
 

1. Introduction 
Optimal control requires the definition of a control 
policy from the behaviour of a plant, which is not 
necessarily defined in terms of a desired reference 
trajectory. Architectures applicable to optimal 
control problems are generally expressed in terms of 
direct and indirect schemes [1]. With direct 
approaches, the parameters of the controller are 
adapted to minimise some norm of the plant error. 
Indirect methods first model the plant and then 
derive the relevant control law from this model. 
Many examples are avail able for each of these 
methodologies, in recent years however, the model 
based/ reference approach to indirect control has 
received a lot of interest. 

One of the reasons for an emphasis on indirect 
control is that a large body of previous work from 
classical control theory is available. Moreover, the 
direct approach to optimal control implies that there 
is no direct error function, hence a significantly 
more difficult learning problem. Such a perspective 
means that most emphasis of neural network 
methods has been towards indirect control and the 
satisfaction of stabili ty criteria for regulation and 
tracking problems in which the trajectory is readily 
known a priori. However, the control problem as a 
whole may be taken a stage further by including 
determination of what is typically considered a 
priori information. The problem has now became 
one of identifying a minimising function in a space 
of state and control trajectories, both of which are a 
function of time. Again several classical approaches 
are available e.g., Calculus of Variations and 
Dynamic Programming. The former is only 
applicable when a complete mathematical model of 
the plant is available. The latter also requires an 
analytical model, but provides a much more robust 
model of the system. Moreover the method has 
received considerable research interest from both 
the neural network and Dynamic Programming 
communities, the result of which has been 
techniques such as Approximate Dynamic 
Programming [2].  

The defining property of such a system is the 
ability to adapt through interaction with the 
environment. This conforms to the direct method of 
optimal adaptive control where the feedback from 
the environment, r, is not in the form of an explicit 
error function, but a scalar, hence no sign or 
directional information is available. Such a function 
may take one of two forms: magnitude alone, or 
binary fail/ no fail information. Any learning system 
therefore has to first identify a utility function 
capable of providing a more descriptive cost 
function, r̂ , as well as optimising the present state. 
This gives rise to a class of methods called temporal 
difference learning, of which there are two general 
forms, TD(λ) [3] and Q-learning [4]. The latter 
method integrates both the estimation of the utili ty 
function and specification of the current action, but 
is specific to binary control functions, whereas the 
identification of control polices is the objective of 
this work. Moreover, TD(λ) enables the division of 
duties – estimation the util ity function and selecting 
the current control policy – between two different 
networks. 

The specific purpose of this work is to assess the 
applicabili ty of highly partitioned feed-forward 
architectures to the identification of real-time 
(continuous valued) direct control context, where 
our initial motivations are provided by the recent 
interest in switching controllers [5]. To do so the 
Stochastic Real Valued (SRV) unit [6] is used to 
both provide a continuous valued output and support 
the ACTION–CRITIC partition of duties between 
selecting the current control policy and estimating 
the utili ty function (as in the AHC of Barto et al. 
[7]). ACTION and CRITIC are expressed as 
hierarchical Mixture of Expert (MoE) models, 
section 3.1, with Radial Basis Function (RBF) 
partitioning of the input state space, section 3.3. The 
adaptation of such an architecture typically takes the 
form of a probabil istic Maximum Likelihood model 
with Expectation Maximisation (EM) update 
procedure. Here however, an alternative cost 
function is employed, which when used with an 
annealed weight updating procedure provides a 
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trade-off between square error and Maximum 
Likelihood cost functions, section 3.2. 

The paper begins with a summary of the TD(λ) 
temporal difference learning method, section 2. The 
proposed architecture is summarised in section 3, 
and performance assessed in section 4. Section 5 
concludes the findings. 

