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Abstract for directedplanar graphs, an important first step has been

taken with the recent development of an 1/O-efficient al-
We present the first I/O-efficient algorithms for the fol- gorithm for topologically sorting planar directed acyclic
lowing fundamental problems on directed planar graphs: graphs (along with algorithms for a few other problems) [5].
finding the strongly connected components, finding a In this paper, we develop the first I/O-efficient algo-
simple-paﬂ'%—separator, and computing a depth-first span- rithm for the fundamental problem of computing a depth-
ning (DFS) tree. Our algorithms for the first two prob- first spanning tree of a planar directed graph. Even though
lems performO(sor{N)) 1/Os, where N=V + E and the algorithm is non-optimal, it constitutes a major im-
sor{N) = ©((N/B)logy g(N/B)) is the number of I/Os re-  provement over previous (trivial) algorithms. To obtain
quired to sort N elements. The DFS-algorithm performs this algorithm, we develop 1/0-optimal algorithms for com-
O(sortN)log(N/M)) 1/Os, where M is the number of ele- puting the strongly connected components of a planar di-
ments that fit into main memory. rected graph and for finding a simpIe-p%tsteparator ofa
strongly connected planar graph. These algorithms may be
of independent interest. Our results are a big step towards
1. Introduction completely understanding the I/O-complexity of fundamen-
tal problems on planar graph.

Recently, external-memory graph algorithms have re-
ceived considerable attention, because massive grajgies ari I/0-Model and previous work. We work in the standard
naturally in a number of applications such as web modeling two-level I/O-model with one (logical) disk [2]. This model
and geographic information systems (GIS). When working defines the following parameters:
with massive graphs, the I/O-communication, and not the

internal memory computation, is often the bottleneck. Effi- N = number of vertices and edges in the graph

cient external-memory (or I/O-efficient) algorithms cangh (N=V+E);

lead to considerable runtime improvements. M = number of vertices/edges that fit into memory;
Even though a large number of I/O-efficient graph algo- B = number of vertices/edges that fit into a disk block.

rithms have been developed, a number of fundamental prob-

lems on general graphs remain open. For planar graphs, oWe assume thatB2 < M < N.!' An Input/Outputopera-

the other hand, significant progress has been made recentlyion (or I/O for short) transfers one block of consecutive

A large number of fundamental problemswmdirectedola- elements between disk and internal memory. The mea-

nar graphs have been solved I/O-efficiently [3, 4, 7, 10, 14]; sure of performance of an algorithm is the number of 1/0s
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O((N/B)logy s(N/B)) [2]. For all realistic values o, B, tree of a planar directed graph. The algorithm performs
andM, scarfN) < sortN) < N; so the difference in run-  O(sortN)log(N/M)) I/Os, which is a major improvement
ning time between an algorithm performiNg/Os and one  over theQ(N) 1/O-bound of previous (trivial) algorithms.
performing scafN) or sor{N) 1/Os is often substantial. To obtain this algorithm, we develap(sortN))-1/O algo-
Despite considerable efforts, I/O-efficient algorithms fo rithms for computing the strongly connected components
many fundamental problems on general graphs have yebf a planar directed graph and for finding a simple—@f{h
to be discovered—see the surveys in [16, 17]. For ex- separator of a strongly connected planar graph. These al-
ample, whileQ(min{V,sortV)}) (which is Q(sortV)) in gorithms are optimal and may be of independent interest.
practice) is a lower bound for the I/O-complexity of most Our algorithms utilize a host of 1/0-efficient algorithmsian
graph problems [7], the best known algorithms for depth- techniques previously developed for planar graphs.

first search perfornrQ(V) 1/Os [6, 7, 12]. As a result, Our strong connectivity algorithm for planar directed
many algorithms have been developed for special classegraphs, presented in Section 2, computes a small vertex sep-
of graphs. For trees, for exampl@(sort{N))-1/O algo- arator of the given grap® and derives a compressed ver-

rithms are known for BFS- and DFS-numbering, Euler tour sion G® of G from the resulting separator decomposition.
computation, expression tree evaluation, topologicat-sor Using a modified and 1/0-efficient version of the internal-
ing, and several other problems [6, 7]. Most fundamental memory strong connectivity algorithm of [8, Chapter 25],
problems on planaidirectedgraphs also have been solved it identifies the strongly connected componentsS6fand
in O(sor{N)) 1/0Os [3, 4, 7, 10, 14]. Most of these algo- then uses this information to identify the strongly conedct
rithms exploit the existence of small separators for planar components o6.
graphs. More precisely, they use that for any planar graph  Our algorithm for computing a simple—pagqseparator
G and any integeh > 0, there exists a set mj(N/\/ﬁ) ver- of a strongly connected planar graph is presented in Sec-
tices whose removal partitiolsinto O(N/h) subgraphs of  tion 3. It uses ideas from Kao’s PRAM-algorithm for the
size at mosh. Such a set of vertices can be computed in same problem [11]. However, the central computation of
O(sort(N)) I/0Os [14]2 For planardirected graphs, Arge  the algorithm is carried out in a novel and non-trivial man-
et al. [5] recently took an important first step with the de- ner that exploits the sequential nature of the 1/0O-model.
velopment of an I/O-efficient algorithm for topologically Finally, in Section 4, we present our DFS-algorithm
sorting planar directed acyclic graphs. To obtain this algo for directed planar graphs. The algorithm performs
rithm, they also develop I/O-efficient shortest-path, dtka O(sorN)log(N/M)) I/Os. It is based on a recursive parti-
first search, and ear decomposition algorithms for planartion of the graph into smaller subgraphs. At the bottom of
directed graphs, which in turn use the 1/O-efficient planar this recursion are the strongly connected components of the
separator algorithm of [14]. In spite of these developments graph. We perform DFS in these components using ideas
the internal-memory DFS-algorithm, which perfor@§gV) from the PRAM-algorithm of [11].
I/Os, remained the best known algorithm for depth-first
search in planar directed graphs. _ 2. Strong Connectivity

