

1. Introduction
Optimal control requires the definition of a control
policy from the behaviour of a plant, which is not
necessarily defined in terms of a desired reference
trajectory. Architectures applicable to optimal
control problems are generally expressed in terms of
direct and indirect schemes [1]. With direct
approaches, the parameters of the controller are
adapted to minimise some norm of the plant error.
Indirect methods first model the plant and then
derive the relevant control law from this model.
Many examples are avail able for each of these
methodologies, in recent years however, the model
based/ reference approach to indirect control has
received a lot of interest.

One of the reasons for an emphasis on indirect
control is that a large body of previous work from
classical control theory is available. Moreover, the
direct approach to optimal control implies that there
is no direct error function, hence a significantly
more difficult learning problem. Such a perspective
means that most emphasis of neural network
methods has been towards indirect control and the
satisfaction of stabili ty criteria for regulation and
tracking problems in which the trajectory is readily
known a priori. However, the control problem as a
whole may be taken a stage further by including
determination of what is typically considered a
priori information. The problem has now became
one of identifying a minimising function in a space
of state and control trajectories, both of which are a
function of time. Again several classical approaches
are available e.g., Calculus of Variations and
Dynamic Programming. The former is only
applicable when a complete mathematical model of
the plant is available. The latter also requires an
analytical model, but provides a much more robust
model of the system. Moreover the method has
received considerable research interest from both
the neural network and Dynamic Programming
communities, the result of which has been
techniques such as Approximate Dynamic
Programming [2].

The defining property of such a system is the
ability to adapt through interaction with the
environment. This conforms to the direct method of
optimal adaptive control where the feedback from
the environment, r, is not in the form of an explicit
error function, but a scalar, hence no sign or
directional information is available. Such a function
may take one of two forms: magnitude alone, or
binary fail/ no fail information. Any learning system
therefore has to first identify a utility function
capable of providing a more descriptive cost
function, r̂ , as well as optimising the present state.
This gives rise to a class of methods called temporal
difference learning, of which there are two general
forms, TD(λ) [3] and Q-learning [4]. The latter
method integrates both the estimation of the utili ty
function and specification of the current action, but
is specific to binary control functions, whereas the
identification of control polices is the objective of
this work. Moreover, TD(λ) enables the division of
duties – estimation the util ity function and selecting
the current control policy – between two different
networks.

The specific purpose of this work is to assess the
applicabili ty of highly partitioned feed-forward
architectures to the identification of real-time
(continuous valued) direct control context, where
our initial motivations are provided by the recent
interest in switching controllers [5]. To do so the
Stochastic Real Valued (SRV) unit [6] is used to
both provide a continuous valued output and support
the ACTION–CRITIC partition of duties between
selecting the current control policy and estimating
the utili ty function (as in the AHC of Barto et al.
[7]). ACTION and CRITIC are expressed as
hierarchical Mixture of Expert (MoE) models,
section 3.1, with Radial Basis Function (RBF)
partitioning of the input state space, section 3.3. The
adaptation of such an architecture typically takes the
form of a probabil istic Maximum Likelihood model
with Expectation Maximisation (EM) update
procedure. Here however, an alternative cost
function is employed, which when used with an
annealed weight updating procedure provides a

Direct Optimal Control using TD(λλ) Mixtures of Experts
V. Paraskevopoulos

� �
, M. I . Heywood

� � ��
, C. R. Chatwin

��

 � �
University of Sussex, School of Engineering, Falmer, Brighton, BN23 8QT. UK �� � �

Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax,
Nova Scotia. Canada B3H 1W5

Abstract- Real-time control of continuous valued plants using TD(λ) reinforcement learning is detail ed. This
problem is significantly more difficult then the case of a discrete control space as in bang-bang or Q-learning.
The methodology employs a combination of Stochastic Real-Valued units, Mixtures of Experts and RBF
partitioning To do so the significance of both Maximum-Likelihood and Square Error Cost functions are
emphasised, as is provision for RBF co-variances during training. The resulting architecture is demonstrated
on benchmark problems.

trade-off between square error and Maximum
Likelihood cost functions, section 3.2.

The paper begins with a summary of the TD(λ)
temporal difference learning method, section 2. The
proposed architecture is summarised in section 3,
and performance assessed in section 4. Section 5
concludes the findings.

2. TD(λλ) temporal difference
learning
In the case of TD(λ), adaptive policy iteration takes
place by dividing the task into two components, a
predictor (CRITIC) and a regressor (ACTION), where
this may have an explicit architectural embodiment;
figure 1. The CRITIC produces a utili ty function,
relating states of the environment to the predicted
discount value (utility). The objective of the
regressor is to maximise the util ity function, as
supplied by the predictor. The predictor learns to
calculate specific policies through a tuple defining a
transition of the environment between previous
state, s(t – 1), current scalar reward, r, and the
current state of the environment, s(t) [2, 3, 4, 6, 7].
The adaptive rule takes one of four forms,
depending on how far in the future a prediction of
discounted pay-off is required [3], or as a general
form

se
r

C π=
∂
∂

ˆ

where π is the current policy as estimated for the
temporal horizon anticipated and eπ is the eligibility
trace (weighting over the temporal horizon in
accordance with the received reinforcement).