2. TD(λλ) temporal difference 
learning 
In the case of TD(λ), adaptive policy iteration takes 
place by dividing the task into two components, a 
predictor (CRITIC) and a regressor (ACTION), where 
this may have an explicit architectural embodiment; 
figure 1. The CRITIC produces a utili ty function, 
relating states of the environment to the predicted 
discount value (utility). The objective of the 
regressor is to maximise the util ity function, as 
supplied by the predictor. The predictor learns to 
calculate specific policies through a tuple defining a 
transition of the environment between previous 
state, s(t – 1), current scalar reward, r, and the 
current state of the environment, s(t) [2, 3, 4, 6, 7]. 
The adaptive rule takes one of four forms, 
depending on how far in the future a prediction of 
discounted pay-off is required [3], or as a general 
form 
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where π is the current policy as estimated for the 
temporal horizon anticipated and eπ is the eligibility 
trace (weighting over the temporal horizon in 
accordance with the received reinforcement). 

The TD(λ) method however, suffers from poor 
scaling as the temporal period over which prediction 
increases, in much the same way that 
backpropagation through time also suffers an 
exponential scaling of the error term. Moreover, 
when ACTION and CRITIC are trained in tandem, 
significant diff iculty is experienced in selecting 
appropriate learning parameters. Independent 
predictor and regressor adaptation is therefore 
appropriate in most cases, although theoretically 
sub-optimal. Moreover, approximations to TD(λ) 
have been proposed which significantly speed the 
evaluation of TD(λ) cases with non-zero regency 
factor [8]. 

In this work we are explicitly interested in the 
use of partitioned network architectures to facilitate 
learning of temporal difference policies. 

3. TD(λλ) Mixtures of Experts 
Model 
As indicated above, we desire a direct controller 
applicable to continuous valued tasks in which 
partitioning plays a significant role in the 
architecture of the controller. Several examples of 

such a control system exist using general feed-
forward architectures [9], fuzzy systems contexts 
[10], combinations of the latter two [11], or genetic 
algorithms [12]. The approach proposed here, 
however, directly incorporates the Mixtures of 
Experts (MoE) paradigm. By doing so, an explicitly 
probabilistic framework for training the network is 
availed, where this has been shown to provide 
several features of significance to time series 
modelling in addition to the above justifications 
[13]. Moreover, the use of a priori knowledge of 
any form is expli citly avoided. One of the 
motivations for this work was to assess the unaided 
ability of the neural method to solve problems in a 
real-time control context. The resulting architecture 
is most similar to the CQ-Learning methodology of 
Singh [14, 15], but applicable to the case of 
continuous valued outputs and makes use of a 
completely stochastic learning procedure. In the 
following, the Mixtures of Experts methodology is 
reviewed; sub-section 3.1. The resulting TD(λ) 
algorithm is described in sub-section 3.2. 

3.1. M ixtures of Exper ts Architecture 

The following is specific to the standard MoE 
architecture, where this is easily generalized to the 
case of multiple hierarchies [16, 15]. The objective 
of the network is to partition the input region 
between expert networks, such that individual 
experts (or sets of experts) become responsible for 
different polices of the control behaviour. A gating 
network defines the relation between experts. 
Specifically, each expert is a standard feedforward 
neural network (e.g. CMAC, RBF, MLP, linear 
network) producing a mapping yi = fi(x), where i is 
the expert index. The gating network has as many 
outputs as there are expert networks, thus gi is the 
gate for expert i. The purpose of the gate is to 
estimate the probabil ity that input x was generated 
by expert network i. To provide such an 
interpretation the outputs from the gate are 
normalised to be positive and sum to unity, or 
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where si is the weighted sum of the inputs to output 
unit i, thus in the case of a linear 
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. Hence (1) defines 

K competing probabilities as a function of the input, 
x, where this competition is “soft” . The overall 
output of the network is defined as the linear 
combination of the expected values from each 

expert, y ∑ =
= K
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1

. Now if each expert is 

responsible for different pattern sets, then the gi 
terms become binary during adaptation. 