Many external-memory graph algorithms have been
obtained using ideas from the corresponding PRAM-
algorithms. In some cases, it is even possible to “simulate”
a PRAM-algorithm in a standard way and obtain an 1/O-
efficient algorithm (the so-calle®RAM-simulation[7]).
Relevant to this paper, Kao [11] shows how an efficient al-
gorithm for planar strong connectivity can be used in ef-
ficient PRAM-algorithms for computing a simple—pa%h
separator for a planar directed graptgthat is, a simple di-
rected pattsso that every strongly connected componentin
G —Shas size at mo%N) as well as for computing a DFS-
tree of G. However, direct simulation of these algorithms,
even given an |/O-efficient strong connectivity algorithm,
does not lead to I/0O-efficient algorithms.

Our algorithm for computing the strongly connected
components of a planar directed graphb- (V,E) relies on
our ability to compute small separators of planar graphs I/O
efficiently. More precisely, we use th@(sortN))-1/0 algo-
rithm by Maheshwari and Zeh [14] to compute a S€t V
of O(N/B) vertices, called aeparator whose removal par-
titions G into O(N/B?) subgraph$s, ..., Gy with the fol-
lowing properties: (1) Every grapB; has size at mo®2.
(2) For every grapl®i, the se®G; of separator vertices ad-
jacent to vertices ir5; has size at mo$. We call this set
theboundaryof G;. (3) The partition ha:S)(N/BZ) bound-
ary setsdefined as the maximal subsets of the sepafzor
that the vertices in each subset are adjacent to the same set
_ _ of subgraph<5; [9]. To guarantee that a partition with the
Our results. In this paper, we develop the first /0- |4qt property exists, we have to assume tBdias bounded
efficient algorithm for computing a depth-first spanning degree; more precisely, we assume tags degree at most
2The algorithm as described in [14] requires tvat> B2log? B, but a three. Thisis notarestriction because itis easy to redece t
simple improvement reduces this requiremerivite- 2B2. computation of the strongly connected components of any
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Figure 1. (a) The partition of the strongly connected compon
L (live), and U (untouched). (b) The three stacks representi
in L and their unexplored out-edges.

ents of G’ into three sets F (finished),
ng the strongly connected components

planar graph of siz&l to the computation of the strongly strongly connected components of the gr&gh= (S E'),
connected components of another planar graph of degree atvhereE’ is the set of edges that have been explored so far.

most three and siz&(N).

From the above partition d, we construct a grapB°®
that encodes the reachability between the verticé&ssac-
cinctly. GraphG® has vertex se$, the edge set o&° is de-

The current set of strongly connected components is parti-
tioned into three sefs, L, andU (see Figure 1a). The com-
ponents inF arefinished that is, they are in fact strongly
connected components & The components ih arelive,

fined so that two separator vertices are in the same stronglymeaning that they are potentially part of larger strongly-co

connected component & if and only if this is true inG°®.
To achieve this, we add an ed@ew) to graphG¢ if and
only if this edge exists ifG or v andw are on the bound-
ary 0G; of the same subgrap@; and there is a directed
path fromv to w in the subgraphr; of G induced by the
vertices inV(G;) UdG;. GraphG°® has O(N/B) vertices
and O(N/B?-B?) = O(N) edges. Sincé/ > 2B? > |R|,
for all 1 <i <k, the construction ofc°® can be carried
out by loading graph®y,...,R¢ into memory, one at a
time, and adding the appropriate edgessto This takes
O(N/B) /Os.

nected components &. We maintain the invariant that the
components’, ..., Gy in L form a “path of strongly con-
nected components”; that is, fordi < q, graphG’ con-
tains an edgév,w) with ve G_1 andw € G. Finally, the
setU contains all isolated vertices & . These vertices are
untouchedn the sense that no edges incident to them have
been explored up to this point.

Given the current setS, L, andU, we choose an out-
edge(v,w) of the last componenty in L (that is,v € ()
as the next edge to be explored. Depending on the “loca-
tion” of vertexw, we update the current set of components

Below we argue that the strongly connected componentsof G': If w € U, we add a new strongly connected compo-

of G® can be computed i®(sor{N)) 1/Os. In the full pa-
per, we show that the strongly connected componen@ of

nentCyy1 = ({w},0) to L and removav fromU. If we
orw e (', for some componert’ € F, we take no further

can be derived from the strongly connected components ofaction, since the addition of edgew) to G’ does not create

graphsG°® andRy,...,R«. We also show that this can be
done by loading each grapg® into memory for a second

time and finishing the computation in main memory. Hence,

this takes anothe®(N/B) 1/Os. By putting the three steps
together, we obtain the following result.

Theorem 1 The strongly connected components of a pla-
nar directed graph G with N vertices can be computed in
O(sortN)) 1/Os.

or merge any strongly connected componenta. df G, for

i < g, we merge components, ..., (yinto a larger strongly
connected componeqf. Finally, if component, does not
have any unexplored out-edges, we move Et@s it can-

not be merged with any other strongly connected compo-
nents (because all unexplored edges with endpointg;in
are in-edges ofy). The correctness of the algorithm is eas-
ily established [8, Chapter 25].

