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Abstract

‘We present an empirical analysis of the effects of incorporating novelty-
based fitness (phenotypic behavioral diversity) into Genetic Programming
with respect to training, test and generalization performance. Three
novelty-based approaches are considered: novelty comparison against a
finite archive of behavioral archetypes, novelty comparison against all
previously seen behaviors, and a simple linear combination of the first
method with a standard fitness measure. Performance is evaluated on the
Santa Fe Trail, a well known GP benchmark selected for its deceptiveness
and established generalization test procedures. Results are compared to a
standard quality-based fitness function (count of food eaten). Ultimately,
the quality style objective provided better overall performance, however,
solutions identified under novelty based fitness functions generally pro-
vided much better test performance than their corresponding training
performance. This is interpreted as representing a requirement for lay-
ered learning/ symbiosis when assuming novelty based fitness functions
in order to more quickly achieve the integration of diverse behaviors into
a single cohesive strategy.

1 Introduction

A novelty-based fitness measure is one inspired by inter-species evolution, wherein
individuals are awarded not for the quality of their behavior, but for discovering
behaviors in which no/ few individual are presently engaged i.e., phenotypic be-
havioral diversity [5]. Thus, in a pure novelty-based fitness function individuals
are rewarded based only on how different their observed phenotypic behaviors
are from the rest of the population. Conversely, an objective or quality based
measure of fitness would reward individuals for finding solutions that minimize
some concept of ‘error’; thus the population as a whole might converge to solu-
tions that are behaviorally very similar e.g., all individuals returning the same
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classification count.! Previous works have considered the utility of niching oper-
ators to provoke diversity maintenance, but the utility of such operators under
Genetic Programming (GP) is not necessarily straight forward. However, recent
work suggests that purely novelty-based evolutionary searches can be particu-
larly effective [5, 1, 10, 9].

Recent research using novelty-based fitness measures for genetic program-
ming include both the aforementioned novelty only formulation and combined
novelty—quality fitness functions. Specifically, several authors have employed
combined novelty—quality objectives under the domain of classification [7, 8].
This is very different from the standard approach to ensemble methods as the
novelty objective makes explicit the desire to avoid solely ‘cherry picking’ the
exemplars that are easy to classify. The resulting team of individuals exhibit
explicitly non-overlapping behaviors [8]. Other works consider the effects of
novelty-based fitness in detail, but have considered post training generaliza-
tion [5, 9, 10]. This presents a problem, as the effects directly attributable to
novelty-based fitness measures remain unknown, especially the effects on model
generalization. With this in mind, we present a detailed empirical study of
the effects of various combinations of quality and novelty-based fitness metrics
on training and test performance using a classic GP benchmark, the Santa Fe
Trail. Two novelty-based fitness measures are considered, as well as a simple
combination novelty—quality measure. Particular attention is paid to the effects
of novelty-based fitness on generalization performance.

2 Background Concepts

2.1 Generalization

Generalization measures the relative change in behavior of a candidate solution
vis-a-vis the environment it was trained on versus an independent set of envi-
ronments on which testing is performed [3, 4]. In maze navigation the navigator
often starts in a fixed location and attempts to reach a fixed exit. A system
which memorizes the correct sequences of movements and rotations to navigate
a specific maze is nearly useless, since it would fail to navigate any maze with
an even slightly different structure, starting place, or destination. In contrast, a
navigator which has learned a true maze navigating behavior would be capable
of ‘generalizing’ the training scenario to a wide range of previously unseen maze
architectures. Needless to say, decisions made regarding representation, credit
assignment and cost function all impact on the resulting generalization ability
of solutions [4]. Several benchmark problems — e.g., parity and the multiplexer —
are frequently deployed without assessing generalization at all [2]. In this work
we focus on the contribution of the cost function alone, and keep representation
and credit assignment processes constant.

IThis might imply some diversity relative to the exemplars correctly classified, although
this is generally not explicitly articulated in the fitness function.