A cost function is now required, where the 
regimes for partitioning the experts is unknown 



 

initially, hence an unsupervised learning context. A 
statistical framework of the maximum likelihood 
method is appli cable, however, in which case it is 
necessary to assume a specific distribution for the 
measurement errors [16]. This means that a training 
pattern, d, is assumed to be created by a 
probabilistic process in which, for each pattern 
presentation, an expert is selected with prior 
probability gi, i.e. based on input x without 
knowledge of the target. Thus, given a regression 
basis to function prediction/ approximation, then 
processes follow a statistical model of the form, d = 
yi + ε, where yi is a nonlinear function of the input 
and ε is a random variable. By assuming that ε has a 
Gaussian distribution, then the residuals of d – yi are 
also Gaussian, and (2) denotes the log-likeli hood of 
generating a particular target vector d, 
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where θ are the free parameters of the model e.g. 
expert specific variance σi and weights wi; and P(d | 
x, θ) is the expert specific conditional probability or 
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In this case each expert describes the mean for its 
specific density function, where this is a function of 
the input. The second parameter characterises the 
variance of the expert’s Gaussian density function; 
where this is independent of the input, but specific 
to the expert1. 

The maximum-likeli hood formulation also 
provides for explicit representation of the posterior 
probability through Bayes’ rule, once both input and 
output are available, or 
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Hence, in addition to the explicit partitioning of the 
learning task between multiple experts, the 
combined support for both prior and posterior 
probabilities gives the MoE methodology a 
significant advantage over global methodologies 
such as the multilayer perceptron (MLP). In 
particular the problem of adaptation is divided 
between a supervised element, which learns to 
predict the next value, d, and an unsupervised 
element, which identifies hidden regimes [13]. 

At this point the model has been characterised 
but the adaptive processes has not. Three basic 
options exist: gradient decent, as popularised by the 
back-propagation algorithm of MLP; the 
Expectation Maximisation (EM) algorithm, a 

                                                           
1 Weigend shows that the independent estimation of 
variances for each expert has a significant effect on 
the overall performance of MoE models as applied 
to time-series predictive problems [13]. 

general unsupervised algorithm for parameter 
adaptation [13-16], and; Deterministic annealing, an 
entropy minimisation procedure [17]. Direct 
application of gradient decent provides the 
following basic set of relations, 
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The typical difference relation (as seen in 
backpropation for example) is augmented by the 
posterior probability, hi, hence modulating the 
significance of a weight change in proportion to the 
significance of expert i. Secondly, the MoE 
framework directly incorporates the significance of 
the error distribution associated with expert i. That 
is to say, when the predicted error σi is high then the 
significance of the error term, d – yi, is discounted; 
whereas small predicted errors in the expert result in 
an increased sensitivity to the difference term. 

(2) updating gate weights: )( ii
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This implies that the parameters of the gating 
network are manipulated such that the posterior 
probability, hi, is modelled using knowledge of the 
input, x, alone. 
(3) updating the variance of individual experts: 
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Where this effectively adjusts the variance of an 
expert, σ2, to model the sample variance, ( d – yi )

2. 

3.2. SRV Mixtures of Exper ts 
Architecture and TD(λλ) learning 

As indicated above, the TD(λ) paradigm represents 
a scheme for calculating delayed payoffs in a 
continuous valued environment and may be 
expressed in terms of a partitioning of the problem 
into separate predictor (CRITIC) and regressor 
(ACTION) networks [2, 6, 7]; figure 1. However, in 
order to provide a continuous valued output the 
ACTION−CRITIC components of the TD(λ) 
framework are formulated as the mean value of a 
recommended action, y, and a variance term, σ, 

CRITIC 

ACTION 

r̂  

 y 

r 
 
 
s 

Fig 1: Action – Critic architecture used to 
partition the TD(λ) algorithm. 



