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Abstract- Real-time control of continuous valued plants using TD(A) reinforcement learning is detail ed. This
problemis sgnificantly more difficult then the case of a discrete control space asin bang-bang or Q-learning.
The methodology employs a combination of Stochastic Real-Valued units, Mixtures of Experts and RBF
partitioning To do so the significance of both Maximum:-Likelihood and Square Error Cost functions are
emphasised, asis provision for RBF co-variances during training. The resulting architecture is demonstrated

on benchmark problems.

1. Introduction

Optimal control requires the definition o a cntrol
pdicy from the behaviour of a plant, which is not
necessrily defined in terms of a desired reference
tragjedory. Architedures applicable to gptimal
control problems are generally expressed in terms of
dired and indired schemes [1]. With dred
approaches, the parameters of the ontroller are
adapted to minimise some norm of the plant error.
Indired methods first model the plant and then
derive the relevant control law from this model.
Many examples are available for ead of these
methoddogies, in recent yeas however, the model
based/ reference gproach to indired control has
recaved alot of interest.

One of the reasons for an emphasis on indired
control is that a large body of previous work from
clasdgcal control theory is available. Moreover, the
dired approach to optimal control implies that there
is no direct error function, hence a significantly
more difficult learning problem. Such a perspedive
means that most emphasis of neural network
methods has been towards indirect control and the
satisfadion of stability criteria for regulation and
tracking problems in which the trajecory is readily
known a priori. However, the antrol problem as a
whole may be taken a stage further by including
determination of what is typicdly considered a
priori information. The problem has now became
one of identifying a minimising function in a space
of state and control trajedories, both of which are a
function of time. Again several classical approaches
are aalable eg., Calculus of Variations and
Dynamic Programming. The former is only
applicable when a complete mathematicd model of
the plant is available. The latter also requires an
analyticd model, but provides a much more robust
model of the system. Moreover the method has
recaved considerable research interest from both
the neural network and Dynamic Programming
communities, the result of which has been
techniques ach as Approximate Dynamic
Programming[2].

The defining property of such a system is the
ability to adapt through interaction with the
environment. This conforms to the dired method of
optimal adaptive control where the feedbad from
the environment, r, is not in the form of an explicit
error function, but a scdar, hence no sign or
dirediona information is available. Such afunction
may take one of two forms. magnitude done, or
binary fail/ no fail information. Any leaning system
therefore has to first identify a utility function
cgpable of providing a more descriptive st
function, [, aswell as optimising the present state.
This givesrise to a dass of methods called temporal
difference leaning, of which there ae two general
forms, TD(A) [3] and Q-learning [4]. The latter
method integrates both the estimation of the utility
function and spedfication of the current adion, but
is gedfic to binary control functions, whereas the
identification d control padlices is the objective of
this work. Moreover, TD(A) enables the division of
duties — estimation the utility function and selecting
the aurrent control policy — between two dfferent
networks.

The spedfic purpose of thiswork isto assssthe
applicability of highly partitioned feed-forward
architedures to the identificaion of rea-time
(continuous valued) dired control corntext, where
our initidl motivations are provided by the recent
interest in switching controllers [5]. To do so the
Stochastic Real Valued (SRV) unit [6] is used to
both provide a ontinuous valued ouput and support
the ACTION—CRITIC partition of duties between
seleding the aurrent control policy and estimating
the utility function (as in the AHC of Barto et al.
[7]). AcTiON and CRITIC are expressed as
hierarchicd Mixture of Expert (MOE) models,
sedion 31, with Radiad Basis Function (RBF)
partitioning of the input state space, section 33. The
adaptation of such an architecure typicdly takes the
form of a probabilistic Maximum Likelihood model
with Expectation Maximisation (EM) update
procedure. Here however, an aternative cost
function is employed, which when used with an
annealed weight updating procedure provides a



trade-off between sguare eror and Maximum
Likelihood cost functions, sedion 32.