2.2 Novelty Search

Novelty-based search heuristics are those which reward the discovery of unique
behaviors, in contrast to quality-based heuristics which reward individuals that
are believed to be closer to the domain goal. Thus quality/ goal style objec-
tives tend to reinforce cherry picking of the scenarios that are easier to solve.
The assumption being that this forms a learning gradient from which stronger
behavior develops. Conversely, a novelty style objective is more effective at
maintaining population diversity and as a consequence might lead to a better
supply of building blocks for providing a more general solution. Recent work
suggests that novelty-based fitness measures can outperform quality-based fit-
ness measures in maze navigation [5, 10, 9] since solutions are under no pressure
to cluster around local maxima in the search space. Other work has incorpo-
rated solution novelty into a Pareto multi-criteria objective function to promote
problem decomposition [8], rewarding individuals not for correctly labeling all
the data, but for labeling some unique subset of it correctly.

That said, the fact that novelty-based search places less emphasis (or none
at all) on finding goal orientated solutions raises concerns about its effects on
generalization error. It might be supposed that solutions created without any
emphasis on correctness might be correct only coincidentally rather than by
virtue of having learned a particular task, and that novelty-based search would
produce solutions that fail to generalize.

2.3 The Santa Fe Trail

The Santa Fe Trail is a widely used benchmark in genetic programming [2, 3, 4].
The problem consists of evolving a controller for an “artificial ant” on a toroidal
grid such that the ant correctly follows a trail of food. An ant solves the problem
if it eats all of the food on the grid within a certain number of time steps. At
each time step the ant can either change the direction it faces by 90 degrees, or
move forward one square. As discussed in [4], the ant problem is “deceptive”,
meaning that there are many local maxima in the space of possible controller
programs. These local maxima result from ants which loose the trail and stumble
into more food at a later point in the trail. Ants of this type are not very close
to solving the problem i.e., they are very unlikely to find the stretch of trail
that they missed within the time limit. In contrast, ants that eat more of
the trail in order may not eat as much food in total. Consequently, GP does
not perform significantly better than random search on this problem, since the
most commonly used heuristic (more food = higher fitness) is deceptive [4].
Previous work suggests that novelty-based search should be more effective in
deceptive problems [5]. Consequently, the Santa Fe Trail may be a good choice
for determining effects of novelty-based search on generalization.

In addition to being a deceptive problem, the ant trail has several advantages.
First and foremost is a previously established method of measuring generaliza-
tion error [3]. This entails generating a set of random trails which share certain
properties with the Santa Fe trail, including maximum distance between food,



shapes of corners in the trail, and density of food in the trail. The trails may
be of different lengths, and may have differing amounts of food. An ant which
has successfully learned a general solution to the Santa Fe trail should do well
on these trails, while one which has learned specialized strategies (memorizing
the turns in the trail) will not. Additionally, the Santa Fe Trail has an easily
representable space of program behaviors, namely the order in which the food
on the trail is eaten. An ant which follows the trail diligently will thus end
up with a very different behavior from one that tessellates the grid, and those
behaviors may be concisely represented and quickly compared.

3 Methodology

To test the effects of novelty-based fitness on generalization error, we considered
two different methods for determining novelty, hereafter denoted Methods 1
and 2. In this context a novel solution is one in which the ant consumes food
on the trail in a sequence that differs from all previously observed behaviors
as summarized in terms of a pair-wise similarity metric. Needless to say, the
metric employed for the pairwise comparison has a significant impact on the
quality of the resulting evaluation [1], with Hamming Distance being assumed
in this work i.e., one of the two recommended metrics identified by the earlier
study. This also raises the question as to how dissimilar individuals need to be
before they are considered novel. Two methods are considered. In Method 1
(Algorithm 1), an archive of fixed size stores “archetypes”; or solutions which
represent broad classes of behaviors. Individuals are added to the archive if
the behavioral difference between them and all archetypes is larger than the
difference between the closest pair of archetypes presently in the archive (line
7). In this case the individual will replace one of the two archetypes which are
most similar to each other, causing the inter-archetype difference to increase
monotonically over the course of a run (line 11). Archives were fixed at a size
of 100 archetypes in all runs. In Method 2 (Algorithm 4), an archive of variable
size stores archetypes that differ from each other by at least some constant
amount Ay, (as in [5, 10]). New individuals are added to the archive if their
behavior differs from that of every archetype presently in the archive by at least
Apin (line 10). In the case of both methods, individuals are awarded fitness as
a function of how far their behavior is from that of any archetype presently in
the archive, with radically different behaviors receiving the highest fitness and
those whose behavior is identical to that of some archive member receiving the
lowest fitness.

