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Abstract

We present a cache-oblivious algorithm for comput-
ing single-source shortest paths in undirected graphs
with non-negative edge lengths. The algorithm incurs
O

(√
(nm log W )/B + (m/B) log n + MST(n, m)

)
mem-

ory transfers on a graph with n vertices, m edges, and
real edge lengths between 1 and W ; B denotes the cache
block size, and MST(n, m) denotes the number of mem-
ory transfers required to compute a minimum spanning
tree of a graph with n vertices and m edges. Our al-
gorithm is the first cache-oblivious shortest-path algo-
rithm incurring less than one memory transfer per ver-
tex if the graph is sparse (m = O(n)) and W = 2o(B).

1 Introduction
Let G = (V, E) be a graph with vertex set V and edge
set E, let s be a vertex of G, called the source vertex, and
let � : E → R

+ be an assignment of non-negative real
lengths to the edges of G. The single-source shortest-
path (SSSP) problem is to find, for every vertex v ∈ V ,
the distance D(v) from s to v, that is, the length of a
shortest path from s to v in G.

The classical SSSP-algorithm for graphs with non-
negative edge lengths is Dijkstra’s algorithm [9], which
has seen many improvements for planar graphs [12],
undirected graphs with integer or float edge lengths
[19, 20], and undirected graphs with real edge lengths
[18]. Unfortunately, only the algorithm of [12], if
implemented appropriately [11], makes good use of
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Studi di Roma “La Sapienza”, Via Salaria 113, 00198 Roma,
Italy. Email: allulli@dis.uniroma1.it. Supported in part by
the research project “Algoritmi evoluti per Internet e per il Web”
sponsored by the University of Rome “La Sapienza”, and by the
Natural Sciences and Engineering Research Council of Canada.

†Faculty of Computer Science, Dalhousie University, 6050
University Ave, Halifax, NS B3H 1W5, Canada. Email:
piotr@cs.dal.ca. Supported by the Natural Sciences and En-
gineering Research Council of Canada.

‡Faculty of Computer Science, Dalhousie University, 6050
University Ave, Halifax, NS B3H 1W5, Canada. Email:
nzeh@cs.dal.ca. Supported by the Natural Sciences and Engi-
neering Research Council of Canada and the Canadian Founda-
tion for Innovation.

cache memory by avoiding random memory accesses.
Much previous work has focused on developing

cache-efficient shortest-path algorithms, most of them
external-memory algorithms. These algorithms are de-
signed and analyzed in the I/O-model [1], which as-
sumes that the computer has an internal memory that
can hold M vertices or edges and that the graph is
stored in external memory (on disk). Computation
can occur only on items in internal memory. There-
fore, in order to process the graph, the algorithm has
to swap pieces of it between internal and external mem-
ory, which it does in blocks of B consecutive data items.
Such a transfer is referred to as an I/O-operation or
memory transfer (MT). The complexity of an algorithm
in this model is the number of memory transfers it per-
forms. An external-memory algorithm requires knowl-
edge of M and B to initiate memory transfers explicitly.

The cache-oblivious model [10] prescribes that an
algorithm be designed in the RAM-model, that is, with-
out using the parameters M and B in the algorithm, but
analyzed in the I/O-model. For this analysis, a paging
algorithm has to perform the memory transfers neces-
sary to bring accessed items into internal memory. To
make room for the loaded block, another block must
be evicted from internal memory. The cache-oblivious
model assumes that the paging algorithm is optimal in
the sense that it chooses blocks to be evicted so that the
total number of memory transfers necessary to serve all
memory accesses performed by the algorithm is mini-
mized. For a justification of this ideal-cache model, see
[10]. Since the parameters M and B are used only in the
analysis, but not by the algorithm, the analysis applies
to any level in a multi-level memory hierarchy, that is,
the resulting algorithm is adaptive to any such hierar-
chy. For many cache-oblivious algorithms, a tall-cache
assumption is made, which means that it is assumed
that M = Ω

(
B1+ε

)
, for some ε > 0. For example, Bro-

dal and Fagerberg [4, 5] show that this assumption is
sufficient and necessary to match the external sorting
bound of sort(N) = Θ

(
(N/B) logM/B(N/B)

)
MT’s us-

ing a cache-oblivious sorting algorithm. Our algorithm
also assumes that M = Ω

(
B1+ε

)
.

A number of papers propose algorithms for solv-



ing variants of SSSP on undirected graphs in a cache-
efficient manner [3, 6, 8, 13, 14, 15, 16, 17]. For un-
weighted graphs, that is, for breadth-first search (BFS),
the best external-memory algorithm is that of [14],
which performs O

(√
nm/B + ST(n, m)

)
MT’s, where

n = |V |, m = |E|, and ST(n, m) is the cost of
computing a spanning tree.1 In [6], a cache-oblivious
version of this algorithm has been obtained whose
complexity is O

(√
nm/B + (m/B) log n + ST(n, m)

)
MT’s. We call this algorithm CO-BFS. The best gen-
eral external-memory shortest-path algorithm performs
O(n + (m/B) log2(n/B)) MT’s [13]. This bound has
been matched in the cache-oblivious model [6, 8] by de-
veloping a cache-oblivious priority queue to replace the
external one used in [13]. For graphs with real edge
lengths between 1 and W , an external-memory shortest-
path algorithm with complexity O

(√
(nm log W )/B +

MST(n, m)
)

is presented in [15]; MST(n, m) denotes
the cost of computing a minimum spanning tree.1 We
call this algorithm MZ-SSSP. MZ-SSSP is better than
the algorithm of [13] for sparse graphs with small
edge lengths. Recently, a version of MZ-SSSP has
been obtained whose complexity is O

(√
nm/B log n +

MST(n, m)
)

MT’s [16], that is, is independent of the
edge lengths.

