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Abstract

A tangled program graph framework (TPG) was recently proposed as an emergent process for decomposing
tasks and simultaneously composing solutions by organizing code into graphs of teams of programs. The initial
evaluation assessed the ability of TPG to discover agents capable of playing Atari game titles under the Arcade
Learning Environment. This is an example of ‘visual’ reinforcement learning, i.e. agents are evolved directly
from the frame buffer without recourse to hand designed features. TPG was able to evolve solutions competitive
with state-of-the-art deep reinforcement learning solutions, but at a fraction of the complexity. One simplification
assumed was that the visual input could be down sampled from a 210 x 160 resolution to 42 x 32. In this work, we
consider the challenging 3D first person shooter environment of ViZDoom and require that agents be evolved at
the original visual resolution of 320 x 240 pixels. In addition, we address issues for developing agents capable of
operating in multi-task ViZDoom environments simultaneously. The resulting TPG solutions retain all the emergent
properties of the original work as well as the computational efficiency. Moreover, solutions appear to generalize
across multiple task scenarios, whereas equivalent solutions from deep reinforcement learning have focused on
single task scenarios alone.

1 Introduction

State-of-the-art reinforcement learning (RL) algorithms increasingly emphasize the encoding of important prop-
erties from visual inputs, typically screen capture [17]. Several benchmarks have appeared including (but not
limited to) arcade gaming titles [2], racing games [16] and first person shooter (FPS) environments [10]. Arcade
formulations tend to emphasize the ability to play tens of titles using the same learning algorithm, but assume a
relatively low resolution input and frequently supply complete information of game state. Conversely, the ‘first
person’ perspective of FPS games provide a very rich environment — multiple rooms, opponents, objects for cap-
ture/ avoidance — in which to investigate learning algorithms under partial observability of state, much higher
dimensionality and a corresponding increase in the variation of content.

In this work we are interested in assessing the utility of a recently proposed Tangled Program Graph (TPG)
approach [8, 9] to the ViZDoom FPS environment. TPG was previously demonstrated to be capable of discovering
emergent solutions to reinforcement learning problems based on visual input alone which were orders of magni-
tude simpler than solutions from deep learning [8, 9]. Our motivation in this work is to answer to what degree
the previous TPG results were dependent on a relatively low resolution state capture’ and assess the capacity
to perform task transfer between different typically partially observable task scenarios described in the ViZDoom
environment. This is of merit as: 1) visual task domains are increasingly assuming very high resolution inputs that
will potentially result in a loss of objects when down sampled too much, and 2) transferring skills between differ-
ent source training scenarios can potentially lead to stronger performance in a target scenario, such as ViZDoom
‘deathmatches’ (e.g. [13, 21]).

In this work we show that, by incorporating some additional task agnostic learning heuristics, TPG is able to
simultaneously provide solutions to a total of ten custom task scenarios, eight of which come with the ViZDoom
distribution and two are specifically introduced in this work (Section 4). We believe that this demonstrates that
TPG is capable of scaling to much larger state spaces, while still retaining the capacity to discover solutions that
are very efficient to execute without special hardware support.

11344 pixels in the down sampled visual interface of [8, 9] versus 76800 pixels in the TPG deployment demonstrated for ViZDoom.
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2 Related Research

Gaming environments are increasingly being employed as suitably difficult tasks for demonstrating artificial gen-
eral intelligence [22]. In this work, we are particularly interested in scenarios that focus on the ability of the ma-
chine learning algorithm alone, as opposed to hybrid formulations that augment machine learning with search,
e.g. deep learning with Monte Carlo Tree Search [4]. From this perspective, the result of Mnih et al. was par-
ticularly noteworthy in that it demonstrated an effective strategy for playing a cross section of games using state
information defined by screen capture alone [17], i.e. without recourse to any features crafted by humans. More-
over, the resulting performance in some game titles was better than/competitive with that of a human player.
Since then, multiple deep reinforcement learning frameworks have been proposed and benchmarked on multiple
console game titles (e.g. [11, 12]), as have neuro-evolutionary approaches [5, 3] and schemes based on some form
of GP [8, 9, 6].

More recently, researchers have began to focus on gaming tasks outside of arcade console environments, where
the case of first person shooter (FPS) environments is of particular relevance to this work. Specifically, FPS en-
vironments introduce three dimensional state information and partial observability. This means that strategies
need discovering for navigating multiple rooms while avoiding specific objects/opponents and engaging with
other types of opponents/objects. In short, FPS environments represent a different set of challenges from that
experienced in console style games.

The ViZDoom framework was developed in 2016 in order to explicitly facilitate the efficient evaluation of 3D
vision based machine learning algorithms on a FPS environment [10]. Machine learning agents therefore view
the game world through the frame buffer and learn how to play on the basis of visual stimuli alone. ViZDoom
gives researchers control over the size of the screen buffer, access to the depth buffer, as well as the ability to
customize the learning process using WAD (“Where’s All the Data?”) files. These files were originally defined
by John Carmack while building the original version of Doom and are thus interchangeable, giving ViZDoom a
breadth of options for providing Al agents with learning environments ranging from the official Doom levels to
custom scenarios.