Two additional methods are now introduced to provide a relative baseline
on the performance of the purely behavioral performance functions. Method 3
uses the finite archive of Method 1 in a combined equally weighted contribution
from novelty and quality objectives, or the average of the fitness returned from
the archive method and the fitness returned by the typical “eat most food”
fitness evaluation, i.e. Fitness = Frovetty FFouatity Thus, a solution that eats all
the pieces of food in a completely unique order will have a fitness of 1; whereas



Algorithm 1 Novelty-Based Fitness Evaluation with finite archive. Returns
the fitness of an individual and adds it to the archive if it qualifies.

1: Let A be an archive storing > 0 individuals.
2: Let I be an individual.
3: procedure FITNESS(A,I)
4 mindiff=+4o00
5 for all a € A do
6: if mindiff > ham(a, I) then mindiff = ham(a, I)
7 end if > ham(. , .) (Algorithm 2)
8 end for
9 if mindiff > A.current_mindiff then
10: insert I replacing A.minidx
11: recompute_mindiff(A) > recompute_mindiff(.) (Algorithm 3)
12: end if
return mindiff
13: end procedure

Algorithm 2 Pairwise Hamming Distance Estimation.

1: Let ¢ and j be individuals

2: Let {i,j}.foodvect be vectors showing the order in which the individual ate
food

3: Let {i,j}.foodvect(n) = (x,y) iff the n"* piece of food eaten was at (z,)

4: procedure HAM(L,J)

5: if |i.foodvect| < |j.foodvect| then swap i and j

6: end if

7: hamsum = 0

8: for z = 1to|j.foodvect| do

9: if 4. foodvect # j.foodvect then hamsum-++
10: end if

11: end for

12: hamsum + = |i. foodvect| — |j. foodvect|

return hamsum
13: end procedure




Algorithm 3 Recomputing of the minimum difference between any two mem-
bers of the archive.

[y

: Let A be an archive storing > 0 individuals.
2: recompute_mindiff(A)

3: if |A| < A.maxsize then

4 A.current_mindiff = 0

5 A.minidx = A.currentsize
6: end if
7
8
9

: mindiff=+00
: for all i,j € A; where i # j do
: if mindiff > ham(4, j) then > ham(. , .) (Algorithm 2)
10: A.current_mindiff = ham(i, j)
11: A.minidx =14
12: end if
13: end for

Algorithm 4 Novelty-Based Fitness Evaluation with Infinite Archiving. Re-
turns the fitness of an individual and adds it to the archive if it qualifies.
Ayin = 10 for all our runs.

1: Let A be an archive storing > 0 individuals.
2: Let I be an individual
3: Let A,uin be a constant s.t. for ¢ and j € A, ham(i, j) >= Apnin
4: procedure FITNESS(A,I, A,in)
5 mindiff = 400
6 for all a € A do
7: if mindiff > ham(a, I') then mindiff = ham(a, I)
8 end if > ham(. , .) (Algorithm 2)
9 end for
10: if mindiff > A,,;, then insert I — A
11: end if
return mindiff
12: end procedure




Table 1: GP Parameters, based on [4, 2]

’ Parameter \ Value ‘
Terminal Set Left, Right, Move_Ahead
Function Set If Food_Ahead, Prog2, Prog3

Selection Method Stochastic Elitism
Max Time steps 400
Max Program Depth 17
Initialization “Ramped half and half”, max depth 6
Reproduction Operators 90% Mutation, 10% Reproduction
Population Size 1000
Maximum Generations 50

an individual that eats half the food in a previously observed order will have a
fitness of 0.25 (0 for having the same behavior as some archive member, 0.25
for eating half the food).

All three of the above methods were implemented with a modified version
of the lilgp package [11]. This provides us with the original code for the Santa
Fe Trail and therefore a quality-based method for fitness evaluation or items
of food eaten (Method 4). The only substantial modification made to the code
other than changing the fitness functions was to allow solutions to be run on
test environments after the completion of training.

To compare the four fitness methods, at the end of each run, the individual
who had eaten the most food was selected as the champion. We evaluated the
champions on a fixed set of 100 test trails generated according to the algorithm
in [3], with results measured in terms of the percentage of food eaten on each
trail. Each method was run with 500 unique random seeds.

We selected parameters to avoid optimizing any method at the expense of the
others. The archive size for Method 1 and A,,;, for Method 2 were selected by
trying 10 values on single runs with the same random seed and adopting the best
performing parameterization. The 10 values were selected at even intervals over
(10,200) for archive size, and (5,40) for A,,;,. The values of the other parameters
are the defaults found in the Santa Fe Trail implementation provided with [11],
with the single change of swapping crossover for mutation in the reproduction
operators, as in [4]. Table 1 summarizes the complete parameterization.

