The trick is to find the right recursive formulation of the problem. The idea is similar to the line segment intersection problem we discussed in the tutorial. We devise a procedure \texttt{MaxStabbing}(P,S,I) which takes as argument an interval $I \subseteq \mathbb{R}$, a set of points $P \subset I$, and a set of intervals S such that every interval in S has at least one endpoint in I. The result of this procedure is that every point p in P is annotated with the maximum weight of all intervals in S that contain p or $-\infty$ if no such interval exists. Clearly, the invocation \texttt{MaxStabbing}(P,S,\mathbb{R}) solves the problem we are asked to solve because every point in P belongs to \mathbb{R} and every interval in S has both its endpoints in \mathbb{R}.

Now, if $|P| = 1$, we obtain a simple linear-time solution to the problem: Scan all intervals in S. If none of them contains the one point $p \in P$, then annotate p with a maximum weight of $-\infty$. Otherwise, annotate p with the maximum weight of all the intervals in S that do contain p.

If $|P| > 1$, we split P into two subsets P_l an P_r containing the $\lceil n/2 \rceil$ smallest and $\lfloor n/2 \rfloor$ largest elements in P, respectively. Let x be a value such that all elements in P_l are less than x and all elements in P_r are greater than x (e.g., the average of the largest element in P_l and the smallest element in P_r), and let $I_l := I \cap (-\infty,x]$ and $I_r := I \cap [x,\infty)$. We construct two sets S_l and S_r containing all intervals in S with at least one endpoint in I_l and I_r, respectively. Note that every interval in S belongs to at least one of these two sets but may contain both. Now consider a point $p \in P_l$. The maximum-weight interval in S that contains p is the one with larger weight among the maximum-weight interval in S_l that contains p and the maximum-weight interval in $S_r \setminus S_l$ that contains p. We find the former for all $p \in P_l$ by making the recursive call \texttt{MaxStabbing}(P_l,S_l,I_l). For the latter, we observe that, since any such interval has one endpoint in S_r, no endpoint in S_l, and contains a point in P_l, it must completely span I_l. In particular, it contains all points in P_l, so the maximum-weight interval in $S_r \setminus S_l$ containing p is the same for all points $p \in P_l$. We find this interval by scanning S_r and remembering the maximum interval in S_r we have seen so far and which spans I_l. This clearly takes linear time.
The analysis for the points in P_r is symmetric to the one just given. Thus, we obtain the following algorithm. In this algorithm, each point in P is represented by as a record with fields x and w. x is the position of the point and w is the weight we are to compute. Each interval in S is represented as a record with fields l, r, and w, which are the left endpoint, right endpoint, and weight of the interval, respectively.

MaxStabbing(P,S)
1. **MergeSort(P)** // Sort the points by their positions.
2. **RecMaxStabbing(P,S,\emptyset)**

RecMaxStabbing(P,S,I)
1. if $|P| = 1$
2. $P[0]$.w = $-\infty$
3. for $i = 0$ to $|S| - 1$
4. if $S[i]$.w > $P[0]$.w
5. $P[0]$.w = $S[i]$.w
6. else $m = |P|/2$
7. $x = (P[m-1]$.x $+ P[m]$.x$)/2$
8. $I_l = I \cap (-\infty,x]$
9. $I_r = I \cap [x,\infty)$
10. $S_l = \emptyset$
11. $S_r = \emptyset$
12. for $i = 0$ to $|S| - 1$
13. if $S[i]$.l $\in I_l$ or $S[i]$.r $\in I_l$
14. Append $S[i]$ to S_l
15. if $S[i]$.l $\in I_r$ or $S[i]$.r $\in I_r$
16. Append $S[i]$ to S_r
17. **RecMaxStabbing($P[0..m-1]$,S_l,I_l)**
18. **RecMaxStabbing($P[m..|P|-1]$,S_r,I_r)**
19. $w_l = -\infty$
20. $w_r = -\infty$
21. for $i = 0$ to $|S| - 1$
22. if $I_l \subseteq [S[i]$.l,$S[i]$.r$]$ and $S[i]$.w > w_l
23. $w_l = S[i]$.w
24. if $I_r \subseteq [S[i]$.l,$S[i]$.r$]$ and $S[i]$.w > w_r
25. $w_r = S[i]$.w
26. for $i = 0$ to $m - 1$
27. if $w_l > P[i]$.w
28. $P[i]$.w = w_l
29. for $i = m$ to $|P| - 1$
30. if $w_r > P[i]$.w
31. $P[i]$.w = w_r

The running time of **MaxStabbing(P,S)** is the running time of **MergeSort(P)** plus the
running time of $\text{RecMaxStabbing}(P, S, \mathbb{R})$. The former is in $\Theta(n \lg n)$. We prove that the same is true for the latter, so the total running time is in $\Theta(n \lg n)$ as required.

First observe that, excluding the recursive calls it makes, the running time of an invocation $\text{RecMaxStabbing}(P, S, I)$ is in $\Theta(|P| + |S|)$: For the case when $|P| = 1$, we execute lines 2–5, which take $\Theta(1 + |S|) = \Theta(|P| + |S|)$ time. For the case when $|P| > 1$, lines 7–11 and 19–20 take constant time, lines 12–16 and 21–25 take $\Theta(|S|)$ time, and lines 26–31 take $\Theta(|P|)$ time.

Next observe that there are $\Theta(\lg |P|) = \Theta(\lg n)$ levels of recursion because, for each invocation, $P[0..m-1]$ has size $\lceil |P|/2 \rceil$ and $P[m..|P|-1]$ has size $\lfloor |P|/2 \rfloor$.

By these two observations, it suffices to show that the total input size of all invocations at the same level of recursion is in $\Theta(n)$. Consider an invocation $\text{RecMaxStabbing}(P, S, I)$. This invocation has an input point p in P if and only if $p \in I$ and an input interval I_j in S if and only if I_j has an endpoint in I. Since the intervals associated with invocations at the same level of recursion are disjoint, every input point contributes to the input size of exactly one invocation at each level of recursion and every input interval contributes to the input size of at most two invocations at each level of recursion. This shows that the total input size of all invocations at the same level of recursion is at most $n + 2n \in \Theta(n)$.