In order to carry out the above algorithm 1/O-efficiently,

In the remainder of this section, we argue that a modified we preproces&° as follows: First we arrange the vertex set

version of the internal-memory algorithm of [8, Chapter 25] Sof G so that the vertices in each boundary set are stored
can be used to compute the strongly connected componentsonsecutively. We also sort the adjacency list of every ver-
of the compressed gra@f in O(sortN)) I/Os. We explore  tex so that edges whose targets are in the same boundary set
the edges of3° in a depth-first manner and maintain the are stored consecutively. This tak@gsortN)) 1/Os. Dur-



ing the algorithm, we label every vertex as belongingto

L, orU; initially, every vertex belongs tod. When moving

a vertexv fromU to L, we time-stamp it. When moving
fromL to F as part of a finished component, we assign a la-
bel tov that identifies this component. We represent the live
componentg?, ..., (q using three stack¥’, 4, andsS (see
Figure 1b). Stack’ stores all live vertices in their order of
discovery, thatis, by increasing time stamps. Stdcitores

their adjacency lists in the same order. Due to the prepro-

cessing, the out-edges of a vertex 1V that are stored oA

the topmost stack segment. (3) Edgev) was the last edge
in the current stack segment. In either of these cases, we re-
establish the invariant by loading the topmost segment of
stack4 and the corresponding boundary seSafito mem-
ory, updating the labels of the edges in the topmost stack
segment, and writing this segment back2o This takes
O(1) I/0s, because every segment and every boundary set
has size at mo® and the vertices of every boundary set are
stored consecutively on disk.

To analyze the I/O-complexity of our algorithm, we first

are ordered by the boundary sets containing their target ver count the number of I/0Os we spend on maintaining the stack

tices. This defines a natural partition@finto sequences of

segment invariant. As we have just argued, we spetlj

edges whose targets are in the same boundary set. We callOs to re-establish the invariant whenever a vertex besome

these sequences, . . ., 4s stack segmentnd maintain the
invariant that all edgeév,w) in the last stack segmer#s
store the correct labels of their target vertives S; that is,

we do not need to accessto determine whether it is iR,

L, orU. We call this thestack segment invarianFinally,
stacks stores one entry per component. The entry for com-
ponentG “points” to the first vertex inG on stack?’, by
storing its time stamp.

Using the above representation of graphand its live
components, we perform the computation of the algorithm
as follows: Let(v,w) be the topmost edge on stagk If
v is not in the last componenfy of L—that is, its time
stampty is smaller than the time stamip of the topmost
entry on stackS—component(y is finished and has to be
moved toF. To do this, we perform the following com-
putation until the time stamfy, of the topmost vertex on
stack?’ is less thary: We removeu from stack?’, change
its label toty, and mark it as finished. Whep < tg, we
are done labeling the vertices g§; so we removey from
stackS. We repeat this procedure, moving finished com-
ponents td-, until the topmost entry on stackhas a time
stamp less than or equal tp. Now thatv is in the last
componenty of L, we proceed as follows: If vertew is
finished, we discard edge,w). If wis in U, we mark it
as live, time-stamp it, and push it onfld. We also push
the edges in the adjacency listwfonto stackq and a new
entry withw's time stamp onto stack. If wis live and has
time stampty, it is contained in some live componegt
We achieve the required merging of componefts. ., (q
by removing all entries from the top of stagkwhose time
stamps are greater thgn

In addition to maintaining the connected components
of G’ = (V,E’) after adding edgév,w) to E’, we have to

live or finished and when the last entry of a stack segment
is removed from4. Both events occur onl@(N/B) times.

For the former, this is obvious, because each ofdfi/B)
vertices inS becomes live and is finished only once. To
see that the latter happens orilyN /B) times, observe that
every vertex inS has degree at mosB83n G° (becauses

has degree at most three) and, hence, every boundary set
of the partition can give rise to onl@(B) stack segments.
Since there ar®(N/B?) boundary sets, this implies that
there are onlyO(N/B) stack segments. This shows that
we spendO(N/B) I/Os in total on maintaining the stack
segment invariant. Besides that, we speddN/B) 1/Os

on stack operations, because each of @ibl/B) vertices
and O(N) edges is pushed onto and popped from a stack
exactly once, and one stack operation tak¥4/B) 1/Os
amortized. We touch every vertex Bitwice, once when

it becomes live and again when it becomes finished. This
takesO(1) 1/Os per vertexO(N/B) 1/Os in total. Finally,

we spendO(N/B+ scarfN)) = O(N/B) 1/Os on copying
the adjacency lists of all vertices to stagk Including the
preprocessing, our algorithm hence tak¥sort{N)) I/Os

to compute the strongly connected components%of

3. Finding a Directed Path Separator

Kao [11] shows that every strongly connected planar
graph has a simple-pat%i-separator, that is, a simple di-
rected pathS starting at a specified vertexso that no
strongly connected component@f— Shas size more than
%N. Our algorithm for computing such a separator uses
ideas of Kao’s parallel algorithm for this problem [11]; but
in order to obtain arO(sor{N))-1/O algorithm, we exploit
the sequential nature of the 1/0O-model and present a novel

guarantee that the stack segment invariant remains validand non-trivial way to carry out the central computation of

This invariant may be violated in three different ways by
the above procedure for processing the current édge:

Kao's algorithm.
The high-level description of the algorithm is as follows:

(1) Target vertices of edges in the topmost segment of stackFirst we use the shortest path algorithm of [5] to compute,
4 may become finished as the result of moving componentsin O(sort{N)) 1/Os, a directed spanning tr@eof G rooted

fromL to F. (2) When moving a vertex fromU to L, its
adjacency listis pushed ont®; so a new segment becomes

ats. Every edgee of G that is not an edge of defines a
fundamental cycleonsisting of edge and the (undirected)
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Figure 2. The three steps of finding a simple-path separator:
cycle in a directed spanning tree of G. (None of the strongly ¢
than %N.) (b) Find minimal subpaths of the two paths computed in Ste

separator. (c) Join these two paths using a simple path from

2.