The TD(λ) method however, suffers from poor
scaling as the temporal period over which prediction
increases, in much the same way that
backpropagation through time also suffers an
exponential scaling of the error term. Moreover,
when ACTION and CRITIC are trained in tandem,
significant diff iculty is experienced in selecting
appropriate learning parameters. Independent
predictor and regressor adaptation is therefore
appropriate in most cases, although theoretically
sub-optimal. Moreover, approximations to TD(λ)
have been proposed which significantly speed the
evaluation of TD(λ) cases with non-zero regency
factor [8].

In this work we are explicitly interested in the
use of partitioned network architectures to facilitate
learning of temporal difference policies.

3. TD(λλ) Mixtures of Experts
Model
As indicated above, we desire a direct controller
applicable to continuous valued tasks in which
partitioning plays a significant role in the
architecture of the controller. Several examples of

such a control system exist using general feed-
forward architectures [9], fuzzy systems contexts
[10], combinations of the latter two [11], or genetic
algorithms [12]. The approach proposed here,
however, directly incorporates the Mixtures of
Experts (MoE) paradigm. By doing so, an explicitly
probabilistic framework for training the network is
availed, where this has been shown to provide
several features of significance to time series
modelling in addition to the above justifications
[13]. Moreover, the use of a priori knowledge of
any form is expli citly avoided. One of the
motivations for this work was to assess the unaided
ability of the neural method to solve problems in a
real-time control context. The resulting architecture
is most similar to the CQ-Learning methodology of
Singh [14, 15], but applicable to the case of
continuous valued outputs and makes use of a
completely stochastic learning procedure. In the
following, the Mixtures of Experts methodology is
reviewed; sub-section 3.1. The resulting TD(λ)
algorithm is described in sub-section 3.2.

3.1. M ixtures of Exper ts Architecture

The following is specific to the standard MoE
architecture, where this is easily generalized to the
case of multiple hierarchies [16, 15]. The objective
of the network is to partition the input region
between expert networks, such that individual
experts (or sets of experts) become responsible for
different polices of the control behaviour. A gating
network defines the relation between experts.
Specifically, each expert is a standard feedforward
neural network (e.g. CMAC, RBF, MLP, linear
network) producing a mapping yi = fi(x), where i is
the expert index. The gating network has as many
outputs as there are expert networks, thus gi is the
gate for expert i. The purpose of the gate is to
estimate the probabil ity that input x was generated
by expert network i. To provide such an
interpretation the outputs from the gate are
normalised to be positive and sum to unity, or

∑ =

= K

j j

i
i

s

s
g

1
)exp(

)exp(
 (1)

where si is the weighted sum of the inputs to output
unit i, thus in the case of a linear

network, ∑ =
+= M

j ijiji bxws
1

. Hence (1) defines

K competing probabilities as a function of the input,
x, where this competition is “soft” . The overall
output of the network is defined as the linear
combination of the expected values from each

expert, y ∑ =
= K

i ii yg
1

. Now if each expert is

responsible for different pattern sets, then the gi
terms become binary during adaptation.

A cost function is now required, where the
regimes for partitioning the experts is unknown

initially, hence an unsupervised learning context. A
statistical framework of the maximum likelihood
method is appli cable, however, in which case it is
necessary to assume a specific distribution for the
measurement errors [16]. This means that a training
pattern, d, is assumed to be created by a
probabilistic process in which, for each pattern
presentation, an expert is selected with prior
probability gi, i.e. based on input x without
knowledge of the target. Thus, given a regression
basis to function prediction/ approximation, then
processes follow a statistical model of the form, d =
yi + ε, where yi is a nonlinear function of the input
and ε is a random variable. By assuming that ε has a
Gaussian distribution, then the residuals of d – yi are
also Gaussian, and (2) denotes the log-likeli hood of
generating a particular target vector d,





−= ∑

=

K

i
i xdPgC

1

),|(ln θ (2)

where θ are the free parameters of the model e.g.
expert specific variance σi and weights wi; and P(d |
x, θ) is the expert specific conditional probability or






 −−=
2

2

2 2
)(

exp
2

1
),|(

i

i

i

yd
xdP

σπσ
θ

In this case each expert describes the mean for its
specific density function, where this is a function of
the input. The second parameter characterises the
variance of the expert’s Gaussian density function;
where this is independent of the input, but specific
to the expert1.