 

respectively; i.e. a Stochastic Real Valued (SRV) 
unit [6]. Hence, the overall response is described in 
terms of a Gaussian random variable,  

))(),(()(ˆ ttyNty i σ=  

with mean y and variance, 
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The scale parameter k is selected as a function of the 
dynamic range of the application domain; i indicates 
the ‘winning’ expert. The aim of the ACTION 
network is to maximise utility, r̂ , at the current 
time step using the control action, y. The CRITIC, 
however, is responsible for providing a better util ity 
function given the current reinforcement signal, r(t). 
This is supported using a combination of the 
Mixtures of Expert (MoE) networks paradigm and a 
very coarse partitioning of the input space. There 
are therefore three levels of partitioning in the 
architecture (figure 2): separate CRITIC and ACTION 

networks; Mixtures of Experts paradigm (where this 
itself may consist of multiple layered partitions) 
and; Radial Basis Function (RBF) partitioning of the 
input state space. 

The action network expresses actions in terms of 
a normal random variable, with density function, 
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The learning rule is derived from the stochastic 
gradient relation, 
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The first term on the right is the appropriate TD(λ) 
policy function [3] whereas the second term is 
dependent on the cost function of the regressor 
network, in this case the MoE architecture. As 
indicated in section 2 the cost function of a MoE 
model typically takes the form of a Maximum 
Likelihood estimator; c.f. equation (2). The basis for 
this decision is that, on a cross section of problems 
the algorithm functions well and enjoys an efficient 
update rule in the form of the EM algorithm [13-16]. 
However, an explicit regression context implies that 
retaining a cost function based on the square error is 
also justified. Here a different starting point is 
employed, in particular Nowlan’s Soft-Weight-
Sharing (SWS) scheme [18]. The initial objective is 
to incorporate penalties into the cost function 
regarding the values that the free parameters are 
allowed to take. Specifically a Gaussian mixture 
model is used to describe the mixing proportions of 
network weights. In the specific case where it is 
desirable to push small weights to zero without 
forcing large weights away from their required 
values Nowlan uses a prior P(w) which is a mixture 
of narrow and broad Gaussians, or 
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where mn and mb represent the mixing proportions 
of the candidate Gaussians and are therefore 
constrained to sum to positive values with a total 
value of unity. This provides a framework for 
modelling the value weights may take in terms of 
the conditional probability that weight wj was 
created by a specific Gaussian mixture. Naturally 
the concept of what denotes useful and not useful 
weights is application specific, hence a cost function 
is required which provides for the manipulation of 
the mixture mean and variance during learning. 
Such a cost function is of the form [18], 
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Here the objective is not to adapt weights through 
the soft-weight-sharing concept, but to adapt 
experts. The cost function is therefore reinterpreted 
as foll ows. Firstly, the mixture prior of (4) is 
equivalent to the output of the respective gating 
network, gi, whereas the probabil ity density function 
in the second term on the right of (4) is replaced by 
the maximum likeli hood model of the network 
response, as in the case of Jordan’s original 
formulation of the MoE cost function. This provides 
the required sum square cost function which, when 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2: Network Architecture 

� � � � �
� � � � 	


 � �  � �
� � � � �

� �  �  �
� � � � � �

� � � �
Environ-

ment 

� � � � � � �  ! " # $ % &
' � ( # "  $

� � �

� ) *

y(t) 

σ(t) 
 
r(t) 
 
x(t+1) 



 

combined with a stochastic update rule, in this case 
the Solis-Wetts algorithm below, reflects both a 
competitive and co-operative evolution of the expert 
model, or in the case of the ACTION network,  
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The first term on the right represents the required 
square error cost with respect to expert i, the second 
is the mixture associated with expert i, and the third 
is a weight decay term. The associated weight 
change is therefore, 

×
∂
∂=

∂
∂

C

r

y

r

i

 

( ) 











+
+





 −−− 222

1

)(2ˆ
)ˆ(

ky

kyyy
hyy

i

ii
ii α

σ
η  (5) 

where α is a suitable constant, hi is the posterior 
probability and k is the maximum value output y 
may take. The gate network is therefore stil l 
responsible for allocating experts to specific regions 
of the input space, as in the case of the original MoE 
definition of the learning rule. 