still forma 3
to the source of the second path.

path inT connecting the two endpoints ef If G is trian-

(a) Find a %—separating fundamental
onnected components has size more
p (a) so that these two paths

the sink of the first path

out in O(sor{N)) I/Os, we obtain the following theorem.

gulated, at least one of these cycles has the property that at

most%N vertices are either inside or outside the cycle [13].
We triangulateG, using an algorithm of [10], and use an
I/O-efficient version of Lipton and Tarjan’s algorithm [13]
presented in [10], to find such a cycle in the resulting graph
(see Figure 2a); this take3(sortN)) I/Os. The computed
cycle consists of edgeand two path®] andP, in T from

a vertexs' to the two endpoints oé. Let Py be the path

in T fromsto . Note that, even though the fundamental
cycle induced by edgemay no exist inG (because edge
may not be inG), pathsPy, P;, andP, exist in G (because

T C G). We use the strong connectivity algorithm from Sec-
tion 2 to test, inO(sortN)) 1/0s, whethePy UP] or RBoUP;,

is a%—separator 06, that is, whether all strongly connected
components 06 — (P UP]) or G— (P UP,) have weight

at most%N. If one of these paths is%separator, we report
it as the desired separat8rotherwise, leP; = Py UP;.

Let PL = (s=Xo,...,Xg) and P> = (yo,...,¥r). Since
Pyo P is not a%-separator, there exists a vertexe P} so
that(Xo, ..., Xa) UP is a%-separator, buixg, ..., Xa—1) UP,
is not. Similarly, there exists a vertey € P, so that
(X0,---+Xa) U (Yb, .-, Yr) is @ 3-separator, bufxo, ..., Xa) U
(Yot1,---,¥r) is not (see Figure 2b). Below we argue
that these two vertices can be found @{sort{N)) I/Os.
Kao [11] shows that there exists a simple p&hfrom
Xa t0 Yp in G— ((Xo,---;%Xa—1) U (Ybt1,---,Yr)). We com-
pute such a patP’ and report the pat& = (xo,...,Xa) U
P'U(Yp,-.-,Yr) as the desired simple-pa@aseparator (see
Figure 2c); the computation o’ can be carried out
in O(sortN)) 1/Os by using the shortest-path algorithm
of [5] to compute a directed spanning trdé of G —
((X0,---sXa—1) U (Yo+1,---,Yr)) rooted atx, and then apply-
ing standard tree computations to extract the path fxgm
toyy in T'. Since all parts of the algorithm can be carried

Theorem 2 For any strongly connected planar graph G
with N vertices and any vertexs G, a simple path%-
separator of G rooted at s can be found@jsortN)) I/Os.

We have to show how to compute verticgsandyy,. We
find both vertices in a similar manner; so we describe only
the computation of vertexy: We start by computing the
strongly connected components®f (P UP,) and con-
tracting each such componefitinto a single vertex of
weightw(v) = |C|. All vertices inP; UP, have weight one.
Let G’ be the resulting graph. The weight of a subgraph
of G is the total weight of its vertices. Vertey is now
the vertex inP; so that no strongly connected component
of G’ — ((Xo,..-,%a)) UP2) hasweight exceeding%N, but
graphG’' — ((xo, - - -, Xa—1) UP,) contains such a component.
LetG' =G —P..

The goal of our algorithm is to walk along pa#p, from
Xq t0 Xo, and find the first vertex, so that one strongly con-
nected component d&” — (xo,...,Xa—1) has weight more
than%N. Sincex, is the first such vertex, this component
does in fact contaix,. Hence, it suffices to compute, for
every visited vertex;, the weight of the strongly connected
component; of G’ — (X, ...,%_1) that contains;.

To perform this computation efficiently, we first charac-
terize the set of vertices ig;. First observe that every de-
scendant of; in P; that can reack; in G” — (xo, ..., %_1) iS
in G. Let P-Low(x;) be the lowest such descendankp?
Then component; contains vertices;, ..., P-Low(x) but
no ancestor ok; or descendant of P<aw(x;) in P;. To

SWe define the lowest or highest vertex with a certain propertge
the vertex with this property that is furthest away fremr closest tcs,
respectively (see Figure 3); but we compare vertices angaterminima
and maxima of vertices w.r.t. their indices.
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Figure 3. Figures (a) and (b) illustrate the definitions of im
illustrates the concept of left- and right-attachment and |

attached; vertex w is right-attached. Vertex x
from v; and vertex x  is both.

identify the set of vertices iG6” — P, that are in¢G, we de-
fine a vertex @c(v), for everyv € G” — P;: Cyc(v) is the
lowest vertexx, € Py so that there exists a directed cycle
in G’ — (xo,...,Xy—1) that contains botlv andx,. In the
full paper, we show that € G if and only if Cvc(v) € G.
Thus, we can characterize componehusing the follow-
ing lemma.

Lemma 1 A vertex ve G” is in G if and only if (i) ve
Pr and ¥ < v < P-Low(x) or (i) ve G"—P; and x <
Cyc(v) < P-Low(x).