The maximum-likeli hood formulation also
provides for explicit representation of the posterior
probability through Bayes’ rule, once both input and
output are available, or

∑ =

= K

j jj

ii
i

xdPg

xdPg
h

1
),|(

),|(

θ
θ

Hence, in addition to the explicit partitioning of the
learning task between multiple experts, the
combined support for both prior and posterior
probabilities gives the MoE methodology a
significant advantage over global methodologies
such as the multilayer perceptron (MLP). In
particular the problem of adaptation is divided
between a supervised element, which learns to
predict the next value, d, and an unsupervised
element, which identifies hidden regimes [13].

At this point the model has been characterised
but the adaptive processes has not. Three basic
options exist: gradient decent, as popularised by the
back-propagation algorithm of MLP; the
Expectation Maximisation (EM) algorithm, a

1 Weigend shows that the independent estimation of
variances for each expert has a significant effect on
the overall performance of MoE models as applied
to time-series predictive problems [13].

general unsupervised algorithm for parameter
adaptation [13-16], and; Deterministic annealing, an
entropy minimisation procedure [17]. Direct
application of gradient decent provides the
following basic set of relations,

(1) updating expert weights:)(2 i
i

i

i

yd
h

y

C −=
∂
∂

σ

The typical difference relation (as seen in
backpropation for example) is augmented by the
posterior probability, hi, hence modulating the
significance of a weight change in proportion to the
significance of expert i. Secondly, the MoE
framework directly incorporates the significance of
the error distribution associated with expert i. That
is to say, when the predicted error σi is high then the
significance of the error term, d – yi, is discounted;
whereas small predicted errors in the expert result in
an increased sensitivity to the difference term.

(2) updating gate weights:)(ii
i

gh
s

C −=
∂
∂ η

This implies that the parameters of the gating
network are manipulated such that the posterior
probability, hi, is modelled using knowledge of the
input, x, alone.
(3) updating the variance of individual experts:

[]22
42)(

2 ii
i

i

i

yd
hC σ
σσ

−−=
∂
∂

Where this effectively adjusts the variance of an
expert, σ2, to model the sample variance, (d – yi)

2.

3.2. SRV Mixtures of Exper ts
Architecture and TD(λλ) learning

As indicated above, the TD(λ) paradigm represents
a scheme for calculating delayed payoffs in a
continuous valued environment and may be
expressed in terms of a partitioning of the problem
into separate predictor (CRITIC) and regressor
(ACTION) networks [2, 6, 7]; figure 1. However, in
order to provide a continuous valued output the
ACTION−CRITIC components of the TD(λ)
framework are formulated as the mean value of a
recommended action, y, and a variance term, σ,

CRITIC

ACTION

r̂

 y

r

s

Fig 1: Action – Critic architecture used to
partition the TD(λ) algorithm.

respectively; i.e. a Stochastic Real Valued (SRV)
unit [6]. Hence, the overall response is described in
terms of a Gaussian random variable,

))(),(()(ˆ ttyNty i σ=

with mean y and variance,

σ () (tanh(())t
k

p t= −
2

1

The scale parameter k is selected as a function of the
dynamic range of the application domain; i indicates
the ‘winning’ expert. The aim of the ACTION
network is to maximise utility, r̂ , at the current
time step using the control action, y. The CRITIC,
however, is responsible for providing a better util ity
function given the current reinforcement signal, r(t).
This is supported using a combination of the
Mixtures of Expert (MoE) networks paradigm and a
very coarse partitioning of the input space. There
are therefore three levels of partitioning in the
architecture (figure 2): separate CRITIC and ACTION

networks; Mixtures of Experts paradigm (where this
itself may consist of multiple layered partitions)
and; Radial Basis Function (RBF) partitioning of the
input state space.

The action network expresses actions in terms of
a normal random variable, with density function,







î










 −−=

2

2
1 ˆ

exp
2

1
)ˆ(

σπσ
iyy

yf

The learning rule is derived from the stochastic
gradient relation,

ii y

C

C

r

y

r

∂
∂

∂
∂=

∂
∂

 (3)

The first term on the right is the appropriate TD(λ)
policy function [3] whereas the second term is
dependent on the cost function of the regressor
network, in this case the MoE architecture. As
indicated in section 2 the cost function of a MoE
model typically takes the form of a Maximum
Likelihood estimator; c.f. equation (2). The basis for
this decision is that, on a cross section of problems
the algorithm functions well and enjoys an efficient
update rule in the form of the EM algorithm [13-16].
However, an explicit regression context implies that
retaining a cost function based on the square error is
also justified. Here a different starting point is
employed, in particular Nowlan’s Soft-Weight-
Sharing (SWS) scheme [18]. The initial objective is
to incorporate penalties into the cost function
regarding the values that the free parameters are
allowed to take. Specifically a Gaussian mixture
model is used to describe the mixing proportions of
network weights. In the specific case where it is
desirable to push small weights to zero without
forcing large weights away from their required
values Nowlan uses a prior P(w) which is a mixture
of narrow and broad Gaussians, or