The paper begins with a summary of the TD(A)
temporal difference learning method sedion 2 The
proposed architecture is simmarised in section 3,
and performance assessed in sedion 4. Section 5
concludes the findings.

2. TD(A) temporal difference
lear ning

In the case of TD(A), adaptive policy iteration takes
place by dividing the task into two comporents, a
predictor (CRITIC) and a regresor (ACTION), where
this may have an explicit architedural embod ment;
figure 1. The CRITIC produces a utility function,
relating states of the environment to the predicted
discount value (utility). The objective of the
regresor is to maximise the utility function, as
supplied by the predictor. The predictor leans to
cdculate spedfic pdiciesthroughatuple defining a
transition of the ewironment between previous
state, s(t — 1), current scdar reward, r, and the
current state of the environment, s(t) [2, 3, 4, 6, 7].
The aaptive rule takes one of four forms,
depending on how far in the future aprediction of
discounted pay-off is required [3], or as a general
form
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or
where 1T is the aurrent pdicy as estimated for the
temporal horizon anticipated and e is the digibility
trace (weighting over the tempora horizon in
accordancewith the received reinforcement).

The TD(A) method however, suffers from poor
scding as the temporal period over which prediction
incresses, in much the same way that
badpropagation through time dso suffers an
exponential scaling of the eror term. Moreover,
when ACTION and CRITIC are trained in tandem,
significant difficulty is experienced in selecting
appropriate  learning parameters.  Independent
predictor and regresor adaptation is therefore
appropriate in most cases, athough theoreticdly
sub-optimal. Moreover, approximations to TD(A)
have been propcsed which significantly speed the
evaluation of TD(A) cases with non-zero regency
facor [8].

In this work we are explicitly interested in the
use of partitioned network architedures to fadlitate
learning of temporal difference policies.

3. TD(A) Mixtures of Experts
M odel

As indicaed above, we desire a diread controller
applicable to continuous valued tasks in which
partitioning plays a sdignificant role in the
architecture of the controller. Several examples of

such a control system exist using genera feed-
forward architectures [9], fuzzy systems contexts
[10], combinations of the latter two [11], or genetic
agorithms [12]. The @gproach proposed here,
however, diredly incorporates the Mixtures of
Experts (MoE) paradigm. By doing so, an explicitly
probabilistic framework for training the network is
availed, where this has been shown to provide
severa feaures of gignificance to time series
modelling in addition to the &ove justifications
[13]. Moreover, the use of a priori knowledge of
any form is explicitly avoided. One of the
motivations for this work was to asessthe unaided
ability of the neural method to solve problems in a
red-time cntrol context. The resulting architedure
is most similar to the CQ-Leaning methoddogy of
Singh [14, 15], but applicable to the case of
continuous valued ouputs and makes use of a
completely stochastic leaning procedure. In the
following, the Mixtures of Experts methodology is
reviewed; sub-sedion 31. The resulting TD(A)
algorithm is described in sub-sedion 3.2.

3.1. Mixtures of Experts Architecture

The following is edfic to the standard MoE
architedure, where this is easily generalized to the
case of multiple hierarchies [16, 15]. The objedive
of the network is to partition the input region
between expert networks, such that individua
experts (or sets of experts) become responsible for
different pdlices of the antrol behaviour. A gating
network defines the relation between experts.
Specificaly, each expert is a standard feedforward
neural network (e.g. CMAC, RBF, MLP, linear
network) producing a mapping y; = fi(x), wherei is
the expert index. The gating network has as many
outputs as there ae expert networks, thus g; is the
gate for expert i. The purpose of the gate is to
estimate the probability that input x was generated
by expert network i. To provide such an
interpretation the outputs from the gate are
normalised to be positive and sum to unity, or
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where s is the weighted sum of the inputs to autput

unit i, thus in the case of a linea
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network, § = ijlvvij X; +h . Hence (1) defines

K competing probabilities as a function of the input,
X, where this competition is “soft”. The overall
output of the network is defined as the linear
combination of the epected values from each
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expert, y= Zi:lgiyi. Now if each expert is

responsible for different pattern sets, then the g;
terms become binary during adaptation.