All cache-efficient SSSP-algorithms discussed in the
previous paragraph are variants of Dijkstra’s algorithm,
implemented using cache-efficient priority queues. The
main bottleneck in the algorithms of [6, 8, 13, 17] is that
retrieving the adjacency lists of visited vertices, in order
to relax their incident edges, requires at least one MT
per vertex because the order in which vertices are visited
is hard to predict. The improved algorithms of [6, 14,
15, 16] overcome this bottleneck using the following
idea: Instead of accessing one adjacency list at a time,
group vertices appropriately and form edge groups by
concatenating the adjacency lists of the vertices in each
vertex group; when the first vertex in a vertex group is
visited, load the whole corresponding edge group into
a hot pool. Subsequent visits to vertices in the group
find their adjacency lists in the hot pool. Thus, the
number of memory transfers caused by random accesses
to adjacency lists is reduced, but at the expense of
increasing the cost per edge because an edge may be
inspected by many searches of the hot pool before it
is finally relaxed (and removed from the hot pool). In
this paper, we present a cache-oblivious shortest-path
algorithm based on MZ-SSSP. The following theorem

1The currently best bounds for computing a (mini-
mum) spanning tree are ST(n, m) = MST(n, m) =
O(sort(m) log log(nB/m)) in the I/O-model [3, 7] and ST(n, m) =
MST(n, m) = O(sort(m) log log n) in the cache-oblivious model
[2].

summarizes our result.

Theorem 1.1. Given an undirected graph G with n
vertices, m edges, and edge lengths between 1 and W ,
and provided that M = Ω

(
B1+ε

)
, the single-source

shortest-path problem on G can be solved by a cache-
oblivious algorithm that incurs O

(√
(nm log W )/B +

(m/B) log n + MST(n, m)
)

memory transfers.

The complexity of our algorithm can be seen as the
perfect marriage between the complexities of MZ-SSSP
and CO-BFS. In particular, our algorithm matches the
cost of cache-oblivious BFS if the edge lengths come
from a range of constant size.

Section 2 gives an overview of our algorithm. At
a high level, our algorithm is almost identical to MZ-
SSSP. The central challenge, addressed by our paper,
is the design of a cache-oblivious replacement for the
hot pool structure used in MZ-SSSP. MZ-SSSP uses a
one-dimensional hot pool hierarchy to cope with edges
of different lengths, while making decisive use of its
knowledge of B in computing disjoint edge groups of
the right diameter so that edges do not linger in the
hot pool too long. CO-BFS also uses a one-dimensional
hot pool hierarchy, but partitions the graph into nested
groups of increasing diameter, in order to be adaptive
to any block size. In computing these groups and in
organizing the hot pool, it uses that all edges have
the same length. Our algorithm uses a nested group
partition that combines the crucial characteristics of the
two partitions used in MZ-SSSP and CO-BFS and uses
a two-dimensional hot pool whose rows play the role of
the hot pools in MZ-SSSP, while the columns play the
role of the hot pools in CO-BFS. Section 3 discusses
the group partition used by our algorithm. Section 4
discusses the hot pool.

2 Overview

At a high level, our algorithm is almost identical to MZ-
SSSP, which in turn is an I/O-efficient implementation
of Dijkstra’s algorithm. It maintains a tentative distance
d(v) for every vertex v ∈ G, which is an upper bound
on its true distance from s. Initially, d(s) = 0 and
d(v) = +∞, for all v �= s. This upper bound is
improved iteratively until d(v) = D(v). At this point
v is visited, that is, every edge vw in v’s adjacency list
A(v) is relaxed, which means that d(w) is replaced with
min(d(w), d(v) + �(vw)).

As MZ-SSSP, our algorithm differs from Dijkstra’s
algorithm in that it may visit more than one vertex at
a time, as long as the distances of all simultaneously
visited vertices from s differ by less than the minimum
edge weight. Our algorithm differs from MZ-SSSP in
that it loads the whole graph into the hot pool at the



CO-SSSP(G)
1 Q← an empty priority queue
2 H ← a hot pool structure storing the adjacency lists of all vertices in G
3 Update(Q, s, 0)
4 while Q �= ∅
5 do L← BatchedDeleteMin(Q)
6 Retrieve all adjacency lists of vertices in L from H, and place them into a list S.
7 For every edge vw ∈ S, perform an Update(Q, w, d(v) + �(vw)) operation.

Figure 1: Outline of the algorithm.

beginning of the algorithm, just as CO-BFS does. The
high-level procedure is shown in Figure 1. The priority
queue and the hot pool ensure that the queries in Lines
5 and 6 output the vertices in L sorted by their IDs and
the edges in S sorted by the IDs of their tails. Thus, a
single scan of L and S suffices to implement Line 7.

The priority queue Q used in the algorithm supports
two operations: An Update(x, p) operation inserts ver-
tex x into Q, with priority p, if it is not currently in
Q; if x is in Q and has priority p′, its priority is re-
placed with min(p, p′); that is, Update is a combined In-
sert/DecreaseKey operation. A BatchedDeleteMin op-
eration deletes and returns a set L of vertices with two
properties: every vertex in L has a priority less than
that of any vertex that remains in Q, and the priorities
of two vertices in L differ by at most 1.

Note that Line 7 may re-insert already visited
vertices into Q because it performs an Update operation
on w, for every edge vw ∈ S, without checking w’s
status. The algorithms of [6, 8, 13, 15, 16] face
the same problem and address it by using a second
priority queue to eliminate re-inserted vertices before
they can be visited for a second time. As we discuss
below, our algorithm can deal with this problem in
a much more straightforward manner because it loads
the whole graph into the hot pool at the beginning.
The correctness of the algorithm then follows from the
correctness of Dijkstra’s algorithm because none of the
vertices in L can be on the shortest path to another
vertex in L (see [15] for a detailed argument). This
proves the following lemma.

Lemma 2.1. Procedure CO-SSSP correctly solves the
SSSP problem on undirected graphs with non-negative
edge weights.