()22 2exp
2

1
)(n

n

n wmwp σ
σπ

−=

 ()22 2exp
2

1
b

b

b wm σ
σπ

−+

where mn and mb represent the mixing proportions
of the candidate Gaussians and are therefore
constrained to sum to positive values with a total
value of unity. This provides a framework for
modelling the value weights may take in terms of
the conditional probability that weight wj was
created by a specific Gaussian mixture. Naturally
the concept of what denotes useful and not useful
weights is application specific, hence a cost function
is required which provides for the manipulation of
the mixture mean and variance during learning.
Such a cost function is of the form [18],

()∑
=

−=
1

2)()(
2 2

1

p

pp

y

dy
k

C
σ

∑ ∑
= =






−

1 1

)(log
j i

jii wpπ (4)

Here the objective is not to adapt weights through
the soft-weight-sharing concept, but to adapt
experts. The cost function is therefore reinterpreted
as foll ows. Firstly, the mixture prior of (4) is
equivalent to the output of the respective gating
network, gi, whereas the probabil ity density function
in the second term on the right of (4) is replaced by
the maximum likeli hood model of the network
response, as in the case of Jordan’s original
formulation of the MoE cost function. This provides
the required sum square cost function which, when

Fig 2: Network Architecture

� � � � �
� � � � 	

 � �
 � �
� � � � �

� �
 �
 �
� � � � � �

� � � �
Environ-

ment

� � � � � � � ! " # $ % &
' � (# " $

� � �

�) *

y(t)

σ(t)

r(t)

x(t+1)

combined with a stochastic update rule, in this case
the Solis-Wetts algorithm below, reflects both a
competitive and co-operative evolution of the expert
model, or in the case of the ACTION network,

∑∑ 




 −−−−=
i

i
i

i
i

yy
gyyC

2

2
2

2
)ˆ(

expln)ˆ(
2
1

σ

()∑ +
+

i i

i

ky

ky
2

2

1
α

The first term on the right represents the required
square error cost with respect to expert i, the second
is the mixture associated with expert i, and the third
is a weight decay term. The associated weight
change is therefore,

×
∂
∂=

∂
∂

C

r

y

r

i

() 











+
+





 −−− 222

1

)(2ˆ
)ˆ(

ky

kyyy
hyy

i

ii
ii α

σ
η (5)

where α is a suitable constant, hi is the posterior
probability and k is the maximum value output y
may take. The gate network is therefore stil l
responsible for allocating experts to specific regions
of the input space, as in the case of the original MoE
definition of the learning rule.

A similar process is true for the CRITIC MoE
producing a learning rule based on SWS alone. In
this case the initial cost function takes the form,

()∑ −−=
i

igC 22)(expln)(
2

1 ππ (6)

where π is the appropriate TD(λ) policy function
[3].

Hence the CRITIC and ACTION networks are
trained independently of each other and the overall
system is adapted with a Soli s-Wetts stochastic
update process of the form,

i) If E(wk + ∆wk) < E(wk) then wk+1 = wk + ∆wk.

i i) If E(wk – ∆wk) < E(wk) < E(wk + ∆wk) then

wk+1 = wk – ∆wk.

i ii) For the case that neither is satisfied wk+1 = wk.

where E is the error as a function of weight, wk, and

the corresponding weight change ∆wk at the kth
step.

3.3. Radial Basis Function Par titioning

The MoE paradigm provides a framework for
mixing expert actions. However, in order to
facili tate an environment for formulating poli cies in
a temporal environment without recourse to
recurrent interconnects, explicit partitioning of the
input space is still necessary. Specifically, a
Gaussian basis function is employed, where an
interest lies in assessing the significance of tuning
the variance term. To this end, two architectures

tested: the isotropic Gaussian (non-generalised) and
the weighted norm (generalised) formulation.

In the case of the non-generalised Gaussian, the
normalised radial basis function, G(⋅), centred at ti,

() ()2
2

2
exp ii tx

d
MtxG −−=−

where M is the number of centres, d is the maximum
distance between the chosen centres and i takes
values { 1,..,M} . The width of all Gaussian functions

are assigned using, Md 2=σ .The generalized

RBF formulation directly incorporates the co-
variance term, thus,

() () ()()ii
T

ii txtxtxG −∑−−=− −1
2

1
2

exp

with the inverse variance (covariance) matrix Σ

defined by,
1

2
1Σ i i

T
iC C− = where Ci is a square

norm diagonal weighted matrix. The effect that this
parameter has is to assign a weight factor to each
input condition characterizing its importance to the
control action. Centre and covariance estimation
occurs twice during the training cycle, section 3.4.
In both cases, centres are positioned using
competitive clustering with data derived by the
ACTION–CRITIC interaction. Naturally, calculation of
the inverse variance matrix employs the same data
as the one used to position the RBF centres
maintaining compatibility. To avoid any large
valued parameters dominating the inverse matrix
and concealing important information, the final
product is normalised.