A cost function is now required, where the
regimes for partitioning the experts is unknown



initially, hence an unsupervised learning context. A
statistical framework of the maximum likelihood
method is applicable, however, in which case it is
necessry to assume aspedfic distribution for the
measurement errors [16]. This means that a training
pattern, d, is asaumed to be aeded by a
probabilistic process in which, for each pettern
presentation, an expert is slected with prior
probability g, i.e. based on input x withou
knowledge of the target. Thus, given a regresson
basis to function prediction/ approximation, then
processes follow a statisticd model of the form, d =
yi + €, where y; is a nonlinea function of the input
and € isarandom variable. By asaiming that € has a
Gausdan dstribution, then the residuals of d —y; are
aso Gausdan, and (2) denotes the log-likelihood of
generating a particular target vedor d,
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where 0 are the free parameters of the model e.g.
expert specific variance g; and weights w;; and P(d |
X, 0) isthe expert specific conditiona probability or
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A\ 2TT 0,2 20i2

In this case e&h expert describes the mean for its
spedfic density function, where this is a function of
the input. The second parameter charaderises the
variance of the expert’s Gausdan density function;
where this is independent of the input, but specific
to the expert®.

The maximum-likelihood formulation also
provides for explicit representation of the posterior
probability throughBayes' rule, once bath input and
output are available, or

b= GPEIx6)
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Hence, in addition to the explicit partitioning d the
learning task between multiple eperts, the
combined support for both prior and posterior
probabilities gives the MOE methodology a
significant advantage over global methodologies
such as the multilayer perceptron (MLP). In
particular the problem of adaptation is divided
between a supervised element, which leans to
predict the next value, d, and an unsupervised
element, which identifies hidden regimes [13].

At this point the model has been charaderised
but the adaptive processes has not. Three basic
options exist: gradient decent, as popularised by the
badk-propagation agorithm of MLP;, the
Expectation Maximisation (EM) algorithm, a

! Weigend shows that the independent estimation of
variances for ead expert has a significant effect on
the overall performance of MoE models as applied
to time-series predictive problems [13].

general unsupervised algorithm for parameter
adaptation [13-16], and; Deterministic annealing, an
entropy minimisation procedure [17]. Dired
application of gradient decent provides the
following basic set of relations,

(1) updating expert weights: G_C = lz(d -V)
oy, O

The typica difference relation (as e in
badpropation for example) is augmented by the
posterior probability, h;, hence modulating the
significance of aweight change in proportion to the
significance of expert i. Secondly, the MoE
framework directly incorporates the significance of
the eror distribution asociated with expert i. That
isto say, when the predicted error g; is high then the
significance of the error term, d —y;, is discounted,;
whereas snall predicted errorsin the expert result in
an increased sensitivity to the differenceterm.

(2) updating gate weights: g_;: =n(h-g9)

This implies that the parameters of the gating
network are manipulated such that the posterior
probability, h;, is modelled using knowledge of the
input, x, alone.

(3) updating the variance of individual experts:
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Where this effectively adjusts the variance of an
expert, 0°, to model the sample variance, (d—y; ).

32. SRV Mixtures of
Architecture and TD(A) learning

Experts

As indicated above, the TD(A) paradigm represents
a scheme for calculating delayed payoffs in a
continuous vaued environment and may be
expresed in terms of a partitioning of the problem
into separate predictor (CRITIC) and regressor
(AcTION) networks [2, 6, 7]; figure 1. However, in
order to provide a ontinuous valued output the
ACTION-CRITIC comporents of the TD(A)
framework are formulated as the mean value of a
recommended action, y, and a variance term, o,
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Fig 1 Action — Critic architecture used to
partition the TD(A) algorithm.




respectively; i.e. a Stochastic Real Vaued (SRV)
unit [6]. Hence, the overall response is described in
terms of a Gaussian random variable,

y(t) = N(y; (1.0 (1)

with mean y and variance,
o (1) = & (1~ tanh(p(t))