4 Results and Analysis

The results have been separated into training, testing, and generalization per-
formance. For simplicity, all results were tested for statistical significance at a
confidence level of 95%, with a Bonferroni correction used to compare the means
of each pair of samples. A Jarque-Bera test was used to determine whether data
were normally distributed. One-way ANOVA tests followed by student t-tests
were used to compare normally distributed data, while Kruskal-Wallis tests fol-
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Figure 1: Plot showing 1st, 2nd, and 3rd quartiles for the distribution of training
performance. Whiskers identify the limit of points within 1.5 times the inter
quartile distance with crosses marking any outliers.

lowed by Wilcoxon Rank-Sum tests were used to compare data which was not
normally distributed. In the graphs presented, the limited archive approach of
Method 1, the infinite archiving approach of Method 2, the combination novelty—
quality formulation of Method 3, and the standard quality-based approach of
Method 4 are denoted by the labels “Fixed Archive”, “Infinite Archive”, “Com-
bination”, and “Quality-Based” respectively.

4.1 Training Performance

We gathered training data by measuring the proportion of food eaten by each
champion individual in the training enviroment (the Santa Fe Trail). Data
from all four methods were normally distributed, and statistically significant
differences were returned between all pairs of methods (Figure 1). The quality
based function performed best, eating 66% of the food on average, compared
with 59%, 56%, and 53% for the combination, infinite archive and fixed archive
respectively. Relative to the original Santa Fe study of Koza [2] we note that
the level of performance is generally lower. However, this is in part likely due to
adopting the 400 time step limit reported by Koza whereas this was apparently
600 in his experiments (see the commentary in [4]).

4.2 Testing Performance

We produced test data by measuring the proportion of food eaten by the cham-
pion from each run on 100 test environments. The champions are compared
using summary statistics of the collected data, in particular the median, max-
imum, and minimum proportion of food eaten by each champion on the test
environments. The median performance of the champions was normally dis-
tributed for all 4 methods. We did not find a statistically significant difference
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Figure 2: Plot showing first, second and third quartiles for the distribution of
median test performance. See Figure 1 caption for interpretation of the whiskers.

between the performance of the quality-based and combination methods, but
did find significant differences between the performance of all other pairs of sam-
ples (Figure 2). Both the combination and quality-based methods consumed an
average of 35% of the food or more in at least half their runs, while the average
was only 32% for the fixed archive method, and 29% for the infinite archive
method.

Results for maximum and minimum performance were not normally dis-
tributed (Figure 3). We found significant differences between all pairs of sam-
ples for maximum performance, with no more than 78% of food being eaten
on any test enviroment, on average, for the quality-based method, 77% for the
combination method, and only 73% and 71% for the fixed and infinite archive
methods. For minimum performance, we found a statistically significant differ-
ence between the combination and infinite archive methods, and between the
quality-based method and both the fixed and infinite archive methods. On av-
erage, champions ate no less than 8% of the food on any test enviroment using
the quality-based method, 7% using the combination method, and 6% using the
fixed or infinite archiving methods.

4.3 Paired Generalization Error

The final measure considered is paired ‘generalization error’ or the relative nor-
malized? difference between training and test performance of the same individ-
ual. A drop in performance is generally assumed to appear between training
and test performance. However, as this difference increases lack of generaliza-
tion is a more likely candidate. Hence, higher positive differences are taken
as indicating that the model has learned to memorize the Santa Fe Trail in

2By ‘normalized’ we imply that the number of food items can vary under test conditions
[3], hence both training and test performance are normalized relative to the total of food items
available in that scenario.
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Figure 3: Plot showing first, second and third quartiles for the distribution of
maximum (left) and minimum (right) test performance. See Figure 1 caption
for interpretation of the whiskers.

particular; whereas negative values indicate that more food is eaten under the
test condition than in training. We found the median generalization error for
champions from all four methods to be normally distributed, with statistically
significant differences between all pairs of models (Figure 4). The fixed archive
method has the lowest median generalization error, with a difference in the pro-
portions of food eaten in the training and median test environments being 21%
on average. The combination method has a mean difference of 24%, while the
infinite archive has 27%, and the quality based method 31%.