3.4. Overall training regime

The integration of the gross RBF partitioning of the
input space with the MoE model takes the following
form. Firstly it is noted that partitions of the input
space should reflect the frequency of the states
visited by the controller. Furthermore, the frequency
with which specific states are visited is likely to
change as a function of the controller’s progression
through the various stages of training. This means
that the clustering process is performed twice: once
before pre-training and once after pre-training is
completed.
1. Cluster the input space using an arbitrary force

generator;
2. Pre-training of the CRITIC network for the set of

initial conditions;
3. Pre-training of the ACTION network for the set

of initial conditions;
4. Re-clustering of the input space using the pre-

trained ACTION network responses;
5. Repeat steps (2) and (3) for the complete set of

training conditions.
In the following evaluation three basic contexts

are considered. In the first case the MoE networks,
figure 2, are replaced by MLPs. In the second case,
denoted ME in the following, the CRITIC MoE is
trained using the standard probabilistic cost function

(2), directly applied to the reinforcement signal r,
(3). Training the ACTION network uses the SWS cost
function, (5). In the third case, referred to as SWS in
the following, the CRITIC is also trained using an
SWS cost function, (6).

4. Per formance Evaluation
A widely used neural network benchmark employed
for the assessment of direct and indirect optimal
controllers is the inverted pendulum problem [10-
12, 19]. The constraints that define the operating
window (non-failure condition) of the plant are:
+12° degrees for the angle; horizontal range of
operation of +2.4 meters, while force must not
exceed +10 N. If any of these parameters are
exceeded, the reinforcement signal from the
environment is -1 indicating failure, while for all the
other conditions it is 1, indicating success. Given the
widespread knowledge of the problem we will l imit
our comments to specifics of the approach
employed here.

In the case of this work the environment the
network is subjected to takes the following form,

+ No classical control policy is assumed: the
network is directly applied to the environment.

, The learning to learn nothing scenario is
explicitly forbidden: Adaptation only takes
place when the pole position lies outside +/− 3°
of the vertical and +/− 0.6m of the track centre.

, The controller is required to produce a
continuous control action.

, Training and test data sets are independent: as
is the norm with conducting a statistical
experiment, the training and test sets are
unique, but sampled such that the training set
does cover the region of operation; tables 1 and
2 respectively.

The training cycle of the network employs the
patterns of table 1 and is completed when all satisfy
the stopping criteria, section 4.1. Generalisation is
assessed by examining performance over the 32
different initial conditions shown in table 2.

The following study examines three different
network scenarios in order to assess the impact of
generalised RBF, hierarchical architectures, and
their contribution to the control capabilities of the
neural network. Consequently, the architectures
examined are: (i) an MLP network using an SRV
output layer [9]; (ii) a non-hierarchical MoE
network employing the generalised RBF; (iii) the
hierarchical counterpart of (ii); and (iv) the non-
generalised RBF counter parts of (ii) and (ii i). In
case (i) a single hidden layer MLP is employed in
the CRITIC and ACTION components of the SRV
architecture [9]. In the remaining cases, linear
experts and gating networks are employed.

The second benchmark problem employed is that
of reversing a truck [19-22]. This is a fundamentally
different application both in terms of plant dynamics

and the number of temporal steps before payoff is
attained. Error criteria now take the form of the
degree of deviation from the ideal docking location.
Moreover, two versions are assessed for this
application, direct application of the proposed
architecture and a PID formulation in which the
network provides estimates of the P and D terms
(constant of the integral term is fixed to 0.1), but
stil l within the context of optimal control (no a
priori plant model). Use of such a configuration
enables further partitioning of the problem into
separate networks for P and D parameters.
Moreover, given the long period of latency between
payoff and starting condition, weight updating is
only performed on the transition between RBF
partitions of the input (state-) space. The typical
approach to solving this problem is to either apply
an indirect methodology or to employ significant
amounts of a priori information to simplify the
problem. As indicated above the interest in this
work lies in assessing the ability of the network
alone.

4.1. Test 1 – Pole balance

Networks are evaluated from the perspective of
training requirements (CPU time), robustness to
initialisation (10 different initialisation per network)
and generalisation ability. In the latter case
generalisation is judged from the nature of the
control action, where this leads to a threshold of
30,000 simulation steps (equivalent to 10 minutes
simulated time) without encountering failure. Figure
3 provides an example of such a condition, where
this action is desired for all test and training
conditions. Moreover, this criteria is different from
that used else where, for example [12], in which the
generalisation test is limited to the network lasting
1000 iterations (20 seconds) without encountering a
failure condition. In this case using such a test for
generalisation would result in all networks fulfil ling
the generalisation criteria.