The scde parameter k is slected as afunction of the
dynamic range of the gplicaion danain; i indicates
the ‘winning' expert. The am of the ACTION
network is to maximise utility, [, at the current
time step using the ntrol action, y. The CRITIC,
however, isresporsible for providing a better utility
function given the current reinforcement signal, r(t).
This is supported uwsing a combination of the
Mixtures of Expert (MOE) networks paradigm and a
very coarse partitioning of the input space There
are therefore three levels of partitioning in the
architedure (figure 2): separate CRITIC and ACTION
networks; Mixtures of Experts paradigm (where this
itself may consist of multiple layered partitions)
and; Radial Basis Function (RBF) partitioning d the
input state space

The action network expresses actions in terms of
anormal random variable, with density function,

1 B .oy-y[E
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The leaning rule is derived from the stochastic
gradient relation,
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The first term on the right is the appropriate TD(A)
poicy function [3] whereas the second term is
dependent on the st function of the regressor
network, in this case the MoE architedure. As
indicaed in sedion 2 the ast function of a MoE
model typically takes the form of a Maximum
Likelihood estimator; c.f. equation (2). The basis for
this dedsion is that, on a aoss ction of problems
the dgorithm functions well and enjoys an efficient
update rulein the form of the EM agorithm [13-16].
However, an explicit regresson context implies that
retaining a cost function based onthe square aror is
aso judtified. Here a different starting point is
employed, in particular Nowlan's Soft-Weight-
Sharing (SWS) scheme [18]. The initia objediveis
to incorporate penalties into the st function
regarding the values that the free parameters are
alowed to take. Spedficdly a Gausdan mixture
model is used to describe the mixing proportions of
network weights. In the spedfic case where it is
desirable to push small weights to zero without
forcing large weights away from their required
values Nowlan uses a prior P(w) which is a mixture
of narrow and broad Gaussans, or
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I
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SRV + Mixtures of
RBF Experts

Fig 2 Network Architecture
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where m, and m, represent the mixing propartions
of the candidate Gaussans and are therefore
constrained to sum to positive values with a total
value of unity. This provides a framework for
modelling the value weights may take in terms of
the onditional probability that weight w, was
creded by a specific Gausgan mixture. Naturaly
the concept of what denotes useful and not useful
weightsis applicaion spedfic, hence acost function
is required which provides for the manipulation of
the mixture mean and variance during leaning.
Such a st functionis of the form [18],

T
C_a_jpza(y(p) d(p))2
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Here the objective is nat to adapt weights through
the soft-weight-sharing concept, but to adapt
experts. The st function is therefore reinterpreted
as follows. Firstly, the mixture prior of (4) is
equivalent to the output of the respective gating
network, g;, whereas the probabil ity density function
in the second term on the right of (4) is replaced by
the maximum likelihood model of the network
response, as in the ase of Jordan’s origina
formulation of the MoE cost function. This provides
the required sum square st function which, when



combined with a stochastic update rule, in this case
the SolisWetts agorithm below, reflects both a
competitive and co-operative evolution of the expert
model, or in the cae of the ACTION network,
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The first term on the right represents the required
sguare error cost with resped to expert i, the second
is the mixture associated with expert i, and the third
is a weight decay term. The associated weight
changeistherefore,
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where d is a suitable @nstant, h; is the posterior
probability and k is the maximum value output y
may take. The gate network is therefore still
responsible for alocating experts to specific regions
of theinput space, asin the ase of the original MoE
definition d the learningrule.

A similar process is true for the CRITIC MOE
producing a learning rule based on SWS aore. In
this case theinitial cost function takes the form,

C= %(71)2 -In Z g, exd— (n)z) (6)

where Tt is the gpropriate TD(A) policy function
[3].