In the remainder of this section, we review the
priority queue used in our algorithm and provide a high-
level description of the hot pool structure. The rest of
the paper is then concerned with providing the details
of the latter structure.

2.1 Priority queue. Our algorithm utilizes the
bucket priority queue of [15], which is easily imple-
mented in a cache-oblivious manner without changing
the cost of the priority queue operations. Here we give
an overview and review the properties of this struc-
ture relevant to our algorithm. The priority queue
consists of r = �log W � + 1 buckets B1, . . . ,Br, each
of which is an array of vertices, sorted by vertex IDs.
Buckets B1, . . . ,Br are stored consecutively in an array
B = B1 ◦ · · · ◦ Br. The buckets are defined by priori-
ties p0 ≤ p1 ≤ · · · ≤ pr = +∞ in the sense that all
priority queue entries (x, p) with priority pi−1 ≤ p < pi

are stored in bucket Bi; in particular, no entry has pri-
ority less than p0. Priorities p0, . . . , pr satisfy that, for
1 < i < r, either pi = pi−1 or 2i−2/3 ≤ pi−pi−1 ≤ 2i−2;
for i = 1, we have 0 < p1 − p0 ≤ 1, except at the very
beginning of the algorithm. The priorities are initialized
to p0 = · · · = pr−1 = 0 and pr = +∞.

Update(x, p) operations are implemented by insert-
ing Update(x, p) signals into an update buffer U1. More
precisely, there is one such buffer Ui associated with
each bucket Bi, and buffers U1, . . . ,Ur are concatenated
to form an array U = U1 ◦ · · · ◦ Ur. Over time, signals
move to higher buffers until they find the bucket where
the new element is to be inserted. This happens during
BatchedDeleteMin operations.

A BatchedDeleteMin operation first ensures that B1

is non-empty. To do so, it scans buckets B1, . . . ,Bi, for
each 1 ≤ j ≤ i applying the signals in Uj to Bj and then
merging them into Uj+1. It stops when it finds the first
bucket Bi that is non-empty after the updates in Ui have
been applied to it. It then sets p0 = pmin, where pmin is
the minimum priority of any element in Bi and updates
priorities p1, . . . , pi−1 so that the above constraints on
these priorities are satisfied; pi−1 equals pi at the end of
this procedure. The elements of Bi are then distributed
over B1, . . . ,Bi−1 according to their priorities, which is
achieved by moving all elements with priority less than
pi−1 from Bi to Bi−1, then moving all elements with
priority less than pi−2 from Bi−1 to Bi−2, and so on.
When moving elements from Bj to Bj−1, both buckets



are scanned, in order to merge the moved elements into
Bj−1.

Meyer and Zeh prove the following two lemmas,
where a BatchedDeleteMin operation is said to empty
bucket Bi if it distributes the contents of Bi over buckets
B1, . . . ,Bi−1.

Lemma 2.2. (Meyer/Zeh [15]) Let p be the mini-
mum priority of the entries retrieved by a Batched-
DeleteMin operation, let i ≥ 2, and consider the se-
quence of all subsequent BatchedDeleteMin operations
that empty buckets Bh with h ≥ i. Let qk be the mini-
mum priority of the entries retrieved by the k’th opera-
tion in this sequence. Then qk − p ≥ (k − 4)2i−2/3.

Lemma 2.3. (Meyer/Zeh [15]) The total cost of all
priority queue operations performed by CO-SSSP is
O((m/B) log W ).2

2.2 Hot pool. Conceptually, the hot pool consists
of r sets H1, . . . ,Hr, called rows, that are closely tied
to the buckets in the priority queue. To define this
connection, some terminology is required. We define
the category of an edge e to be the integer i such that
2i−1 ≤ �(v) < 2i. An i-component, then, is a connected
component of the graph obtained from G by removing
all edges of categories greater than i.

Our algorithm maintains the following invariant:
An adjacency list A(v) is stored in the highest row
Hi (row with highest index i) such that the (i − 1)-
component containing v does not contain a vertex z that
has been visited already or is stored in a bucket Bj with
j < i. Intuitively, the goal is to store every adjacency
list A(v) in as high a row as possible because higher
rows are inspected less frequently by our algorithm. It
has to be guaranteed, however, that the row where A(v)
is stored is inspected again before v is visited. This is
captured by the condition that no vertex in the (i− 1)-
component containing v is allowed to be visited or stored
in a bucket Bj with j < i.

The invariant implies that, for every vertex v ∈ B1,
A(v) ⊆ H1, unless v has already been visited. Thus, the
edge set S in each iteration can be retrieved by querying
H1, and vertices in L that have already been visited are
easily detected (and ignored) because their adjacency
lists are simply not found in H1.

In order to maintain the above invariant about
where adjacency lists are stored, and in order to re-
trieve the adjacency lists of the vertices returned by a
BatchedDeleteMin operation, every BatchedDeleteMin
operation does the following when moving vertices from

2Meyer and Zeh prove the lemma for MZ-SSSP, which performs
the same priority queue operations as CO-SSSP.

bucket Bi to bucket Bi−1: Denote the set of moved ver-
tices by L. For every vertex v ∈ L, the (i−1)-component
containing v is retrieved from Hi, if it is still stored in
Hi, and then inserted into Hi−1. The implementation
of the procedure to move (i− 1)-components to Hi−1 is
discussed in detail in Section 4. When finally returning
the contents of bucket B1, the BatchedDeleteMin opera-
tion retrieves the adjacency lists of all returned vertices
from H1.

For BatchedDeleteMin operations to maintain the
above invariant, it is necessary and sufficient that, if a
vertex in L does not find its (i − 1)-component in Hi,
this component is already stored in row Hi−1 or below.
The next lemma states that this is the case. We omit
the proof because it is essentially the same as in [15].

Lemma 2.4. For a vertex v ∈ Bi, the i-component
containing v is stored in row Hi or below.