A similar process is true for the CRITIC MoE 
producing a learning rule based on SWS alone. In 
this case the initial cost function takes the form, 
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where π is the appropriate TD(λ) policy function 
[3]. 

Hence the CRITIC and ACTION networks are 
trained independently of each other and the overall 
system is adapted with a Soli s-Wetts stochastic 
update process of the form, 

i) If E(wk + ∆wk) < E(wk) then wk+1 = wk + ∆wk. 

i i) If E(wk – ∆wk) < E(wk) < E(wk + ∆wk) then 

wk+1 = wk – ∆wk. 

i ii) For the case that neither is satisfied wk+1 = wk. 

where E is the error as a function of weight, wk, and 

the corresponding weight change ∆wk at the kth 
step. 

3.3. Radial Basis Function Par titioning 

The MoE paradigm provides a framework for 
mixing expert actions. However, in order to 
facili tate an environment for formulating poli cies in 
a temporal environment without recourse to 
recurrent interconnects, explicit partitioning of the 
input space is still necessary. Specifically, a 
Gaussian basis function is employed, where an 
interest lies in assessing the significance of tuning 
the variance term. To this end, two architectures 

tested: the isotropic Gaussian (non-generalised) and 
the weighted norm (generalised) formulation. 

In the case of the non-generalised Gaussian, the 
normalised radial basis function, G(⋅), centred at ti, 
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where M is the number of centres, d is the maximum 
distance between the chosen centres and i takes 
values { 1,..,M} . The width of all Gaussian functions 

are assigned using, Md 2=σ .The generalized 

RBF formulation directly incorporates the co-
variance term, thus, 
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with the inverse variance (covariance) matrix Σ 

defined by,
1

2
1Σ i i

T
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norm diagonal weighted matrix. The effect that this 
parameter has is to assign a weight factor to each 
input condition characterizing its importance to the 
control action. Centre and covariance estimation 
occurs twice during the training cycle, section 3.4. 
In both cases, centres are positioned using 
competitive clustering with data derived by the 
ACTION–CRITIC interaction. Naturally, calculation of 
the inverse variance matrix employs the same data 
as the one used to position the RBF centres 
maintaining compatibility. To avoid any large 
valued parameters dominating the inverse matrix 
and concealing important information, the final 
product is normalised. 

3.4. Overall training regime 

The integration of the gross RBF partitioning of the 
input space with the MoE model takes the following 
form. Firstly it is noted that partitions of the input 
space should reflect the frequency of the states 
visited by the controller. Furthermore, the frequency 
with which specific states are visited is likely to 
change as a function of the controller’s progression 
through the various stages of training. This means 
that the clustering process is performed twice: once 
before pre-training and once after pre-training is 
completed. 
1. Cluster the input space using an arbitrary force 

generator; 
2. Pre-training of the CRITIC network for the set of 

initial conditions; 
3. Pre-training of the ACTION network for the set 

of initial conditions; 
4. Re-clustering of the input space using the pre-

trained ACTION network responses; 
5. Repeat steps (2) and (3) for the complete set of 

training conditions. 
In the following evaluation three basic contexts 

are considered. In the first case the MoE networks, 
figure 2, are replaced by MLPs. In the second case, 
denoted ME in the following, the CRITIC MoE is 
trained using the standard probabilistic cost function 



 

(2), directly applied to the reinforcement signal r, 
(3). Training the ACTION network uses the SWS cost 
function, (5). In the third case, referred to as SWS in 
the following, the CRITIC is also trained using an 
SWS cost function, (6). 

