Question 1

Let $S = (x_1, x_2, \ldots, x_n)$ be the given sequence of numbers and let T be a complete binary tree over S. Then every node of v represents a subsequence $S_v = (x_{i_v}, x_{i_v+1}, \ldots, x_{j_v})$ of S corresponding to its descendant leaves. Our range minima data structure consists of three parts:

- The tree T,
- An LCA data structure D for T, and
- For every node v of T, two sequences L_v and R_v defined as follows: Both sequences have the same length as S_v, that is, $L_v = (l^v_{i_v}, l^v_{i_v+1}, \ldots, l^v_{j_v})$ and $R_v = (r^v_{i_v}, r^v_{i_v+1}, \ldots, r^v_{j_v})$. For $i_v \leq h \leq j_v$, $l^v_h = \min_{h \leq h' \leq j_v} x_{h'}$ and $r^v_h = \min_{i_v \leq h' \leq h} x_{h'}$.

The first two parts of the data structure clearly use linear space because T stores n elements and uses $O(n)$ space to do so, and D has linear size in the size of T, that is, also has size $O(n)$. For the third part, observe that the total size of the lists L_v and R_v, for all $v \in T$, is twice the size of the lists S_v, for all $v \in T$. The latter have size $O(n \lg n)$ because every element x_i belongs to exactly the lists S_v such that v is an ancestor of x_i in T; since T is perfectly balanced, there are only $O(\lg n)$ such ancestors for each x_i, that is, each element x_i is stored in $O(\lg n)$ lists.

We can build T in linear time: Scan the list S and make pairs of consecutive elements children of the same parent. This gives us a list S_1 of $\lceil n/2 \rceil$ nodes that are parents of leaves. To create the list S_2 of their parents, of which there are $\lceil n/4 \rceil$, we apply the same procedure to S_1. We repeat this $h := \lfloor \lg n \rfloor$ times until the list S_h has size $|S_h| = 1$. The LCA data structure D for T can be built in linear time. To construct the lists L_v and R_v, we apply a post-order traversal of T, that is, we process every node after its children. During this traversal, we do in fact also compute S_v. For a leaf x_i, $S_{x_i} = L_{x_i} = R_{x_i} = (x_i)$. For a node v with children u and w, we have $S_v = S_u \circ S_w$, where \circ is the concatenation operation. Even if we represent these lists as arrays,
then creating S_v requires allocating an arrays of size $|S_v|$ and copying the elements in S_u and S_v into this array. This takes $O(|S_v|)$ time. L_v can be computed from S_v in $O(|S_v|)$ time by scanning S_v from right to left, maintaining the minimum element seen so far, and storing this element in the slot of L_v corresponding to the current element of S_v. To construct R_v, we scan S_v from left to right. In total, S_v, L_v, and R_v can be constructed in $O(|S_v|)$ time, given the lists associated with v’s children. Since we already argued that the total size of the lists S_v, for all $v \in T$, is $O(n \lg n)$, the construction of these lists for all nodes of T thus takes $O(n \lg n)$ time.

Now, let $i \leq j$ be a pair of indices for which we want to answer a range minimum query. If $i = j$, we simply report x_i, which is obviously correct and obviously takes constant time. If $i < j$, we use D to find the LCA v of x_i and x_j in T in constant time. Let u and w be v’s children. Then, since v is the LCA of x_i and x_j, $x_i \in T_u$ and $x_j \in T_w$. In particular, $i_u \leq i \leq j_u$, $i_w \leq j \leq j_w$, and $i_w = j_u + 1$. Thus, $\text{RangeMin}(i, j) = \min(\text{RangeMin}(i, j_u), \text{RangeMin}(i_w, j)) = \min(l^u_i, r^w_j)$. Given v, u and w can be found in constant time. Looking up l^u_i and r^w_j in L_u and R_w also takes constant time. Thus, $\text{RangeMin}(i, j)$ can be computed in constant time.

Question 2

An in-order traversal of a tree T with root r reflects the order in which the nodes of T are visited by depth-first search, including repeated visits caused by backtracking from children to parents. Formally, this traversal defines a node sequence $S = S_r$, which is defined recursively as follows: For a node v with children w_1, w_2, \ldots, w_k, we have $S_v = \langle v \rangle$ if $k = 0$, that is, v is a leaf. Otherwise, $S_v = \langle v \rangle \circ S_{w_1} \circ \langle v \rangle \circ S_{w_2} \circ \cdots \circ \langle v \rangle \circ S_{w_k} \circ \langle v \rangle$. For a node v in T, its depth is the number of edges on the path from r to v. Let D be a sequence of length $|S|$ whose ith entry is the depth of the ith node in S. Our data structure to answer LCA queries on T has four parts:

- Every node $v \in T$ stores an index i_v such that the i_vth entry in S is v. (There may be more than one such index. It is irrelevant which one v stores.)
- The sequence S.
- The sequence D.
- A range-minima data structure M for D.

Clearly, each of these parts uses $O(n)$ space if S has size $O(n)$. If this is true, it also follows that the DFS traversal that constructs S (and which can be used to compute the depth of each node, that is, to construct D along with S) takes $O(n)$ time. The construction of M from D takes $O(|D|) = O(n)$ time in this case. So we need to argue that $|S| \in O(n)$. We observe that every node $v \in T$ occurs $d_v + 1$ times in S, where d_v is the number of children of v. Thus, every
non-root node contributes one occurrence of itself and one occurrence of its parent to S. This shows that, if T has n nodes, then $|S| = 2n - 1$.

Now, to answer an LCA query with nodes u and w, we ask a range-minimum query on M with indices $i_u < i_w$ as arguments (if $i_u > i_w$, we simply swap u and w). This returns an index j such that $D[j]$ is the smallest entry in $D[i_u, i_w]$. We return $S[j]$ as the query answer. This procedure clearly takes constant time. We have to argue that it gives the right answer, that is, that the node with minimum depth in $S[i_u, i_w]$ is indeed the LCA of u and w.

Let v be the LCA of u and w. Then every occurrence of u and w in S belongs to S_v. Since all nodes in S_v other than v have a depth greater than v’s, this implies that all nodes in $S[i_u, i_w]$ have depth no less than v’s depth, no matter which occurrences of u and w we choose to define i_u and i_w. Thus, to prove that the query procedure returns v, it suffices to show that v occurs at least once in $S[i_u, i_w]$. If $v = u$ or $v = w$, this is true because $S[i_u] = u$ and $S[i_w] = w$, so assume $u \neq v \neq w$. Then let u' and w' be the children of v such that u is a descendant of u' and w is a descendant of w'. In this case, every occurrence of u belongs to $S_{u'}$, every occurrence of w belongs to $S_{w'}$, and there is at least one occurrence of v in S_v between $S_{u'}$ and $S_{w'}$. Thus, $v \in S[i_u, i_w]$.