The next two sections provide the details of the hot
pool structure. Section 3 discusses the group partition
required by our algorithm. Section 4 then discusses how
to use this partition to efficiently maintain the hot pool
structure.

3 Group Partition

The implementation of the hot pool requires a finer
partition of the graph than the one into category
components used in the high-level description of the
algorithm. Inspired by the partition into groups of
exponentially increasing diameter used in CO-BFS, we
use a partition of the vertex set into (i, j)-groups, 1 ≤
i ≤ r = �log W �+1 , 0 ≤ j ≤ s = log n�+2; each such
group is a subset of the vertices of an i-component and
has diameter O

(
2i+j

)
, where the diameter of a vertex

set is the maximal distance between any two vertices in
the set.

More precisely, a nested group partition has the
following properties, where we refer to an (i, j)-group as
a (·, j)-group or (i, ·)-group if we do not want to specify
i or j.

(P1) Every (i, ·)-group is completely contained in an i-
component.

(P2) Every i-component is an (i + 1, j)-group and an
(i, j′)-group, for some j and j′ ≤ j + 3. The i-
component then contains no (i+1, j′′)-groups with
j′′ < j and no (i, j′′)-group with j′′ > j′.

(P3) For every pair (i, j) and any two distinct (i, j)-
groups G1 and G2, G1 ∩ G2 = ∅.

(P4) Every (i, j)-group is either equal to an i-compo-
nent or completely contained in an (i, j+1)-group.



(P5) Every (i, j)-group has diameter less than 2i+j−1,
where the diameter of a group is the maximal
distance between any two of its vertices in G.3

(P6) For every j > 0, there are O
(
n/2j

)
(·, j)-groups.

We say that an (i, j)-group is trivial if it consists of a
single (i−1)-component or (i, j−1)-group; otherwise, it
is non-trivial. Now observe that the nesting relationship
defines a tree-like hierarchy of the groups whose root is
the whole graph G and whose leaves are the vertices
of G. We number the vertices in G in the order
they are visited by a preorder traversal of this group
tree. This implies that the vertices in every (i, j)-
group are numbered consecutively. The representation
of the partition consists of the adjacency lists A(v)
of all vertices, sorted by the IDs of vertices v; the
adjacency list of vertex v is preceded by descriptors of
all non-trivial groups in the partition that have v as
their minimum vertex. These descriptors are sorted
by decreasing numbers of vertices contained in their
corresponding groups. Each descriptor describing a
non-trivial (i, j)-group stores the pair (i, j), the number
of edges in the adjacency lists of all vertices in its group,
plus the number of smaller non-trivial groups nested in
it. For every (i, j)-group, the corresponding edge group
is the subsequence of the representation that starts with
the group’s descriptor and ends with the adjacency list
of its last vertex. Since we store only descriptors of
non-trivial groups, the total number of descriptors in
each group is bounded by the number of edges in the
group, so that the total length of this representation
is still O(m). The descriptors are used when splitting
groups into smaller groups. Due to lack of space, we
do not discuss this in detail here. In the full paper, we
prove the following lemma, which is obtained using an
extension of the clustering algorithm used in MZ-SSSP.

Lemma 3.1. A nested group partition of an undirected
graph with n vertices and m edges can be computed in
O(MST(n, m) + (n/B)(log n + log W )) MT’s.

4 Hot Pools

The remainder of this paper is dedicated to describing
the hot pool structure. The hot pool consists of a
two-dimensional array of buckets Hi,j , 1 ≤ i ≤ r =
�log W � + 1 and 0 ≤ j ≤ s = log n� + 2; bucket
Hi,j stores (i, j)-groups. Initially, the whole graph is
viewed as an (r, j∗)-group, for some j∗, which is stored

3Determining the exact group diameters efficiently is difficult.
As in [15], our clustering algorithm uses an upper bound on the
diameter that is easy to compute and tight enough to ensure that
the graph can be partitioned into few groups with a small upper
bound on their diameters. Details appear in the full paper.

in Hr,j∗ . We refer to buckets Hi,0, . . . ,Hi,s as row i and
to buckets H1,j , . . . ,Hr,j as column j.

In order to use the hot pool in our shortest-path
algorithm, we have to support the following down-
propagation operation: When moving a list L of vertices
from bucket Bi to bucket Bi−1 in the priority queue, we
have to move all (i− 1)-components containing vertices
in L from row i to row i − 1. A special case of this is
retrieving (from row 1) the adjacency lists of the vertices
returned by a BatchedDeleteMin operation.

Conceptually, we do the following for every vertex
v ∈ L. First we locate the (i, j)-group G in the i’th
row that contains v.4 If G is the (i − 1)-component
containing v, we move it to row i − 1: G is also an
(i− 1, j′)-group, for some j′ ≤ j +3; so we insert it into
Hi−1,j′ . If G is not an (i − 1)-component, we split G
into (i, j − 1)-groups, which we insert into Hi,j−1. We
keep doing this until there are no more groups in row i
containing vertices in L.

To implement this procedure efficiently, we need an
appropriate layout of the hot pool buckets in memory,
as well as a number of indexing structures to locate
groups in the hot pool. The hot pool is represented by
column structures C0, . . . , Cr, each storing the buckets
of a column. These structures are discussed in detail
in Section 4.2. For every row, we have a row index
Ii, which represents the groups stored in row i. In
particular, a group G in Hi,j containing vertices with
IDs between a and b and being the k’th group ever
inserted into the hot pool is represented by a group
descriptor (i, j, a, b, k) in Ii. The descriptors in Ii are
sorted by their a-components. Since the intervals of
vertex IDs in the groups in row i are disjoint, Ii is thus
a sorted list of disjoint vertex intervals.