4. Per formance Evaluation 
A widely used neural network benchmark employed 
for the assessment of direct and indirect optimal 
controllers is the inverted pendulum problem [10-
12, 19]. The constraints that define the operating 
window (non-failure condition) of the plant are: 
+12° degrees for the angle; horizontal range of 
operation of +2.4 meters, while force must not 
exceed +10 N. If any of these parameters are 
exceeded, the reinforcement signal from the 
environment is -1 indicating failure, while for all the 
other conditions it is 1, indicating success. Given the 
widespread knowledge of the problem we will l imit 
our comments to specifics of the approach 
employed here. 

In the case of this work the environment the 
network is subjected to takes the following form, 

+ No classical control policy is assumed: the 
network is directly applied to the environment. 

, The learning to learn nothing scenario is 
explicitly forbidden: Adaptation only takes 
place when the pole position lies outside +/− 3° 
of the vertical and +/− 0.6m of the track centre. 

, The controller is required to produce a 
continuous control action. 

, Training and test data sets are independent: as 
is the norm with conducting a statistical 
experiment, the training and test sets are 
unique, but sampled such that the training set 
does cover the region of operation; tables 1 and 
2 respectively. 

The training cycle of the network employs the 
patterns of table 1 and is completed when all satisfy 
the stopping criteria, section 4.1. Generalisation is 
assessed by examining performance over the 32 
different initial conditions shown in table 2. 

The following study examines three different 
network scenarios in order to assess the impact of 
generalised RBF, hierarchical architectures, and 
their contribution to the control capabilities of the 
neural network. Consequently, the architectures 
examined are: (i) an MLP network using an SRV 
output layer [9]; (ii) a non-hierarchical MoE 
network employing the generalised RBF; (iii) the 
hierarchical counterpart of (ii); and (iv) the non-
generalised RBF counter parts of (ii) and (ii i). In 
case (i) a single hidden layer MLP is employed in 
the CRITIC and ACTION components of the SRV 
architecture [9]. In the remaining cases, linear 
experts and gating networks are employed. 

The second benchmark problem employed is that 
of reversing a truck [19-22]. This is a fundamentally 
different application both in terms of plant dynamics 

and the number of temporal steps before payoff is 
attained. Error criteria now take the form of the 
degree of deviation from the ideal docking location. 
Moreover, two versions are assessed for this 
application, direct application of the proposed 
architecture and a PID formulation in which the 
network provides estimates of the P and D terms 
(constant of the integral term is fixed to 0.1), but 
stil l within the context of optimal control (no a 
priori plant model). Use of such a configuration 
enables further partitioning of the problem into 
separate networks for P and D parameters. 
Moreover, given the long period of latency between 
payoff and starting condition, weight updating is 
only performed on the transition between RBF 
partitions of the input (state-) space. The typical 
approach to solving this problem is to either apply 
an indirect methodology or to employ significant 
amounts of a priori information to simplify the 
problem. As indicated above the interest in this 
work lies in assessing the ability of the network 
alone. 

4.1. Test 1 – Pole balance 

Networks are evaluated from the perspective of 
training requirements (CPU time), robustness to 
initialisation (10 different initialisation per network) 
and generalisation ability. In the latter case 
generalisation is judged from the nature of the 
control action, where this leads to a threshold of 
30,000 simulation steps (equivalent to 10 minutes 
simulated time) without encountering failure. Figure 
3 provides an example of such a condition, where 
this action is desired for all test and training 
conditions. Moreover, this criteria is different from 
that used else where, for example [12], in which the 
generalisation test is limited to the network lasting 
1000 iterations (20 seconds) without encountering a 
failure condition. In this case using such a test for 
generalisation would result in all  networks fulfil ling 
the generalisation criteria. 