Generalisation is summarised in tables 3 and 4 in
terms of the percentage number of initialisations
satisfying the above convergence criteria, and T-test
of independence. From table 3 row 1, it is evident
that the MLP based SRV network is unable to
provide a sustainable control action. Moreover in
the case of the non-generalised RBF partitioning of
the input space, a significant degree of sensitivity
towards the initial conditions is still observed; MoE
rows 2 and 3 and hierarchical MoE 6 and 7.
Furthermore, due to the larger architecture of the
hierarchical MoE networks (i.e. a larger number of
initialised parameters), the non-generalised
hierarchical MoE case actually performs
consistently worse than the non-hierarchical case.
However, findings of rows 8 and 9, representing the
generalised hierarchical versions, demonstrate
sustainable control actions irrespective of the input
patterns and initial conditions. Thus, the

combination of Generali sed RBF partitioning and
the hierarchical architecture appear to provide best-
case generalisation.

104 104
(a) (b)

104 104
(c) (d)

Fig 3: Example converging control action.
Key: (a) angular velocity; (b) cart position; (c) linear velocity; (d)

controller force.

Training requirements are summarised in terms
of the mean CPU time, figure 4, and T-test for the

hypothesis that sample means are the same, table 4.
In terms of the MLP network, column 1 figure 4, it
appears as the least demanding, principally due to
use of a gradient decent learning rule. In the case of
the other architectures, remaining columns of figure
4, it appears that the characteristic of most influence
is the sensitivity of the network to the initial
conditions. That is to say, the non-generalised MoE
networks tend to converge with a lower number of
iterations, particularly in the case of the non-
hierarchical case, where this is also the most
sensitive to initialisation (vis-à-vis generalisation).
Moreover, from the hypothesis tests of table 5 it is
apparent that the cost function also has a significant
effect on convergence. Cases employing the SWS
cost function are significantly faster than networks
trained based on the ME function.

Consideration of the aforementioned findings
indicates that the square error cost function (SWS)
in combination with the hierarchical MoE
architecture and generalised RBF partitioning
provides the same degree of generalisation and
robustness at a lower level of a priori information
[10-12].

4.2. Test 2 – Truck reverse
As indicated in section 4, the truck reversal problem
requires credit assignment over a much longer
temporal horizon. With this in mind four versions of
the system are considered,
1. Unsampled – this is the hierarchical system as

employed in the pole balance example;
2. Sampled – in this case weight updating of the

experts only occurs when the currently active
basis function changes. Thus rather than
attempting to update weights at every step, t,
the system samples the state space when basis
functions detect a shift in the state space (with
respect to the previous RBF condition);

3. Recurrent – the gate of the Mixtures of Expert
networks (one in each layer of the hierarchy)
are provided with recurrent interconnect [23];

4. PI(D) – a PID controller methodology is
assumed in order to aid identification of
suitable control actions over a long temporal
horizon. The network, as defined above, is
trained to tune the P parameter of a PI
controller. The derivative component is then
identified using a second ACTION network,
trained using the CRITIC of the PI network in
feed forward mode (provides derivative signal).
This results in a pair of networks which operate
in parallel tuning the PID controller.

In the latter case the PID relation if of the form,
u(t) = u(t – 1) + KP{ [(y(t) – y(t – 1)] + K I y(t)

+ KD[y(t) – 2y(t – 1) + y(t – 2)]}
where u is the truck steering signal; d is the distance
to the target stop location; and KP, KD are the
controller constants sort using a neural network (K I
remains fixed at 0.1 [24]).

Table 1: Pole balance training set
Position
in meters

Angle
in degrees

Angular
velocity
rad / sec

Linear
velocity
m / sec

-2.2 11 -18 9
-1.6 8 -13.0909 6.5455
-1 5 -8.1818 4.0909
1 -5 8.1818 -4.0909

1.6 -8 13.0909 -6.5455
2.2 -11 18 -9

Table 2: Pole balance test set

Distance
in meters

Angle
in degrees

Distance
in meters

Angle
in degrees

+/- 1 0 +/- 0 +/- 5
 +/- 2.5 +/- 0.6
 +/- 5.5 +/- 1.6
 +/- 7.5 +/- 2.2
 +/- 10

Table 3: % Converging instances on Pole-balance.

Algorithm (all use ACTOR-CRITIC) Test
MLP 0%

Linear Non-Generalised SWS–ME 16%
Linear Non-Generalised SWS–SWS 31%

Linear Generalised SWS–ME 70%
Linear Generalised SWS–SWS 70%

Hierarchical Non-Generalised SWS–ME 23%
Hierarchical Non-Generalised SWS–SWS 16%

Hierarchical Generalised SWS–ME 100%
Hierarchical Generalised SWS–SWS 100%

Table 4: T-test on pole-balance CPU requirements.