The moving of groups between rows is achieved us-
ing a down-propagation buffer D, which is a concate-
nation of buckets D1, . . . ,Dr; bucket Di stores (i − 1)-
components that are moving to row i− 1 soon. In par-
ticular, each such component contains a vertex in Bi.

The down-propagation of (i − 1)-components con-
taining vertices in L is now implemented as follows:
First we locate all groups in row i that contain vertices
in L. Since the vertices in L are given sorted by their
IDs, a single scan of L and Ii suffices to retrieve the list
P of descriptors of all groups in row i that contain ver-
tices in L; we remove these descriptors from Ii. We sort
the descriptors in P by their j- and k-components. For
each set of descriptors with the same j-component, we
retrieve the corresponding groups from the appropriate

4We do not distinguish between vertex groups and their corre-
sponding edge groups. So we may talk about the containment of
a vertex in an edge group or about an i-component (which is an
(i, j)-group) being equal to an edge group.



column structure Cj and append them to an array L.
For each such group, we add a descriptor (i, j, a, b, p) to
an index J , where p is a pointer to the location of the
group in L.

We now iteratively perform the following procedure
until L is empty: We discard all vertices in L that are
not contained in any group in L. For every (i, j)-group G
in L, if it does not contain a vertex in L, we insert it into
bucket Hi,j and add a corresponding group descriptor
to an index I ′i to be merged with Ii later. If G contains a
vertex in L and it is an (i−1)-component, we identify the
vertex in G with minimum priority (which must belong
to L), store its priority with G, and then insert G into
Di. If G is not an (i − 1)-component, we split it into
its constituent (i, j − 1)-groups,5 which we add to a list
L′; for these groups, we add a group descriptor as those
in J to an index J ′. Once all groups in L have been
processed, L′ and J ′ replace L and J .

Each iteration of this loop can be implemented by
sorting and scanning indexes J and J ′ and by scanning
arrays L, L, and L′.

The actual down-propagation is now implemented
by inspecting Di. A group G remains in Di if its priority
is at least pi−1. If its priority is less than pi−1, it is
moved to row i − 1. If G is an (i − 2)-component, we
simply insert it into Di−1. Otherwise, it is a non-trivial
(i − 1, j)-group, for some j. In this case, we insert G
into bucket Hi−1,j and add a corresponding index entry
to an index I ′i−1. Once we have processed all groups
in Di, we sort the group descriptors in I ′i−1 and I ′i by
their a-components and merge them into Ii−1 and Ii,
respectively.

Next we analyze the cost of manipulating lists L, L,
and L′, as well as indexes Ii, I ′i, J , and J ′. The cost of
manipulating the down-propagation buffer is analyzed
in Section 4.1, which also proves the correctness of our
criterion for moving groups from Di to row i − 1. The
cost of manipulating the column structures is analyzed
in Section 4.2. The following two lemmas will be used
throughout the analysis of the hot pool.

Lemma 4.1. Every edge is involved in at most O(log n+
log W ) insertions into buckets or arrays L and L′. After
it enters a bucket Hi,j , it remains in the hot pool for
O

(
2i+j

)
distance steps, where a distance step is the

increase of the minimum priority of the vertices in the
priority queue by one.

Proof sketch. Consider an edge e. Whenever edge e is
inserted into array L or L′ as part of an (i, j)-group,

5Note that these groups may be trivial. In this case, we still
do not move them to columns to the left of column j − 1 unless
they contain vertices in L.

let us think of e as inserted into bucket Hi,j . Then
the number of insertions of e into buckets is easily seen
to be as stated because the hot pool has log n� + 2
columns and �log W � + 1 rows, and every edge, when
it moves, moves left, down, left and down, or one down
and at most three right, where we view the rows as
numbered bottom to top and the columns as numbered
left to right.

An edge stored in Hi,j belongs to an (i, j)-group
G. This group is stored in bucket Hi,j because the
(i, j+1)-group G′ containing G contains a visited vertex
or a vertex that is visited within the next 2i distance
steps. Since the diameter of G′ is less than 2i+j , this
implies that every vertex in G is visited within the next
O

(
2i+j

)
distance steps, which means that every edge in

G disappears from the hot pool by this time. �

Lemma 4.2. The number of (·, 0)-groups inserted into
column 0 is O(n).

Proof sketch. First note that there are only O(n) unique
(·, 0)-groups, as any two such groups are either disjoint
or properly nested. Each such group is inserted into at
most one bucket Hi,0. To see this, observe that every
(i, 0)-group is an (i − 1)-component. Hence, when an
(i, 0)-group G leaves bucket Hi,0 it is inserted into D;
G does not leave D until it disappears completely from
the hot pool structure or reaches a row i′ where it is a
non-trivial (i′, j)-group with j > 0. �

The following lemma now follows immediately from
Lemmas 2.2, 4.1, and 4.2 and Properties (P5) and (P6).

Lemma 4.3. Manipulating lists L, L, L′ and indexes
Ii, I ′i, J , J ′ costs O((m/B)(log n + log W )) MT’s.

4.1 Down-propagation buffer. First we prove that
our method for deciding when to move a group G in
bucket Di to a lower row is correct: precisely, that the
priority stored with G is the minimum priority p of all
vertices in G, which implies that a vertex in G moves to
row i− 1 exactly when p < pi−1.

Lemma 4.4. The minimum priority stored with each
group in the down-propagation buffer D is correct at all
times.