Generalisation is summarised in tables 3 and 4 in 
terms of the percentage number of initialisations 
satisfying the above convergence criteria, and T-test 
of independence. From table 3 row 1, it is evident 
that the MLP based SRV network is unable to 
provide a sustainable control action. Moreover in 
the case of the non-generalised RBF partitioning of 
the input space, a significant degree of sensitivity 
towards the initial conditions is still observed; MoE 
rows 2 and 3 and hierarchical MoE 6 and 7. 
Furthermore, due to the larger architecture of the 
hierarchical MoE networks (i.e. a larger number of 
initialised parameters), the non-generalised 
hierarchical MoE case actually performs 
consistently worse than the non-hierarchical case. 
However, findings of rows 8 and 9, representing the 
generalised hierarchical versions, demonstrate 
sustainable control actions irrespective of the input 
patterns and initial conditions. Thus, the 



 

combination of Generali sed RBF partitioning and 
the hierarchical architecture appear to provide best-
case generalisation. 

 

104     104  
(a)   (b) 

104  104  
(c) (d) 

Fig 3: Example converging control action. 
Key: (a) angular velocity; (b) cart position; (c) linear velocity; (d) 

controller force. 
 

Training requirements are summarised in terms 
of the mean CPU time, figure 4, and T-test for the 

hypothesis that sample means are the same, table 4. 
In terms of the MLP network, column 1 figure 4, it 
appears as the least demanding, principally due to 
use of a gradient decent learning rule. In the case of 
the other architectures, remaining columns of figure 
4, it appears that the characteristic of most influence 
is the sensitivity of the network to the initial 
conditions. That is to say, the non-generalised MoE 
networks tend to converge with a lower number of 
iterations, particularly in the case of the non-
hierarchical case, where this is also the most 
sensitive to initialisation (vis-à-vis generalisation). 
Moreover, from the hypothesis tests of table 5 it is 
apparent that the cost function also has a significant 
effect on convergence. Cases employing the SWS 
cost function are significantly faster than networks 
trained based on the ME function. 

Consideration of the aforementioned findings 
indicates that the square error cost function (SWS) 
in combination with the hierarchical MoE 
architecture and generalised RBF partitioning 
provides the same degree of generalisation and 
robustness at a lower level of a priori information 
[10-12].  

4.2. Test 2 – Truck reverse 
As indicated in section 4, the truck reversal problem 
requires credit assignment over a much longer 
temporal horizon. With this in mind four versions of 
the system are considered, 
1. Unsampled – this is the hierarchical system as 

employed in the pole balance example; 
2. Sampled – in this case weight updating of the 

experts only occurs when the currently active 
basis function changes. Thus rather than 
attempting to update weights at every step, t, 
the system samples the state space when basis 
functions detect a shift in the state space (with 
respect to the previous RBF condition); 

3. Recurrent – the gate of the Mixtures of Expert 
networks (one in each layer of the hierarchy) 
are provided with recurrent interconnect [23]; 

4. PI(D) – a PID controller methodology is 
assumed in order to aid identification of 
suitable control actions over a long temporal 
horizon. The network, as defined above, is 
trained to tune the P parameter of a PI 
controller. The derivative component is then 
identified using a second ACTION network, 
trained using the CRITIC of the PI network in 
feed forward mode (provides derivative signal). 
This results in a pair of networks which operate 
in parallel tuning the PID controller. 

In the latter case the PID relation if of the form, 
u(t) = u(t – 1) + KP{ [(y(t) – y(t – 1)] + K I y(t)  

+ KD[y(t) – 2y(t – 1) + y(t – 2)]}  
where u is the truck steering signal; d is the distance 
to the target stop location; and KP, KD are the 
controller constants sort using a neural network (K I 
remains fixed at 0.1 [24]). 

Table 1: Pole balance training set 
Position 
in meters 

Angle 
in degrees 

Angular 
velocity 
rad / sec 

Linear 
velocity 
m / sec 

-2.2 11 -18 9 
-1.6 8 -13.0909 6.5455 
-1 5 -8.1818 4.0909 
1 -5 8.1818 -4.0909 

1.6 -8 13.0909 -6.5455 
2.2 -11 18 -9 

 
Table 2: Pole balance test set 

Distance  
in meters 

Angle  
in degrees 

Distance  
in meters 

Angle  
in degrees 

+/- 1 0 +/- 0 +/- 5 
 +/- 2.5 +/- 0.6  
 +/- 5.5 +/- 1.6  
 +/- 7.5 +/- 2.2  
 +/- 10   

 
Table 3: % Converging instances on Pole-balance. 