By Lemma 1, we can find vertex, using the follow-
ing simple algorithm, once verticesy€(v), ve G’ — Py,
and P-low(x), x € P1, are given: We modify the weight
of every vertexs € Py so that it represents the total weight
of x; and all verticesy € G’ — Py so that ’c(v) = x;; that
is, we computen(X) = 14 ¥y _cyc) (V). This can be
done by sorting and scanning the vertex seG8f Next
we scan verticesy, ..., X and maintain an initially empty

stack$ that stores the weights of the strongly connected

components of the current gra@f — (o, ..., X—1) thatin-
clude vertices irP;. For every vertex;, we perform the
following computation: While the vertex; on the top of
stacks is an ancestor of P-aw(x;), we removex; from §
and addw(x;) to w(x;). Whenx; is a proper descendant of
P-Low(x), or S is empty, we check whethes(x;) > %N.
If so, we reporix, = x;; otherwise, we pusk; onto S and
proceed tax_1. This requiresO(q) = O(N) stack opera-
tions and hence take3(N/B) 1/Os.

We have to show how to compute verticesdiv), v €
G” — Py, and P-lLow(x), X € Py, in O(sor{N)) 1/Os. First,

RR-HIGH(Vv)

RD-Low(v)

i is left-reachable from v; vertex x

portant vertices on path P 1. Figure (c)
eft- and right-reachability: Vertex v is left-
j is right-reachable

that there exists a path from Aew(v) to vin G” that has
no internal vertex irP;. We call such a path direct path
from A-Low(v) to x; and say that A-bw(v) can reachv
directly. Since every ancestog of A-Low(v) can reach
vin G” — (x,...,%-1), Crc(v) can be characterized as
the lowest ancestog of A-Low(v) so that there exists a
path fromv to x in G” — (xg,...,%_1); this path may or
may not be direct. Let D-bw(v) be the lowest ancestor of
A-Low(v) that can be reached directly from If Cyc(v)

is a descendant of D-&w(v), there has to be a pakhfrom

v to Cyc(v) whose internal vertices that are f are de-
scendants of A-bw(v). Let D-HIGH(V) be the highest de-
scendant of A-low(v) that can be reached directly from
and let I-Low(v) be the lowest ancestor of Adw(v)
that can be reached from D+&H(v) through a path all of
whose internal vertices iR, are descendants of ldw(v);
that is, I-Low(v) is the lowest ancestog of A-Low(v)
so that P-low(x;) is a descendant of D-ldH(v). Then
Cyc(v) = max D-Low(v),I-L ow(v)).

After extending the above definition of Adw(v) to
verticesv € Py, the following lemma, which we prove
in the full paper, provides the characterization of vertex
P-Low(x;), for everyx € P1.

Lemma 2 For every vertex xe Py, let x; be the vertex in
(Xi+1,---,A-Low(x)) so thatA-Low(x;) is maximized.
ThenP-Low(x) = maxA-Low(x;),P-Low(x;)).

In the rest of this section, we argue that ver-
tices P-low(xi), x € Pi, and A-Low(v), D-Low(v),

let us characterize these vertices (see Figure 3a). Simee ve I-L ow(v), and D-HGH(v), for allve G” — Py, can be com-

tex Cvc(v) = x can reaclvin G” — (xg, . .., X%i—1), CYc(v)
has to be an ancestor of the lowest vertex Aw(v) € P; so

puted 1/O-efficiently. Vertices €c(v), forallve G’ — Py,
can then be found in a single scan of the vertex s&'of



Finding A-Low(v). Note that graphG” — P, is a pla-
nar DAG. We extend this DAG to a DAG; by adding
the vertices inP; and their out-edges t6” — P;. For ev-
ery vertexv € G’ — Py, A-Low(v) is the maximal vertex
x; that can reachr in G;. This vertex can be found, for all
v e G’ — Py, by processing; from the sources towards the
sinks. The sources forward their own identities to their out
neighbors; every non-source vertexchooses A-low(v)

as the maximal vertex received from its in-neighbors and

forwards A-Low(v) to its out-neighbors. Using the time-

LetVi be the set of left-attached vertices. If LDolw(v)
exists, for a vertew €V, it can be reached by walking
alongP, from A-Low(v) to v and then choosing the “most
clockwise” path back t&;. More precisely, at every vertex
y on the path fronv back toPy, let x be the predecessor pf
on the path; then the next vertean the path is the vertex so
that edge(y, z) is the first edge aftefx,y) in counterclock-
wise order aroung so thatz can reach a vertex iR;.

Based on this observation, we can find LW(v), for
all ve V., as follows: We construct a DAG; that is ob-

forward processing technique of [7], this computation can tained by changing the directions of all edge§ihand then

be carried out inO(sor{N)) 1/Os. (Details appear in the
full paper.) The application of this technique requi@sto
be topologically sorted; sind8; is planar, this can be done
in O(sortN)) I/Os [5].

For everyx; € P, we compute vertex A-bw(x;) as the
maximum of vertices A-bw(v), wherev iterates over the
in-neighbors of; in G’ — P1. This computation can be car-
ried out, for all vertices irP1, by sorting and scanning the
vertex and edge sets 6f and hence taked(sortN)) 1/Os.