Proof. When a group G moves into bucket Di from a
bucket Hi,j , we label G correctly with the minimum
priority of any vertex in G because this vertex must
belong to L. Let p be the priority assigned to G at
this point. We claim that no vertex in G can ever have
a priority less than p, which implies that p remains the
minimum priority of the vertices in G throughout G’s life
span. Let p∗ be the minimum priority in L (and thus in



Bi) at the time when p is assigned to G. If a subsequent
relaxation of an edge uv changes the priority of a vertex
v ∈ G, then d(u) ≥ p∗. If u ∈ G, then d(u) ≥ p, and
d(v) = d(u) + �(uv) ≥ p. So consider the case that
u �∈ G. Since group G is an (i− 1)-component, edge uv
must have category at least i, that is, length at least
2i−1. Thus, d(u) + �(uv) ≥ p∗ + 2i−1. By the choice
of priorities pi−1 and pi, however, we have p − p∗ <
pi − pi−1 ≤ 2i−2, that is, p < d(u) + �(uv) = d(v). �

The implementation of the down-propagation buffer
is fairly straightforward: We maintain D as the concate-
nation of buckets D1, . . . ,Di. Each such bucket is a col-
lection of groups, in no particular order. Since Di �= ∅
only if Bi �= ∅ and we inspect rows only up to the first
non-empty bucket Bi, we are always interested in only
the first non-empty bucket in D, if any. Hence, manipu-
lating the current bucket Di always reduces to scanning
an appropriate prefix of D.

Lemma 4.5. The cost of manipulating the down-
propagation buffer is O((m/B) log W ).

Proof. Every group G in a bucket Di contains a vertex
v in Bi. The next inspection of row i moves v to row
i − 1. Hence, by Lemma 4.4, the priority of G is less
than pi−1, and group G moves to row i−1. Thus, every
edge is inspected at most once as part of a bucket Di.
Summing this scanning cost over all �log W �+1 buckets
in D gives the bound claimed in the lemma. �

4.2 Column structure. Each column of the hot
pool is represented as a column structure consisting
of an array Cj equipped with a number of indexes
to support group insertions and extractions. This
array consists of r = �log W � + 1 chunks Cj,1, . . . , Cj,r,
arranged in this order. Chunk Cj,i is associated with
bucket Hi,j and stores only elements from buckets Hi′,j
with i′ ≥ i. Initially, all chunks have size 0 and are
empty.

Every memory location in a chunk Cj,i can be in
three different states: An occupied location stores an
element of some bucket Hi′,j . A clean location does
not store anything and never has since the time of the
creation of Cj,i. A location that is neither occupied nor
clean is unoccupied.

We keep track of the chunks using a chunk index,
which is an array of size r. The i’th entry stores the
following information about chunk Cj,i: the physical
address pCj,i of Cj,i in Cj , the size sCj,i of Cj,i, the number
cCj,i of clean memory locations in Cj,i (which are at the
beginning of Cj,i), and the number |Hi,j | of elements in
bucket Hi,j .

We keep track of groups stored in the chunks using a
group index. Each index entry is a triple (i, k, p), which

signifies that the corresponding group belongs to bucket
Hi,j , is the k’th group ever inserted into the hot pool,
and is currently stored at position p in Cj. The entries in
the group index are sorted by increasing i-components
and by decreasing k-components.

When inserting groups into column j in a down-
propagation step, these groups are inserted into an in-
sertion buffer Zj . At the end of each down-propagation
step, we incorporate the groups in Zj into Cj .

Operations. To insert an (i, j)-group G into Cj,
we append G to Zj . We increment the insertion count,
store this count with G, and return a group descriptor
(a, b, i, j, k) for insertion into the row index Ii, where k
is the current insertion count and [a, b] is the range of
vertex IDs in G. We call this an InsertGroup operation.

At the end of each down-propagation step from
row i to row i − 1, we flush each non-empty insertion
buffer Zj , inserting the groups in Zj into Cj. We call
this a FlushGroups operation. Note that buffer Zj can
hold only groups to be inserted into Hi−1,j or Hi,j at
this point. The FlushGroups operation scans Zj twice.
During the first scan, we insert the groups to be inserted
into Hi,j . The second scan inserts the remaining groups
into Hi−1,j . Consider the first scan, the second one
being similar. To insert groups into Hi,j , we increase
|Hi,j | by the total size of these groups and scan the
chunk index to find the chunk Cj,x with maximal index
x ≤ i that has clean positions. Let h be the number
of edges to be inserted into Hi,j . If h ≤ cCj,x , we
insert these edges into positions pCj,x +cCj,x−h through
pCj,x +cCj,x−1 and then decrease cCj,x by h. If h > cCj,x ,
we insert cCj,x elements into positions pCj,x through
pCj,x + cCj,x − 1, set cCj,x = 0, find the next lower
chunk Cj,x′ that has clean positions and repeat the whole
procedure for the remaining h − cCj,x elements in the
group. As a result, a group may be distributed over
more than one chunk. We refer to the part of a group
stored in a chunk as a group segment. For every group,
we form a linked list of its segments by storing with
every group segment a pointer to the next segment of
the same group, by increasing address.

Finally, we need to update the group index. When
we insert a new group G with number k into Hi,j , let p
be the position of the first segment of G in Cj . Then we
add a triple (i, k, p) to a list A. Once the processing of
all insertions into Hi,j is done, we merge the contents
of list A into the group index.

When inserting groups of in total h elements into
Hi,j , it is possible that

∑i
x=1 cCj,x < h, that is, there

is not enough room for inserting the groups into Cj.
In this case, we temporarily grow the first chunk Cj,1
and increase cCj,1 accordingly to obtain

∑i
x=1 cCj,x =

h. Then we perform the insertion as above, leaving



∑i
x=1 cCj,x = 0. This is followed by rebuilding a prefix

of chunks Cj,1, . . . , Cj,i′ with i′ ≥ i, as described below.
At the beginning of each down-propagation step

from row i to row i− 1, we extract from Cj some of the
groups in bucket Hi,j . We call this an ExtractGroups
operation, which is given the descriptors of all groups
to be extracted, sorted by decreasing k-values. This
operation scans the list of group descriptors and the
group index to translate every tuple (a, b, i, j, k) into a
tuple (a, b, i, j, p), where p is the physical position of
the requested group. Then we scan this pointer list,
retrieve each group indexed by a tuple in this list, and
add its elements to a list L. In particular, for each
group, its corresponding group index entry points to its
first segment. We retrieve this segment and then follow
pointers between the segments to traverse the list of
group segments and thereby collect all the elements in
the group. Note that every ExtractGroups operation
retrieves groups from exactly one bucket Hi,j , in the
order in which they are stored in Cj. So no sorting is
required. Finally, we decrease |Hi,j | by the total size of
the extracted groups, and we return list L.