Hence the CRITIC and ACTION networks are
trained independently of ead ather and the overal
system is adapted with a SolisWetts dochastic
update processof the form,

D) 1f E(wWK + AwK) < E(wK) then wKt 1 = wK + AnK
i) If E(wK — AwK) < E(wK) < E(wK + AwK) then

wkt 1= WK ank

iii) For the case that neither is stisfied wkt1 = wK
where E isthe aror asafunction d weight, wK, and
the crresponding weight change AwK at the kth
step.

3.3. Radial Basis Function Partitioning

The MOE paradigm provides a framework for
mixing expert actions. However, in oder to
fadlitate an environment for formulating policiesin
a tempora environment withou remurse to
reaurrent interconneds, explicit partitioning of the
input space is dill necessary. Specificaly, a
Gausdgan basis function is employed, where an
interest lies in assessng the significance of tuning
the variance term. To this end, two architectures

tested: the isotropic Gausdan (non-generalised) and
the weighted norm (generalised) formulation.

In the cae of the nongeneralised Gausdan, the
normalised radial basis function, G([)}, centred at t;,

Glpx-t])=expt-M -t

where M isthe number of centres, d isthe maximum
distance between the cosen centres and i takes
values{1,..,M}. The width of all Gausgan functions

are ssdgned wsing, 0 = d/\/ 2M .The generalized

RBF formulation dredly incorporates the -
varianceterm, thus,

2)_ T —
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with the inverse variance (covariance) matrix X
defined by,%zrlchci where Cj is a square

norm diagonal weighted matrix. The effed that this
parameter has is to assgn a weight factor to each
input condition charaderizing its importance to the
control action. Centre and covariance estimation
occurs twice during the training cycle, sedion 3.4.
In both ceses, centres are positioned using
competitive clustering with data derived by the
ACTION—CRITIC interaction. Naturally, cdculation of
the inverse variance matrix employs the same data
as the one used to position the RBF centres
maintaining compatibility. To avoid any large
valued parameters dominating the inverse matrix
and conceding important information, the final
product is normalised.

3.4. Overall training regime

The integration of the gross RBF partitioning o the
input space with the MoE model takes the following
form. Firstly it is noted that partitions of the input
space shodd reflect the frequency of the states
visited by the cntroller. Furthermore, the frequency
with which spedfic states are visited is likely to
change & a function of the mntroller’s progresson
through the various gages of training. This means
that the dustering process is performed twice once
before pre-training and once dter pre-training is

compl eted.
1. Cluster the input space using an arbitrary force
generator;

2. Pretraining o the cRITIC network for the set of
initial conditions;

3. Pretraining of the ACTION network for the set
of initial conditions;

4. Re-clustering o the input space using the pre-
trained ACTION network resporses;

5. Repea steps (2) and (3) for the complete set of
training conditions.

In the following evaluation three basic contexts
are mnsidered. In the first case the MoE networks,
figure 2, are replaced by MLPs. In the second case,
denoted ME in the following, the CRITIC MOE is
trained using the standard probabilistic cost function



(2), diredly applied to the reinforcement signa r,
(3). Training the ACTION network uses the SW'S cost
function, (5). In the third case, referred to as SWSin
the following, the CRITIC is also trained using an
SWS cost function, (6).

4. Performance Evaluation

A widely used neural network benchmark employed
for the assessment of dired and indired optimal
controllers is the inverted pendulum problem [10-
12, 19]. The mngtraints that define the operating
window (non-failure condition) of the plant are:
+12° degrees for the angle; horizontal range of
operation d +2.4 meters, while force must not
excea +10 N. If any of these parameters are
excealed, the reinforcement signa from the
environment is -1 indicating failure, while for al the
other conditionsit is 1, indicating success Given the
widespreal knowledge of the problem we will limit
our comments to spedfics of the gproach
employed here.
In the case of this work the environment the
network is sibjeded to takes the following form,
= No clasdcal control policy is asaumed: the
network is diredly applied to the environment.

= The leaning to learn nothing scenario is
explicitly forbidden: Adaptation orly takes
place when the pole position lies outside +/— 3°
of the vertical and +/- 0.6m of the trac centre.