Algorithms Pairwise compared Iter. Sec.
Linear Generalised SWS–ME Vs
Linear Generalised SWS–SWS

27 88

Hierarchical Non-Generalised SWS–ME Vs
Hierarchical Non-Generalised SWS–SWS

3.6 5

Hierarchical Generalised SWS–ME Vs
Hierarchical Generalised SWS–SWS

0 0

Hence, it is the responsibili ty of the network(s)
to identify the mixing relation between proportional,
integral and derivative components of the control
policy [24]. Moreover the approach used here
differs from previous Neural-PID controllers in
which the model is explicitly limited to conditions
in which there is a one-to-one relationship between
input and output variables [25].

Figure 5, columns 1 and 2, describe the base-line
performance of the system as directly applied,
whereas columns 3 and 4 are the same system but
with subsampling. Introduction of a classical PI and
PID configurations, but without sampling, (columns
5 and 6), results in less sensitivity to the initial
conditions, but without improving the overall
accuracy of the system. Introduction of recurrency
into the gate of the MoE networks (columns 7 and
8), results in a strong preference for a full PID
configuration. Adding sampling of the state-space in
addition to recurrency makes little further
improvement.

In summary, performance of the directly applied
hierarchical neural network is only bettered when a
further level of partitioning is introduced, c.f. the
full PID configuration, as oppose to the PI controller
alone. Moreover, sub-sampling does not appear to
improve performance.

5. Conclusion
An architecture for real-time control of continuous
non-linear plants is proposed in which significant
use of partitioning is employed. Three contributions
are made,

- The significance of different cost functions is
emphasised, in particular the maximum
likeli hood cost function typically employed by
the MoE architecture provides a probabili stic
framework for adapting the model, a feature
which, when used in conjunction with the EM
learning algorithm, provides a very efficient
adaptive system. Conversely, retaining a square
error cost function provides a very good
regression network, where the use of annealed
learning schedules helps to mitigate the effect of
the increased complexity of the sum square cost
function. Moreover, combined sum square –
maximum li kelihood cost functions provide both
good regression capabilities and all ow
incorporation of probabilistic terminology that
naturall y supports the representation of
measurement uncertainty and transition
probabilities as frequently the case for temporal
domains.

- The significance of tuning the RBF co-variance
parameter is emphasised and demonstrated
empiricall y in terms of the simulation study. It is
shown that for the same set of Gaussian centres,
support for co-variance terms has a major
influence on the quality of the partitions
identified by the following MoE framework.

- Value iteration using the TD(λ)framework is
extended to incorporate generalisation both in
terms of a real-valued output, SRV ACTION–
CRITIC partition, and in terms of a piecewise
linear decomposition of the problem into
successively smaller time intervals over which
the controlling function remains unchanged.
The accompanying empirical study demonstrates

the ability of the architecture, to both identify
solutions quickly, and to generalise the solution
independent of initial conditions, whilst also
supporting transparency in the solutions identified.

References
[1] Narendra K., Parasarathy K., “ Identification

and control of Dynamical Systems using
Neural Networks” , IEEE Transactions on
Neural Networks, 1(1), pp 4-27, 1990.

[2] White D.A., Jordon M.I., “Optimal Control:
A Foundation for Intelligent Control” , in

0

50

100

150

200

250

S
ec

o
n

d
s

1 2 3 4 5 6 7 8 9

Docking Error of the Lorry

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Controller Configuration

P
e
r
c
e
n
t

E
r
r
o
r

i
n

R
a
n
g
e

Maximum

Minumum

Average

Fig 5 : Truck Controller Docking Error – Percent of
total Range.
#1 : Low Level Un-sampled, #2 : High Level Un-sampled #3 :
Low Level Sampled, #4 : High Level Sampled, #5 : PI network
non-sampled non-recurrent, #6 : PID equivalent of 6, #7 : PI
network sampled non-recurrent, #8 : PID equivalent of 7, #9 : PI
network sampled recurrent, #10 : PID equivalent of 10.

Fig 4: Mean CPU requirements to convergence
#1 MLP, #2 Linear non-generalised ME network, #3 Linear non-
generalised SWS network #4 Linear generalised RBF ME
network, #5 Linear generalised RBF SWS network, #6
Hierarchical non-generalised RBF ME network, #7 Hierarchical
non-generalised RBF SWS network, #8 Hierarchical generalised
RBF ME network, #9 Hierarchical generalised RBF SWS
network

Handbook of Intelligent Control, White D.A.,
Sofge D.A. Eds, pp 185-214, 1992.