This distribution is further emphasized by considering performance from
the perspective an interquartile distance function. Letting training and test
performance as a whole be two ‘clusters’ and comparing the normalized inter
cluster distance illustrates the degree to which test and training performance
diverge. Thus, given the standard inter cluster distance metric of,

w(test) — p(train)
Vo2 (test) + o2(train)

(1)

where p and o2 are the mean and variance of normalized ‘training’ and ‘test’ per-
formance. Figure 5 summarizes the corresponding inter cluster distance for each
fitness function. The strong correlation between training and test performance
under the Fixed archive version of novelty objective is immediately apparent.
Conversely, the Quality and Infinite archive schemes experience in the region
of a 40% decline in performance from training to test; whereas the combined
quality—novelty metric returned an intermediate decline in performance (in the
order of 20%).

10
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Figure 4: Plot showing first, second and third quartiles for the distribution
of median generalization error. See Figure 1 caption for interpretation of the
whiskers.
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Figure 5: Plot of inter cluster distance (defined in Eq. (1)) between normalized

training and test performance). Negative values express the percent by which
food counts under training exceeded that under test.
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5 Conclusions and Future Work

Taking as a starting point the Santa Fe trail as a benchmark with known de-
ceptive properties [4] and introducing the test for generalization methodology
of Kushchu [3], we evaluated a cross-section of novelty only, combined novelty
and quality, and quality only fitness functions. Several general trends are ap-
parent. The classical quality based performance metric provided the strongest
training and test performance of all methods; thus, reinforcing the view that
if a goal orientated objective can be defined for the domain in question, then
assessing performance with such an objective is still very important. A sim-
ple linear combination of novelty and quality objectives provided the next best
performance under training and test conditions. In the case of the novelty only
fitness functions, imposition of a finite archive was generally beneficial under
test conditions, but was the worst performing approach under training condi-
tions. We suspect the poor training performance to be the result of rapidly
increasing novelty requirements for entry into the archive, such that a solution
which follows the trail slightly further than its parent will receive a low fitness
value, i.e., on account of having eaten most of its food in the same order as its
parent. The higher test performance is likely due to the same factor. Since indi-
viduals cannot gain entry into the archive for following the trail, they develop an
extremely diverse set of strategies for eating the food, potentially generalizing
strategies for any trail. In particular, tessellating strategies were often observed
among the solutions from the finite archive method, but rarely observed among
solutions from the other methods.

As highlighted above, both the fixed archive and infinite archive methods
produce lower quality solutions than the traditional quality only fitness measure.
In the case of training performance, this may be in part due to the deceptive
nature of the problem. No method produced a true solution which managed
to follow the entire trail, but the quality based solutions may not have been
any closer to finding a true solution despite eating more of the food. While
previous work [5, 9, 10] suggests novelty-based search may find better solutions
sooner than quality based objective approaches in deceptive landscapes, our
work suggests that intermediate solutions produced by novelty-based approaches
may be of lower quality in terms of both training and test performance. In
problems where finding a true solution is impossible or prohibitively expensive,
this may be a concern. Indeed, purely novelty based schemes may encounter an
overhead in the time necessary to recombine independent solutions (individuals)
into a single solution that subsumes the behaviors from multiple individuals.

Future work will continue to look at the role of novelty in evolution. Earlier
work using an explicitly Pareto multi-criterion objective composition of novelty
and quality objectives indicates that such paradigms are effective at problem
decomposition as opposed to forcing solutions to take the form of a single solu-
tion [8]. Indeed, evolution through novelty only fitness functions might support
multi-level symbiotic/ teaming style models of evolution in GP. In particular, a
novelty based phase of evolution might be followed/ combined with a combina-
torial style search for the best combinations of solutions from the novelty based

12



search i.e., behaviors can exist symbiotically as independent entities within a
‘host’ individual at a higher level of representation. Models of this nature in
which fitness is shared over a quality style objective have already appeared [6],
however, doing so under purely novelty based fitness has not as yet been demon-
strated. Likewise, the use of schemes such as NEAT — as was in the case in [5]
and [10] — that explicitly support the identification and incorporation of traits
from parent individuals into the children may provide a better basis for incor-
porating initially independent behaviors into a single model. Thus, frameworks
such as NEAT and GP teaming — as opposed to canonical GP — might well be in
a better position to make use of properties developed under novelty only style
fitness functions.
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