The removal of the elements in L from Cj may leave
a prefix of Cj too sparsely populated. Thus, before
returning the elements in L, we check whether there
exists an index i such that

∑i
x=1 |Hx,j | < 1

4

∑i
x=1 sCj,x .

If so, we rebuild some prefix Cj,1, . . . , Cj,i′ with i′ ≥ i.
Rebuilding. When a FlushGroups or Extract-

Groups operation triggers the rebuilding of a prefix
of Cj, we first identify the set of chunks that need to
be rebuilt. We find the maximal index i′ such that∑i′

x=1 |Hx,j | < 1
4

∑i′

x=1 sCj,x and |Hi′,j| < 1
2sCj,i′ . (After

rebuilding chunk Cj,i′ , we have |Hi′,j | = 1
2sCj,i′ . Hence,

the second condition implies that bucket Hi′,j has lost
at least one element. Without this condition, Obser-
vation 4.1 below would not hold.) If there is no such
index, we set i′ = 0. Next we find the maximal index
i > i′ satisfying the following two conditions: (i) Bucket
Hi,j is non-empty or sCj,i > 0 and (ii) cCj,x = 0, for all
i′ < x ≤ i. If there is no such index i, we choose i = i′.
Now we rebuild chunks Cj,1, . . . , Cj,i.

Note that, by the choice of index i, the groups
in chunks Cj,1, . . . , Cj,i belong to buckets H1,j , . . . ,Hi,j

because cCj,i+1 > 0 and any insertion into a bucket Hx,j

with x > i would have completely filled Cj,i+1 before
inserting elements into one of Cj,1, . . . , Cj,i. We perform
the following operations for i′ = 1, . . . , i: We scan the
part of the group index storing pointers to the groups
in Hi′,j , retrieve the corresponding groups from Cj, and
append them to a list L. Once we have done this, L
stores all groups in buckets H1,j , . . . ,Hi,j , sorted in the
same order as their corresponding group index entries;
and the elements of each group are stored consecutively,

that is, none of these groups is segmented.
We now scan backwards over L, creating chunks

Cj,i, Cj,i−1, . . . , Cj,1. For each chunk Cj,x, we set |Hx,j|
to be the number of elements in Hx,j, cCj,x = |Hx,j|
and sCj,x = 2|Hx,j|. Then we allocate sCj,x memory
locations to Cj,x and store the elements in Hx,j in the
highest |Hx,j | memory locations of Cj,x. Since groups
are stored in the same order in L as their corresponding
group index entries, and we place the groups in the
same order into the new chunks, we can also update
the pointers of the corresponding group index entries in
a single scan of the corresponding prefix of the group
index.

It is easy to prove the following two lemmas. The
first one shows that no prefix of Cj is ever too sparsely
populated (except immediately before rebuilding it).
The second one establishes that, whenever we rebuild
a prefix, we have enough insertions or deletions into or
from Cj that can pay for the rebuilding cost.

Lemma 4.6. For all 1 ≤ i ≤ r, we have
∑i

x=1 sCj,x ≤
4

∑i
x=1 |Hi,j |.

Lemma 4.7. For every chunk Cj,x, let uCj,x be the
number of elements inserted into or deleted from Cj,x
since the last time this chunk was rebuilt. When a
prefix Cj,1, . . . , Cj,i is rebuilt, we have

∑i
x=1 uCj,x >

1
4

∑i
x=1 sCj,x .

Analysis. It remains to analyze the costs of the
different operations. In this analysis, we make use of
our tall-cache assumption by assuming that, for some
parameter t ≤ log B to be chosen later and all 0 ≤ j ≤ t,
we can keep the following four blocks of the column
structure Cj in cache: the first blocks of the chunk
and group indexes, the first block of array Cj, and
the last block of the buffer array Zj . This requires
O(B log B) = O

(
B1+ε

)
cache space.

First let us analyze the cost of maintaining the
chunk indexes. We assume that every chunk index
access scans the whole index. Then the cost of scanning
chunk indexes is O((n/B) log W ): the size of each chunk
index is �log W �+1; the chunk index is scanned at most
once per FlushGroups, ExtractGroups, or rebuilding
operation, of which there are O(n), by Property (P6)
and Lemma 4.2. Chunk index accesses for columns
j > t may incur another O(n/2t) MT’s because, when
accessing a chunk of a column j > t, we may have
to load the first block of the chunk index into cache.
By Property (P6), this happens at most O(n/2t) times.
Before bounding the cost of accessing group indexes, we
need the following observation.



Observation 4.1. Between every two accesses to a
chunk Cj,i in array Cj, there is at least one access to
a bucket Hi′,j with i′ ≥ i.

When accessing a group index, it is to access the
entries of (i, j)-groups in one bucket Hi,j or to access
the entries of all groups in chunks Cj,1, . . . , Cj,i during a
rebuild operation. In both cases, we bound the cost
of accessing the group index by scanning the prefix
of the group index up to the last group in Cj,i. By
Observation 4.1 and Lemmas 2.2 and 4.1, every group
index entry in the j’th column is scanned O

(
2j

)
times.

By Property (P6) and Lemma 4.2, there are O
(
n/2j

)
groups in column j. Hence, the scanning cost of group
index entries in a single column is O(n/B). Summing
over all columns, the scanning cost is O((n/B) logn).
Every access to a group index of a column j > t may
cost one extra MT. Since there are O(n/2t) accesses to
columns j > t, this amounts to an extra cost of O(n/2t)
MT’s.

