q[1..n] \) with that stores this information:

MonotoneTravelingSalesman(P)

1 Sort the points in P by their x-coordinates
2 \(L[1,2] = \|P[1] - P[2]\| \)
3 for \(j = 3 \) to \(n \)
4 for \(i = 1 \) to \(j - 2 \)
5 \(L[i,j] = L[i,j-1] + \|P[j-1] - P[j]\| \)
6 \(L[j-1,j] = \infty \)
7 for \(h = 1 \) to \(j - 2 \)
8 \(L = L[h,j-1] + \|P[h] - P[j]\| \)
9 if \(L < L[j-1,j] \)
10 \(L[j-1,j] = L \)
11 \(Q[j] = h \)
12 \(L^* = L[n-1,n] + \|P[n-1] - P[n]\| \)
13 return \(L^* \)

(e) Using the table \(Q \) constructed by the previous algorithm, we can construct the optimal tour in linear time as follows. There are many possible ways to represent this tour. For simplicity, we output its edges in no particular order here:
BuildTour(P,Q)

1. $T = \emptyset$ // The edge set of the tour
2. Add edge $(P[n-1], P[n])$ to T
3. Add edge $(P[1], P[2])$ to T
4. $i = n - 1$
5. for $j = n$ downto 3
6. if $i == j - 1$
7. $h = Q[j]$
8. Add edge $(P[h], P[j])$ to T
9. $i = h$
10. else Add edge $(P[j - 1], P[j])$ to T
11. return T