[3] Sutton R.S., “Learning to predict by the
method of temporal differences,” Machine
Learning, 3(1), pp 9-44, 1988.

[4] Watkins C.J.C.H, Dayan P., “Q-Learning,”
Machine Learning, 8(3), pp 279-293, 1992.

[5] Narendra K.S., Balakrishnan J., Cili z M.K.,
“Adaptation and learning using multiple
models, switching and tuning,” IEEE Control
Systems, 15(3), pp 37-51, 1995.

[6] Gulapall i V., “A Stochastic Reinforcement
Learning Algorithm for Learning Real-
Valued Functions,” Neural Networks, 3, pp
671-692, 1990.

[7] Barto A.G., Sutton R.S., Anderson C.W.,
“Neuronlike adaptive elements that can solve
difficult learning control problems,” IEEE
Transactions on Systems, Man and
Cybernetics, 13(5), pp 834-847, 1983.

[8] Cichosz P., “Truncating temporal differences:
On the efficient implementation of TD(λ) for
reinforcement learning,” Journal of Artificial
Intelligence Research, 2, pp 287-318, 1995.

[9] Heywood M.I., Chan M.-C., Chatwin C.R.,
“Application of stochastic real-valued
reinforcement neural networks to batch
production rescheduling,” Proceeding of the
Institution of Mechanical Engineers, 221(B),
pp 591-603, 1997.

[10] Lin C-,T., Lee G., “Reinforcement structure/
parameter learning for neural-network based
fuzzy logic control systems,” IEEE
Transactions on Fuzzy Systems, 2(1), pp 46-
63, 1994.

[11] Berenji H.R., Khedkar P., “Learning and
tuning fuzzy logic controllers through
reinforcements,” IEEE Transactions on
Neural Networks, 3(5), pp 724-740.

[12] Moriarty D.E., Miikkulainen R., “Efficient
reinforcement learning though symbolic
evolution,” Machine Learning, 22, pp 11-32,
1996.

[13] Weigend A. S., Mangeas M., Srivastava A.K.,
“Nonlinear Gated Experts for Time Series:
Discovering Regimes and avoiding
Overfitting,” International Journal of Neural
Systems, pp 373-399, Sept. 1995.

[14] Singh S.P., “Transfer of learning by
composing solutions of elemental sequential
tasks,” Machine Learning, 8, pp 323-339,
1992.

[15] Tham C.K., “Reinforcement learning of
multiple tasks using a hierarchical CMAC
architecture,” Robotics and Automated
Systems, 15, pp 247-274, 1995.

[16] Jordon M.I., Jacobs R.A., “Hierarchical
Mixtures of Experts and the EM Algorithm,”
Neural Computation, 6, pp 181-214, 1994.

[17] Rao A.V., Miller D., Rose K., Gersho A.,
“Mixture of Experts Regression modelling by
Deterministic Annealing, IEEE Transactions
on Signal Processing, 45(11), pp 2811-2819,
1997.

[18] Nowlan J., Hilton G. E., “Simplifying Neural
Networks by Soft Weight-Sharing” Neural
Computation, vol. 4, pp 473-493, December
1992.

[19] Anderson C.W., Mill er W.T., Challenging
Control Problems, in Neural Networks for
Control, Miller W.t., Sutton R.S., Werbos P.J.
(Eds), MIT Press, 1990.

[20] Yamada Y, Nakashima M, shiono S,
“Reinforcement Learning to Train a
Cooperative Network with Both Discreate
and Continuous Output Neurones” IEEE
Trans on Neural Networks, IEEE, U.S.A, vol.
9, no. 6, November 1998, pp1502-1507.

[21] Kandadai R.M, Tien J.M, “A Knoweledge-
Based Generating Hierarchical Fuzzy-neural
Controller.” IEEE Trans on Neural Networks,
IEEE, U.S.A, vol. 8, no. 6, November 1997,
pp1531-1541.

[22] Park Y.M, Choi M.S, Lee K.Y, “An Optimal
tracking Neuro-Controller for Nonlinear
Dynamic Systems.” IEEE Trans on Neural
Networks, IEEE, U.S.A, vol. 7, no. 5,
September 1996, pp1099-1110.

[23] Cacciatore T.W., Nowlan S.J., “Mixtures of
controllers for jump linear and non-linear
plants,” Advances in Neural Information
Processing Systems, Vol 6, Cowan J.,
Tesauro G., Alspector J., (eds) pp 719-726,
1994.

[24] Wu Q.H., Pugh A.C., “Reinforcement
learning control of unknown dynamic
systems,” IEE Proceedings-D, 140(5), pp
313-322, September 1993.

[25] Takagi S., Yamamoto T., Kaneda M., “A
design of multivariable neuro-controllers with
PID structure,” 5th International Conf. N
Control, Automation, Robotics and Vision,
Vol 1, pp 296-300, 1998.