The accesses to insertion buffers cost O
(
n/2t +

(m/B)(log n + log W )
)
: The first term is the cost of

loading the last block of buffer Zj if j > t. The second
term is the scanning cost because every edge is scanned
O(1) times per insertion into a column, and an edge is
inserted into O(log n + log W ) buckets, by Lemma 4.1.

The final part of the analysis concerns the cost
of accessing arrays Cj. We distinguish the two cases
j ≤ t and j > t. For j ≤ t, we can bound the cost
of every access to chunk Cj,i, or chunks Cj,1, . . . , Cj,i if
rebuilding is required, by the cost of a staggered scan
of these chunks, defined as follows: We first scan chunk
Cj,1, then chunks Cj,1, Cj,2 (scanning Cj,1 again!), then
chunks Cj,1, Cj,2, Cj,3, and so on until we finally scan
Cj,1, . . . , Cj,i. The following two lemmas analyze the
costs of accessing the two different kinds of columns.

Lemma 4.8. The total cost of manipulating arrays Cj,
0 ≤ j ≤ t, is O((m2t/B) log W ) MT’s.

Proof. By Lemma 4.6, every staggered scan reads at
most a constant factor more memory locations than
there are elements in the corresponding buckets. Thus,
for this analysis we can think of every chunk Cj,i as being
the same as bucket Hi,j . We prove that every edge e is
accessed at most O(2t log W ) times. Summing over all
edges proves the lemma. In this proof, we consider edge
e to be in row i if it is stored in a bucket Hi,j with j ≤ t.
In particular, we do not consider it to be in row i if it
is contained in a bucket Hi,j with j > t. This captures
that we are interested only in the cost edge e incurs in
the first t columns.

We now consider priorities q0 ≥ q1 ≥ · · · ≥ qr,
which are defined as follows: q0 is the minimum pri-
ority of any vertex retrieved by the BatchedDeleteMin

operation that also retrieves edge e. For i > 0, we
define qi = qi−1 if edge e never enters row i (in the
above sense); otherwise, let qi be the minimum priority
of any vertex retrieved by the BatchedDeleteMin oper-
ation that puts e into row i.

Now let ai,i′ be the number of accesses to a row
i′ ≥ i while edge e is in row i, let a∗

i,i′ be the number
of accesses to rows i′ and above while edge e is in row
i, and let Ai′ be the number of accesses to rows i′ and
above while edge e is in row i′ or below. The total
number of accesses to edge e in the first t rows is at
most

∑r
i=1

∑
i′≥i(i

′ − i + 1)ai,i′ =
∑r

i=1

∑
i′≥i a∗

i,i′ =∑r
i′=1

∑
i≤i′ a∗

i,i′ =
∑r

i′=1 Ai′ . By Lemma 2.2, we have
Ai′ ≤ 4 + 12(q0 − qi′)/2i′ . By Lemma 4.1, we have
q0 − qi′ = O

(
2i′+t

)
. Thus, Ai′ = O(1 + 2t) = O(2t).

Inserting into the above summation, we obtain that
edge e is scanned at most O(2t log W ) times as part
of columns 1 through t. This implies the lemma. �

Lemma 4.9. The total cost of manipulating arrays Cj,
j > t, is O(n/2t + (m/B)(log n + log W )).

Proof. The first term in the bound accounts for the cost
of having to access the first segment of each group; by
Property (P6), there are at most O(n/2t) groups in
columns j > t. The second term accounts for the cost
of scanning edges while inserting or extracting them;
the bound follows because, by Lemma 4.1, every edge
is involved in at most O(log n + log W ) insertions or
extractions. Note that, by Lemma 4.7, we can charge
the cost of scanning edges during rebuilding to the
inserted or deleted edges that triggered the rebuilding.

What remains is to bound the number of memory
transfers incurred by accessing groups that have more
than one segment, that is, are distributed over multiple
chunks. We call following the pointer from one group
segment to the next a jump. A jump is short if it is from
a chunk Cj,x to a chunk Cj,z with z > x and sCj,y = 0
for all x < y < z; otherwise, it is long.

The cost of every long jump is at most one MT.
Consider a group G. For a long jump from a chunk Cj,x
to a chunk Cj,z, there must be a chunk Cj,y, x < y < z,
with sCj,y > 0. We choose y maximally so. Since the
elements of G were not inserted into Cj,y at the time of
G’s insertion, we must have had cCj,y = 0 at that time.
However, since sCj,y > 0, we must have had cCj,y > 0
immediately after Cj,y was rebuilt. Hence, there must
have been an insertion into Cj,y between the rebuilding
of Cj,y and the insertion of G. We charge the first group
G′ inserted into Cj,y after the last time Cj,y was rebuilt
for the cost of the long jump. Observe that G′ can be
charged only once: It can obviously be charged only
until the next time Cj,y is rebuilt; and before rebuilding



Cj,y again, there can be only one group G that jumps
over chunk Cj,y and charges G′.

The cost of a short jump is bounded by the cost of
scanning the whole chunk Cj,x from which it originates.
Since there can be at most one jump out of Cj,x before
Cj,x is rebuilt again, we can charge this cost to the
update operations that cause the next rebuilding of
Cj,x, increasing the scanning cost of Cj,x incurred while
rebuilding chunks by a constant factor. If Cj,x is never
rebuilt again after this short jump, we bound the cost of
the short jump by one MT and charge any of the groups
in Cj,x at the time it was rebuilt last for this jump. This
charges every group at most once. �

By summing the bounds in Lemmas 4.3, 4.5, 4.8,
and 4.9 and choosing t =

⌈
log

√
nB/(m logW )

⌉
≤

log B�, we obtain the following corollary, which to-
gether with Lemmas 2.1, 2.3, and 3.1 implies Theo-
rem 1.1.

Corollary 4.1. The total cost of hot pool manipula-
tions is O

(√
(nm log W )/B + (m/B) log n

)
.
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