Algorithm (all use ACTOR-CRITIC) Test 
MLP 0% 

Linear Non-Generalised SWS–ME 16% 
Linear Non-Generalised SWS–SWS 31% 

Linear Generalised SWS–ME 70% 
Linear Generalised SWS–SWS 70% 

Hierarchical Non-Generalised SWS–ME 23% 
Hierarchical  Non-Generalised SWS–SWS 16% 

Hierarchical Generalised SWS–ME 100% 
Hierarchical Generalised SWS–SWS 100% 

 
Table 4: T-test on pole-balance CPU requirements. 

Algorithms Pairwise compared Iter. Sec. 
Linear Generalised SWS–ME Vs 
Linear Generalised SWS–SWS 

27 88 

Hierarchical Non-Generalised SWS–ME Vs 
Hierarchical Non-Generalised SWS–SWS 

3.6 5 

Hierarchical Generalised SWS–ME Vs 
Hierarchical Generalised SWS–SWS 

0 0 

 



 

Hence, it is the responsibili ty of the network(s) 
to identify the mixing relation between proportional, 
integral and derivative components of the control 
policy [24]. Moreover the approach used here 
differs from previous Neural-PID controllers in 
which the model is explicitly limited to conditions 
in which there is a one-to-one relationship between 
input and output variables [25]. 

Figure 5, columns 1 and 2, describe the base-line 
performance of the system as directly applied, 
whereas columns 3 and 4 are the same system but 
with subsampling. Introduction of a classical PI and 
PID configurations, but without sampling, (columns 
5 and 6), results in less sensitivity to the initial 
conditions, but without improving the overall 
accuracy of the system. Introduction of recurrency 
into the gate of the MoE networks (columns 7 and 
8), results in a strong preference for a full PID 
configuration. Adding sampling of the state-space in 
addition to recurrency makes little further 
improvement. 

In summary, performance of the directly applied 
hierarchical neural network is only bettered when a 
further level of partitioning is introduced, c.f. the 
full PID configuration, as oppose to the PI controller 
alone. Moreover, sub-sampling does not appear to 
improve performance.  

5. Conclusion 
An architecture for real-time control of continuous 
non-linear plants is proposed in which significant 
use of partitioning is employed. Three contributions 
are made, 

- The significance of different cost functions is 
emphasised, in particular the maximum 
likeli hood cost function typically employed by 
the MoE architecture provides a probabili stic 
framework for adapting the model, a feature 
which, when used in conjunction with the EM 
learning algorithm, provides a very efficient 
adaptive system. Conversely, retaining a square 
error cost function provides a very good 
regression network, where the use of annealed 
learning schedules helps to mitigate the effect of 
the increased complexity of the sum square cost 
function. Moreover, combined sum square – 
maximum li kelihood cost functions provide both 
good regression capabilities and all ow 
incorporation of probabilistic terminology that 
naturall y supports the representation of 
measurement uncertainty and transition 
probabilities as frequently the case for temporal 
domains. 

- The significance of tuning the RBF co-variance 
parameter is emphasised and demonstrated 
empiricall y in terms of the simulation study. It is 
shown that for the same set of Gaussian centres, 
support for co-variance terms has a major 
influence on the quality of the partitions 
identified by the following MoE framework. 

- Value iteration using the TD(λ)framework is 
extended to incorporate generalisation both in 
terms of a real-valued output, SRV ACTION–
CRITIC partition, and in terms of a piecewise 
linear decomposition of the problem into 
successively smaller time intervals over which 
the controlling function remains unchanged. 
The accompanying empirical study demonstrates 

the ability of the architecture, to both identify 
solutions quickly, and to generalise the solution 
independent of initial conditions, whilst also 
supporting transparency in the solutions identified. 
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