= The ontroller is required to produce a
continuous control adion.

= Training and test data sets are independent: as
is the norm with conducting a datisticd
experiment, the training and test sets are
unique, but sampled such that the training set
does cover the region of operation; tables 1 and
2 respectively.

The training cycle of the network employs the

patterns of table 1 and is completed when all satisfy

the stopping criteria, section 4.1. Generalisation is

asesed by examining performance over the 32

different initial conditions sown in table 2.

The following study examines three different
network scenarios in order to assessthe impad of
generalised RBF, hierarchica architedures, and
their contribution to the mntrol capabilities of the
neural network. Consequently, the achitectures
examined are: (i) an MLP network using an SRV
output layer [9]; (ii) a non-hierarchicd MoE
network employing the generalised RBF; (iii) the
hierarchicd counterpart of (ii); and (iv) the non-
generalised RBF counter parts of (ii) and (iii). In
case (i) a single hidden layer MLP is employed in
the cRITIC and ACTION components of the SRV
architedure [9]. In the remaining cases, linear
experts and gating networks are enployed.

The second benchmark problem employed is that
of reversing atruck [19-22]. Thisis afundamentally
different application both in terms of plant dynamics

and the number of temporal steps before payoff is
attained. Error criteria now take the form of the
degreeof deviation from the ideal docking location.
Moreover, two versions are assessd for this
application, direct application of the proposed
architedure and a PID formulation in which the
network provides estimates of the P and D terms
(constant of the integral term is fixed to 0.1), but
gill within the context of optimal control (no a
priori plant model). Use of such a nrfiguration
enables further partitioning of the problem into
separate networks for P and D parameters.
Moreover, given the long period of latency between
payoff and starting condition, weight updating is
only performed on the transition between RBF
partitions of the input (state-) space. The typicd
approach to solving this problem is to either apply
an indired methodology or to employ significant
amounts of a priori information to simplify the
problem. As indicaed above the interest in this
work lies in assessng the aility of the network
alore.

4.1. Test 1 — Pole balance

Networks are evaluated from the perspective of
training requirements (CPU time), robustness to
initialisation (10 different initialisation per network)
and generalisation ability. In the latter cese
generdisation is judged from the nature of the
control adion, where this leads to a threshold of
30,000 simulation steps (equivaent to 10 minutes
simulated time) withou encountering failure. Figure
3 provides an example of such a mndition, where
this adion is desired for al test and training
conditions. Moreover, this criteria is different from
that used else where, for example [12], in which the
generalisation test is limited to the network lasting
1000 iterations (20 seconds) withou encountering a
failure condition. In this case using such a test for
generalisation would result in all networks fulfilling
the generalisation criteria.

Generalisation is aimmarised intables3and 4 in
terms of the percentage number of initialisations
satisfying the above anwvergence criteria, and T-test
of independence. From table 3 row 1, it is evident
that the MLP based SRV network is unable to
provide a sustainable control adion. Moreover in
the cae of the non-generalised RBF partitioning o
the input space a significant degree of sensitivity
towards the initia conditionsis gill observed; MoE
rows 2 and 3 and hierarchicdl MoE 6 and 7.
Furthermore, due to the larger architecture of the
hierarchicd MoE networks (i.e. a larger number of
initidlised  parameters), the  non-generalised
hierarchicd MOE case actudly performs
consistently worse than the nonthierarchicd case.
However, findings of rows 8 and 9, representing the
generalised hierarchical versions, demonstrate
sustainable ntrol actions irrespedive of the input
patterns  and initial conditions. Thus, the



combination of Generalised RBF partitioning and
the hierarchicd architedure gpea to provide best-
case generalisation.