Finding P-Low(x;). To compute P-bw(x;), for every

X € P1, we find the vertex;, in (Xiy1,...,A-Low(x)) so
that A-Low(x;j;) is maximized. This reduces to a range-
maxima query over the point setj, A-L ow(x;)), xj € Py,
with query intervally, = (X, A-Low(x)]; that is, we find
the point with largesy-coordinate whosg-coordinate is in
the intervally,. As shown in [7], these queries can be an-
swered inO(sort(N)) 1/Os, for allv € P;. Now we define a
rooted foresF by making every vertex; the child of ver-
texxj;. We proces$ from the root towards the leaves, us-

removing all edges whose targets ard?jror that leaveP;

to the right. For every sourcec P, of DAG Gg, we define
LD-L ow(v) = v. For all sources i&” — Py, LD-Low(v) is

not defined. Now we process DAG; from the sources to
the sinks and perform the following computation, for every
vertex: Every source forwards its own value LD-bw(v)

to all its out-neighbors. For every non-source vengex
let u be the out-neighbor of in G, that precedes in R,.
Then LD-Low(v) is chosen as the label received along the
first edge(x,v) after edge(v,u) in counterclockwise order
aroundv so that there is a label being sent along edge).
(Some edges do not carry any label.) Similarly, for every
out-edgeg(v,w) of v, the label sent tav is chosen as the la-
bel received along the first eddr v) after edge(v,w) in
counterclockwise order arounvdso that there is a label be-
ing sent along edgéx,v). To carry out this computation
in O(sorN)) 1/Os, we topologically sorG; and apply the
time-forward processing technique of [7]. (Details appear
in the full paper.)

To find RD-Low(v), for all v e V., we make the fol-

ing standard tree computations, and compute, for every ver{owing observation: LeVg be the set of vertices that are

tex x;, P-Low(x) = maxA-Low(x),P-Low(x;)). This
takes anothe©(sortN)) 1/Os.

Finding D-L ow(v) and D-HIGH (v). The computations
of D-Low(v) and D-HGH(v) are similar; so we describe
only the computation of D-bw(v). For every vertex
v e G’ — Py so that A-Low(v) exists, we fix a direct path
P, from A-Low(v) to v. We callv left- or right-attached
(to Py) if path R, leavesP; to the left or right, respectively
(see Figure 3c). We call a vertexe Py that can be reached
directly fromv left- or right-reachablefrom v if there exists
a direct path fronvto x; that enter$; from the left or right,
respectively.

We compute, for every vertex € G” — P, the lowest
ancestors LD-bw(v) and RD-Low(v) of A-L ow(v) that
are left or right-reachable from, respectively (see Fig-
ure 3a). Clearly, D-bw(v) is the lower of LD-Low(v)
and RD-Low(v). We deal with left- and right-attached ver-

right-reachable from vertices i, and let RR-low(v)
and RR-HGH(v) be the lowest and highest vertices that are
right-reachable from a vertexc V| (see Figure 3b). Then
every vertex irvg that is a descendant of RR+&H (v) and

an ancestor of RR-@w(v) is right-reachable from. In the

full paper, we formally prove this fact; intuitively, thisif
lows from the planarity of5”. The following lemma is an
immediate consequence of this observation.

Lemma 3 RD-Low(v) = max{w € Vr : RR-HIGH(v) <
w < min(RR-Low(v),A-Low(v))}.

Using this lemma, finding vertices RDew(v) trans-
lates into a set of range-maxima queries with query interval
lv = [RR-HIGH(v),min(RR-Low(v), A-L ow(v))], for all
v e G” — Py, over the point sef(x,%) : X, € VR}. As ar-
gued before, these queries can be answered(sort{N))

tices separately. Since the computations are similar, we del/Os [7]. The computation of vertices RR+H(v) and

scribe only how to compute LD-bw(v) and RD-Low(v)
for every left-attached vertex

RR-Low(v), for all v e V, is similar to the computation
of vertices A-Low(v), forallve G’ — P;.



Finding I-L ow(v). To compute I-low(v), for all v €
G” — Py, we represent every vertexe G’ — Py as an inter-
val Iy = [A-Low(v),D-HIGH(v)] and every vertex; € P;
as an intervaly, = [x;, P-Low(x;)]. From the definition of
I-Low(v), we obtain that I-low(v) = max{x € P : Iy, C

Jx }. We sort the intervals by their left endpoints, in decreas-

of G.) We assume that the sourseof the DFS is con-
tained in componenty, because otherwise no vertexdh

is reachable frors. Now we process componers,. .., (g

in topologically sorted order, compute a DFS-treggfand
augment it with appropriate DFS-trees of subsequent com-
ponents.

ing order, and scan the list of intervals to simulate a sweep  To obtain an I/O-efficient DFS-algorithm using this idea,
from +co to —o0. When the sweep passes the left endpoint we cannot literally process componeds. .., G, one at a

of an intervally = [x;,X;], we insertv into a priority queue
Q and give it priority j. When the sweep passes the left
endpoint of an intervaly, = [x;,X;j], we use a sequence of
DELETEMIN operations to remove all vertices of priority at
mostj from Q and report I-low(v) = x;, for each such ver-
tex. For every vertex that remains irQ at the end of the
sweep, I-low(v) does not exist. This computation requires
sorting and scanning the set of intervals and invol9éN)
priority queue operations. Using the priority queue of [1],
this takesO(sortN)) I/Os.

4. Depth-First Search

time in their order of appearance; rather, we use a recur-
sive algorithm that partitions the components into two sets
C1,...,Cp andCpy1, ..., (g SO that the components in both
sets contain approximately the same number of vertices. We
recursively compute a DFS-tree for the subgrapiGah-
duced by the vertices in components, ...,(p and then
augment it with DFS-trees of appropriate subgraphs of the
graph induced by the vertices in componefi{sy, . . ., Cg.

