Assignment 1

Sample Solutions

CSCI 3110 — Summer 2014

Question 1

A worst-case example. Consider an instance consisting of \(n \) men \(m_0, m_1, \ldots, m_{n-1} \) and \(n \) women \(w_0, w_1, \ldots, w_{n-1} \). The preference list of \(m_i \), for \(0 \leq i \leq n - 2 \), is \(\langle w_i, w_{i+1}, \ldots, w_{n-2}, w_0, w_1, \ldots, w_{i-1}, w_{n-1} \rangle \). Man \(m_{n-1} \) has the same preference list as \(m_0 \). For \(0 \leq i \leq n - 2 \), the preference list of woman \(w_i \) is \(\langle m_{i+1}, m_{i+2}, \ldots, m_{n-1}, m_0, m_1, \ldots, m_i \rangle \). The preference list of woman \(w_n \) can be chosen arbitrarily.

We divide the proposals into \(n \) rounds. Each of the first \(n - 1 \) rounds consists of \(n \) proposals, one per man. The final round consists of a single proposal. Consider the first round. For \(0 \leq i \leq n - 2 \), man \(m_i \) proposes to woman \(w_i \) and gets married to her. Then \(m_{n-1} \) proposes to \(w_0 \). Since \(w_0 \) prefers \(m_{n-1} \) over \(m_0 \), \(w_0 \) divorces \(m_0 \) and marries \(m_{n-1} \). Thus, after the first round, \(m_0 \) is unmarried and every other man is married to the first woman on his list. Also, \(m_0 \) has proposed to one woman so far. In general, we claim that after the \(k \)th round, where \(1 \leq k \leq n - 1 \), \(m_0 \) is unmarried, every other man \(m_i \) is married to the \(k \)th woman on his list, \(w_{(i+k-1) \mod (n-1)} \), and \(m_0 \) has proposed to \(k \) women so far. Indeed, we just observed that this is true for \(k = 1 \). For \(k > 1 \), assume the claim holds for \(k - 1 \). Then, for \(0 \leq i \leq n - 2 \), \(m_i \) proposes to the \(k \)th woman on his list, \(w_{(i+k-1) \mod (n-1)} \). By the induction hypothesis, \(w_{(i+k-1) \mod (n-1)} \) is married to \(m_{i+1} \) at the end of the \((k - 1) \)st round. Every woman other than \(w_i \neq w_{(i+k-1) \mod (n-1)} \) prefers \(m_i \) over \(m_{i+1} \), so \(w_{(i+k-1) \mod (n-1)} \) divorces \(m_{i+1} \) and marries \(m_i \), thereby making \(m_{i+1} \) the next unmarried man to propose in this round. Once we reach the situation when \(w_{n-1} \) is unmarried, \(w_{n-1} \) proposed to \(m_0 \)’s current partner \(w_{k-1} \). Since every woman other than \(w_{n-1} \) prefers \(w_{n-1} \) over \(w_0 \), \(w_{k-1} \) divorces \(m_0 \) and gets married to \(m_{n-1} \), so the invariant holds at the end of the \(k \)th round.

After \(n - 1 \) rounds, \(m_0 \) can no longer avoid proposing to \(w_{n-1} \) because she’s the last woman on his list. \(w_{n-1} \), being unmarried, accepts the proposal. Since \(m_0 \) was the only unmarried man before this proposal, all men are married after \(m_0 \) and \(w_{n-1} \) get married and the algorithm terminates. Since there are \(n - 1 \) rounds with \(n \) proposals each and a single final round with a single proposal, the total number of proposals is \((n - 1)n + 1 = n^2 - n + 1 \).

\(n^2 - n + 1 \) is worst possible. Consider an arbitrary input and a run of the algorithm on this input. Let \(w_i \) be the last woman to get married for the first time, and assume this happens at time \(t \). Since a woman, once married, stays married forever, all women, and thus all men, are married after time \(t \).
Since the algorithm terminates once all men are married, this means that there are exactly \(t \) proposals. By time \(t \), every woman other than \(w_1 \) can have received at most \(n \) proposals, while, by definition, the proposal \(w_1 \) receives at time \(t \) is the first proposal she receives. This shows that the number of proposals is \(t \leq (n - 1)n + 1 = n^2 - n + 1 \).

Question 2

The priority queue is implemented as an array \(Q \) of size \(u \). Each array entry \(Q[i] \) stores a pointer to the head of a doubly-linked list, which contains all elements with priority \(i \). Using this data structure, we can implement the different priority queue operations as follows:

- **Insert(\(Q, x, p \))**: We add element \(x \) to the head of list \(Q[i] \). This clearly takes constant time, as it requires a single index access into \(Q \), followed by an insertion into a doubly-linked list.

- **Delete(\(Q, x \))**: Assuming we have a pointer to the priority queue node (that is, the doubly-linked list node) storing element \(x \), this is a simple matter of removing this node from its doubly-linked list, which takes constant time.

- **DecreaseKey(\(Q, x, p \))**: First we compare \(p \) to the current priority \(p' \) of \(x \). If \(p' \leq p \), there is nothing to do. Otherwise, we first delete \(x \) from \(Q \) and then re-insert it with priority \(p \). Since insertions and deletions take constant time, so does this operation. (Alternately, we can directly move \(x \)'s node from the list \(Q[p'] \) to the list \(Q[p] \). This is faster in practice.)

- **DeleteMin**: Deleting and returning the minimum element, once we have found it, takes constant time because it is the same as a Delete operation. Thus, the hard part is to find an element with minimum priority. To do this, we scan \(Q \), inspecting slots \(Q[1], Q[2], \ldots \), until we find the first slot \(Q[i] \) that is not empty, that is, does not point to the empty list. Clearly, \(i \) is the minimum priority in \(Q \), so deleting and returning any of the elements in list \(Q[i] \) is correct. The cost of inspecting slot \(Q[j] \), for \(1 \leq j \leq i \), is constant because it is a simple test whether \(Q[j] \) points to the empty list or not. Thus, the total cost is proportional to \(1 + i \).