Table 1: Pole balancetraining set

Position Angle Angular Linear
inmeters | in degrees velocity velocity
rad/ sec m/sec
-2.2 11 -18 9
-1.6 8 -13.0909 6.5455
-1 5 -8.1818 4.0909
1 -5 8.1818 -4.0909
1.6 -8 13.0909 -6.5455
2.2 -11 18 -9

Table 2: Pole balancetest set

Distance Angle Distance Angle
in meters in degrees in meters in degrees
+-1 0 +/-0 +/-5
+/- 2.5 +/- 0.6
+/-5.5 +/- 1.6
+/-7.5 +/-2.2

+/- 10

Table 3: % Converging instances on Pole-balance

Algorithm (all use ACTOR-CRITIC) Test

MLP 0%

Linear Non-Generalised SWS-ME 16%
Linear Non-Generalised SWS-SWS 31%
Linear Generalised SWS-ME 70%
Linear Generalised SWS-SWS 70%
Hierarchicd Non-Generalised SWS-ME 23%
Hierarchicd Non-Generalised SWS-SWS 16%
Hierarchicd Generalised SWS-ME 100%
Hierarchicd Generalised SWS-SWS 100%

Table 4: T-test on pole-balance CPU requirements.
Algorithms Pairwise compared Iter. | Sec
Linear Generalised SWS-ME Vs 27 88
Linear Generalised SWS-SWS
Hierarchicd Non-Generalised SWS-ME Vs | 3.6 5
Hierarchicd Non-Generalised SWS-SWS
Hierarchicd Generalised SWS-ME Vs 0 0
Hierarchicd Generalised SWS-SWS

I = O T
1=}
=)

o
)

) 4 10" 5 0 1 2 3 410 5

@ (b)

005

-0.05 5
5 001

1 2 3 410 5 0 1 2 3
© _ @
Fig 3: Example converging control adion.
Key: (a) angular velocity; (b) cart position; (c) linear velocity; (d)
controller force
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Training requirements are summarised in terms
of the mean CPU time, figure 4, and T-test for the

hypothesis that sample means are the same, table 4.
In terms of the MLP network, column 1 figure 4, it
appears as the least demanding, principaly due to
use of a gradient decent learning rule. In the case of
the other architecures, remaining columns of figure
4, it appeas that the charaderistic of most influence
is the senditivity of the network to the initia
conditions. That is to say, the non-generalised MoE
networks tend to converge with a lower number of
iterations, particularly in the case of the non-
hierarchicd case, where this is also the most
sensitive to initialisation (vis-a-vis generalisation).
Moreover, from the hypothesis tests of table 5 it is
apparent that the cost function also has a significant
effed on convergence. Cases employing the SWS
cost function are significantly faster than networks
trained based onthe ME function.

Consideration of the aforementioned findings
indicates that the square aror cost function (SWS)
in combination with the hierarchicd MoE
architedure and generalised RBF partitioning
provides the same degree of generalisation and
robustness at a lower level of a priori information
[10-12].

4.2 Test 2—Truck reverse

Asindicaed in sedion 4, the truck reversal problem

requires credit assgnment over a much longer

temporal horizon. With thisin mind four versions of
the system are mnsidered,

1. Unsampled — this is the hierarchical system as
employed in the pd e balance example;

2. Sampled — in this case weight updating of the
experts only occurs when the currently adive
basis function changes. Thus rather than
attempting to update weights at every step, t,
the system samples the state space when basis
functions deted a shift in the state space(with
respect to the previous RBF condition);

3. Recurrent — the gate of the Mixtures of Expert
networks (one in each layer of the hierarchy)
are provided with recurrent interconnect [23];

4. PI(D) — a PID controller methodology is
asaimed in order to aid identification of
suitable control adions over a long tempora
horizon. The network, as defined above, is
trained to tune the P parameter of a Pl
controller. The derivative mmporent is then
identified using a second ACTION network,
trained using the criTIC of the PI network in
feal forward mode (provides derivative signal).
Thisresultsin apair of networks which operate
in parallel tuning the PID cortroller.