The details of our algorithm are as follows: |B| <
M, we loadG into internal memory and compute a DFS-
pair (T,v) of G using the internal-memory DFS-algorithm.
If |G| > M, but G is strongly connected, we show in
Section 4.2 that a DFS-pair d& can be computed in

In this section, we present an algorithm that constructs O(sor{N)log(N/M)) 1/Os. If neither of these two cases

a DFS-tree of a planar graph in O(sortN)log(N/M))

applies, we spend(sortN)) 1/Os to compute the strongly

I/0s. More precisely, the algorithm constructs a spanning connected components,..., (g of G, using the strong
treeT of G that can be obtained by performing a depth-first connectivity algorithm from Section 2. We construct a pla-

traversal ofG and adding an edge, w) to T whenever the
algorithm follows edgév,w). For an undirected graph, a
DFS-treeT of G is any spanning tree so that gra@tdoes
not contain any cross edges w.T.t.that is, there is no edge
(v,w) € G so that neithev norw is an ancestor of the other
in T. Any depth-first traversal of is a depth-first traversal

nar DAG G’ by contracting every componegt into a sin-
gle vertexv; and spendO(sortN)) I/Os to topologically
sort G/, using the algorithm of [5]. Now we arrange the
strongly connected components @fin the same order as
their corresponding vertices in the topological ordeGof
Assume w.l.0.g. that, ..., (g is the order of the strongly

of G. For directed graphs, a DFS-tree may contain crossconnected components Gfat the end of this computation.
edges, and not every depth-first traversal of a DFS-tree is a/Ve scan components, ..., (q and find the index so that

depth-first traversal db. In particular, ifv is the postorder
numbering ofT defined by the traversal, then the traversal
is a depth-first traversal d if and only if v(v) > v(w),
for every cross edgév,w). Hence, we require that a di-
rected DFS-algorithm constructsalong with a postorder
numberingv that has the above property. We céll,v) a
DFS-pairof G. We call a pair(T’,v'), whereT’ is a sub-
tree ofG, apartial DFS-pairof G if it is a DFS-pair for the
subgraplG’ of G induced by the vertices if'. Theanchor
o(v) of avertexw € G—T'is the vertexu € T” with minimal
numben’(u) so that there is a path fromto vin G that has
no internal vertex inr’.

4.1. Arbitrary Directed Planar Graphs

The general idea of our algorithm for computing a DFS-
pair of a planar directed graph is to number and sort the
strongly connected componerds,.. .,y of G so that no
vertex inG can reach a vertex igj, for j <i. (In a sense,

the difference between the sizes of graphs - - - U Cp and
Cpr1U---U (g is minimized. We denote the vertex set of
componentg’, ..., Cp by Vi and the vertex set of compo-
nentsCp+1,...,Cq by Vo. Let Gy andG; be the sgbgraphs
of G induced by the vertices M; andV,, and letE be the
set of edges connecting vertices@ with vertices inGo.
We also split grapl&’ into the two subgraph€; and G,
induced by verticesy,...,vp andvp1,...,Vq, respectively.
In total, the partition ofG into graphsG; andG; and edge
setE, as well as the partition o&' into subgraphss; and
G,, can be obtained i®(sortN)) I/Os.

Now we use graph&; andG] to recursively compute
a DFS-pair(T1,v1) of G;. In order to augmen(Ty,v1) to
a DFS-pair ofG, we patrtition graplG; into so-calleddan-
gling subgraphs G defined below, for the target vertices
of the edges ifE. For every non-empty grapB,, we recur-
sively compute a DFS-paify,vy) and joinT, to T; using
edge(a(v),v), wherea(v) is the anchor of. In the full pa-
per, we show how to derive the final postorder numbeving

we “topologically sort” the strongly connected components of the resulting tre€ .



To make sure that tréeis a DFS-tree 06, we define the
dangling subgraphs as follows: Let the edggs..,e& inE

parallel algorithm for this problem by Kao [11]. Kao’s al-
gorithm does in fact solve DFS in “bubble graphs”, defined

be sorted by increasing postorder numbers of their sourcesas follows: LetG be an embedded directed planar graph.

A DFS-traversal ofs that is consistent with the partial DFS-
pair (Ty,v1) computed foiG; explores the edges tin this
order. Hence, we add a vertexe Gy to a dangling sub-
graphGy if vis the target of the first edde, v) in this order
so thatv can reactw in G,. Intuitively, the DFS would ex-
plore all vertices reachable from the target of the first edge
(that is, the vertices in the first dangling subgraph). Then
it would backtrack, explore the vertices reachable from the
target of the next edge, and so on.

Since the computation of DFS-paif&;,v1) and(Ty, w),
for the dangling subgrapl@,, is carried out recursively, all

We call a strongly connected componghbf G a source
or sink componerif all edges with exactly one endpoint in
C are out-edges or in-edges 6f respectively. Grapls is
a bubble graphf it has exactly one source component and
there is a facéd of G so that every source or sink component
of G has at least one vertex on the boundary of

In our algorithm, we treat strongly connected graphs
and bubble graphs differently, exploiting that we do not
need the full machinery for bubble graphs to perform DFS
in strongly connected graphs and then using the DFS-
algorithm for strongly connected graphs to deal with the

that remains to be described is the computation of the dan-strongly connected components of bubble graphs less con-
gling subgraphs: First we sort and scan the vertex set ofservatively than Kao does. While this idea does not seem to

componentgy.1,..., g and the edge sé to find, for ev-
ery component; € Gy, the first edge, ;) € E whose target
isin G, if any. Now we spend(sortN)) 1/Os to topolog-
ically sort DAG G, and process its vertices in topologically
sorted order to compute, for every vertgx G, the vertex
V(i) that can reack in G, and so thak (p(i)) is minimized.
We sort the strongly connected component&pby the la-
belsp(i) of their corresponding vertices € G, and define
the dangling subgrap@,, for the target/ of an edges, ),
to be the subgraph @, induced by the vertices in all com-
ponentsCj with p(j) =i. This takes anothe®(sortN))
I/Os.