In the latter case the PID relation if of the form,

u(t) = u(t— 1) + Ke{ [(y(t) —y(t — 1] + K, y(t)

+ Kp[y(t) — 2y(t - 1) + y(t - 2]}
where u isthe truck steering signal; d isthe distance
to the target stop location; and Kp, Ky are the
controller constants sort using a neural network (K
remains fixed at 0.1 [24]).



250

200

150

100

Seconds

50

1 2 3 4 5 6 7 8 9

Fig 4 Mean CPU requirements to convergence

#1 MLP, #2 Linear non-generalised ME network, #3 Linear non-
generalised SWS network #4 Linea generdised RBF ME
network, #5 Linea generalised RBF SWS network, #6
Hierarchicad non-generalised RBF ME network, #7 Hierarchical
non-generalised RBF SWS network, #8 Hierarchical generalised
RBF ME network, #9 Hierarchicd generdised RBF SWS
network

Docking Error of the Lorry

Maximum

Mnumum

=Average

Percent Error in Rar

FW +

] |

1 2 3 4 5 6 7 8 9 10

Controller Configuration

Fig 5: Truck Controller Docking Error — Percent of

total Range.
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Low Level Sampled, #4 : High Level Sampled, #5 : Pl network
non-sampled non-reaurrent, #6 : PID equivalent of 6, #7 : Pl
network sampled non-reaurrent, #8 : PID equivalent of 7, #9: PI
network sampled reaurrent, #10: PID equivalent of 10.

Hence, it is the responsibility of the network(s)
to identify the mixing relation between propartional,
integral and derivative components of the control
poicy [24]. Moreover the approach used here
differs from previous Neural-PID controllers in
which the model is explicitly limited to conditions
in which there is a one-to-one relationship between
input and output variables [25].

Figure 5, columns 1 and 2, describe the base-line
performance of the system as directly applied,
whereas columns 3 and 4 are the same system but
with subsampling. Introduction of a classca Pl and
PID configurations, but without sampling, (columns
5 and 6), results in less ensitivity to the initial
conditions, but withou improving the overall
accuracy of the system. Introduction of reaurrency
into the gate of the MoE networks (columns 7 and
8), results in a strong preference for a full PID
configuration. Adding sampling d the state-spacein
addition to recurrency makes little further
improvement.

In summary, performance of the diredly applied
hierarchicd neura network is only bettered when a
further level of partitioning is introduced, c.f. the
full PID configuration, as oppose to the Pl controller
alore. Moreover, sub-sampling does not appea to
improve performance

5. Conclusion

An architedure for real-time ontrol of continuous

non-linear plants is propcsed in which significant

use of partitioning is employed. Three contributions

are made,

= The significance of different cost functions is
emphasised, in paticular the maximum
likelihood cost function typicdly employed by
the MoOE architecture provides a probabilistic
framework for adapting the model, a feaure
which, when used in conjunction with the EM
learning algorithm, provides a very efficient
adaptive system. Conversely, retaining a square
error cost function provides a very good
regresson network, where the use of anneded
learning schedules helps to mitigate the dfect of
the increased complexity of the sum square cost
function. Moreover, combined sum square —
maximum likelihood cost functions provide both
good regresson capabilities and alow
incorporation of probabilistic terminology that
naturally supports the representation of
measurement  uncertainty and  transition
probabilities as frequently the case for temporal
domains.

= The significance of tuning the RBF co-variance
parameter is emphasised and demonstrated
empirically in terms of the simulation study. It is
shown that for the same set of Gaussian centres,
support for co-variance terms has a major
influence on the quality of the partitions
identified by the following MoE framework.

= Value iteration using the TD(A)framework is
extended to incorporate generalisation bdh in
terms of a red-vaued output, SRV ACTION—

CRITIC partition, and in terms of a piecevise

linear decomposition of the problem into

successvely smaller time intervals over which
the controlling function remains unchanged.

The acompanying empirical study demonstrates
the ability of the architedure, to both identify
solutions quickly, and to generalise the solution
independent of initial conditions, whilst aso
supporting transparency in the solutions identified.
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