The correctness of this construction follows from the fol-
lowing two facts: (1) A vertex; € G, can reach a vertex
vj € G, if and only if all verticesv € ¢ can reach all ver-
ticesw € Cj. (2) All vertices of a component; are in the
same dangling subgraph.

From the above discussion, we obtain that one recur-
sive step of our algorithm take8(sortN)) 1/Os, so that
the 1/O-complexity of our algorithm is given by the recur-
rencel(N) = O(sortN)) + I(|G1|) + 3,20 I(|Gv|). Now

recall that the recursion stops as soon as the current graplge

fits into memory or is strongly connected. In the former
case, the computation can be finished@N’/B) 1/Os,
whereN’ is the size of the current graph; below we show

that, in the latter case, the computation can be finished in

O(sortN’)log(N’/M)) I/Os. If we recurse, then grapks
and G, are of approximately the same size, unless one of

is sufficient to show the following theorem.

Theorem 3 Depth-first search in a planar graph G with N
vertices take®)(sort{N)log(N/M)) 1/Os.

4.2. Strongly Connected and Bubble Graphs

To compute a DFS-treE of a strongly connected planar
graphG rooted at a given vertex we follow ideas from the

lead to an improvement of the running time of the PRAM-
algorithm, it saves a log-factor in the I/O-complexity ofrou
algorithm.

Strongly connected graphs. To perform DFS in a
strongly connected graph, we apply the algorithm from Sec-
tion 3 to compute a simple-pa@xseparatos rooted at the
given source vertes. We consider patls to be a par-
tial DFS-tree ofG and compute the only possible postorder
numberingvs of S. Then(S,vg) is a partial DFS-pair o6.
ComputingS andvs takesO(sort{N)) 1/0s. Now we com-
pute dangling subgrapl@,, for all verticesv € G — Sthat

are out-neighbors of vertices i These subgraphs are de-
fined w.r.t. (S vs) in the same way as the dangling sub-
graphs of(T1,v1) in Section 4.1. For each grafgh,, we
compute a DFS-paifTy,vy) rooted atv and attachl, to S
using edg€ao(v),v). Similar to the algorithm in Section 4.1,
this produces a DFS-trék of G; a postorder numbering

so that(T,v) is a DFS-pair is easily derived from number-
ingsvs andvy, for all graphsG,,.

The two crucial observations are: (1) SinBds a %
parator, no grapB, contains a strongly connected com-
ponent of size more thaéN. (2) GraphsGy are bubble
graphs [11]. Hence, we can use the DFS-algorithm for bub-
ble graphs, outlined below, to compute DFS-pdits vy),

for all graphsGy. The I/O-complexityls(N) of our DFS-
algorithm for strongly connected planar graphs is there-
fore given by the following recurrence, whefg(N, k) de-

Shotes the I/O-complexity of DFS in a bubble graph whose

strongly connected components have size at rkiost
Is(N) = O(sorN)) + 2 G40 IB(|GV|, %N)

Bubble graphs. To perform DFS in a bubble grap@,
where the sourcs of the DFS is contained in the source
component of5, we start by computing aplitting compo-
nentof G, that is, a strongly connected componenof G



so that every vertex € C can reach at lea$l/2 vertices

of G, while no vertexw ¢ ( that is reachable from the ver-
tices inC can reachiN/2 vertices. We use the shortest path
algorithm of [5] to compute a path from sto the first ver-
texs in C, use the DFS-algorithm for strongly connected
planar graphs to compute a DFS-p@iy,v.) of C rooted
ats, and derive a partial DFS-p&if’,v’) with T’ = PUT.
Then we compute the dangling subgrag@sof T’, com-
pute a DFS-paifTy,vy), for each dangling subgrapB,
and attachl, to T’ using edg€o(v),v). Again, graphs5,
are bubble graphs [11], so that DFS-p&ifl$,vy) can be
found by applying the algorithm recursively. The choice of
componentC ensures that no dangling subgraph has size
more tharlN/2.

The central part of the algorithm is finding a splitting
componentC. We do this as in the parallel algorithm
of [11]: First we compress every strongly connected com-
ponentC of G into a single vertex of weightC|. Our goal
now is to find a vertex in the resulting DAG that can reach
vertices of total weight at leadt/2 and so that none of its
out-neighbors has this property. This task is trivial, once
we have computed the total weight of the vertices reachable
from every vertex inG'. The latter can be achieved using
the reachability counting algorithm of [15], after transfoe
ing G’ into a planarst-graphG” by adding a new sink
of weight zero toG’ and adding an edge from every sink
of G' tot. This is where it is important thab is a bub-
ble graph, because it ensures that this construction dees in
deed produce a planat-graph. The construction of graph
G” requires sorting and scanning the vertex and edge sets
of G’ in order to identify the sinks o&’ and add an edge
from each such sink to. The reachability counting algo-
rithm of [15] can be carried out i@(sor{N)) 1/0s, using
the time-forward processing technique and standard range-
searching techniques. (Details appear in the full paper.)
Hence, the I/O-complexityg(N, k) of the DFS-algorithm
for a bubble graph whose largest strongly connected com-
ponent has sizk is given by the following recurrence:

Is(N,k) < O(sor{N)) + Is(k) + 3 6,0 I8(|Gvl, |GV]),
where|Gy| < N/2, for all Gy. Using substitution, we can
show now thatls(N) < c- sort(N)(4IogS/2(N/M) -1
and  Ig(Nk) < c - sor(N)(2logs,(N/M) +

2logg,(max(k,§N)/M)), for some constantc > O.
This proves the following theorem.

Theorem 4 DFS in a strongly connected planar graph G
with N vertices take®)(sor{N)log(N/M)) I/Os.
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