ViZDoom has been used by researchers in two generic settings, a competition setting in which the principle
objective is to survive some form of ‘deathmatch’ with other agents. Particular examples of this include deploying
the best deep learning RL approach from other general game playing challenges [19], or modifying a general
deep learning RL approach to include properties specifically useful for VizDoom, e.g. some form of prior task
decomposition [13, 21].

A second use of ViZDoom has been through the use of custom scenarios representing underlying tasks of
value for developing better general purpose visual learning agents. For example, [1] use a health pack gathering
scenario in which the objective is to avoid mines and collect health packs, whereas [18] assume a single scenario
involving learning to aim against a static target. One interesting observation from Alvernaz and Togelius was that
the deep learning element might produce a representation that failed to recognize hazards [1].

3 Tangled Program Graphs

The tangled program graph (TPG) represents a generalization of GP teaming into the emergent discovery of graphs
of teams of programs [8, 9]. To do so, a definition of GP is assumed in which each program provides a single (real
valued) scalar output, b;, which is interpreted as the ‘bid’. Each program also has a single discrete atomic action,
a;, selected from the set of task specific atomic actions .A. Two populations (P and H) representing programs
and teams respectively are then coevolved in a symbiotic relationship, or symbolic bid-based GP (SBB) [15, 14].
Fitness is only defined explicitly at the team population. Each member of the team population identifies a unique
subset of programs from the program population (the same program may appear in multiple teams). A variable
length representation is assumed for members of each population, hence team complement evolves in the team
population and program complement evolves in the program population.

SBB is independent of the specific representation assumed for a program. In this work we adopt a linear GP
representation (as did the original work [15, 14]), thus instructions take the form of operations on registers of
the general form: R[x] = R[x] < op > R[y], where x and y are register references and < op > is an ‘opcode’.
Likewise we also adopt the eight opcodes common to Lichodzijewski’s work: {+, —, %,+,In,cos,cos, IF }, where
the conditional is interpreted as IF (R[x] < R[y]) THEN (R[x] = —R[x]). Each instruction also has a mode bit
which enables R[y] to either index a register or an input attribute (in this case the visual screen buffer). The R[y]
references are always to registers of which there are a total of 8 in this work.

The output of a team is established by executing each program (from the same team) on the current state of
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the environment, 5(¢), and identifying a single ‘winning’ bid, i.e. the program with maximum output [15, 14].
Let this be p*. Program p* has won the right to suggest its action, call this a(t). Under a reinforcement learning
task, action a(t) defines the action of the agent at time step t. Such an action potentially changes the state of the
environment and the process repeats until some end condition is encountered (e.g. terminal state of the game,
maximum number of training interactions). Fitness of a team can then be assessed using an appropriate measure
of game score (Section 4). The process repeating over all teams, or a training ‘generation’.

After each generation the teams are ranked (Step 2(b)v, Algorithm 1) and the worst performing Hg,, indi-
viduals deleted (Step 2(b)vi). Any programs from the program population lacking a reference from at least one
team are also then deleted (Step 2(b)vii). Hg,p parents are then identified, and an equivalent number of child
teams produced (care of a set of variation operators) to replace the deleted teams (Step 2(b)ii). One set of variation
operators operate at the level of teams [15, 14]: add or delete a reference to a program (P,, P;), modify a program
currently in the team (P,,), or modify the action of a program within the team (P,). Likewise a second set of
variation operators operate at the level of programs [15, 14] (only called upon when Py, test true), in which case
the effected program is first cloned before applying variation operators to the cloned program (delete or add an
instruction (P, Py44), mutate an instruction (Ppyt) or swap two instructions within the same program (Psyp).

SBB provides a framework for evolving teams of arbitrary complement, i.e. without having to specify the
number of programs per team [15, 14]. Moreover, only the size of the team population needs explicitly defining
(Hsize). The size of the program population floats as programs either fail to be referenced by a team (delete
program from P) or a program is cloned (add program to P).

TPG assumes SBB as the starting point and introduces an additional variation operator, Py, which establishes
the type of action change when P; tests true. Thus, for P, false, the cloned program’s action, 4; is selected from
the set of task specific atomic actions a; € A, whereas for P, true, the new action is a pointer to any team in the
team population of generation g, or a; € H(g). Once this happens we have a graph in which each ‘node’ is a team
and ‘arcs’ are programs. Evaluation of a graph follows the same process as per SBB, and commences with the root
team (all individuals in the initial team population are root nodes), w.r.t. state 5(¢) of the environment. However, if
the action of the winning program is a pointer to another team, then the new team is also evaluated on state, 5(¢).
As teams in the graph are evaluated they are ‘marked’. If following execution of a team the winning program’s
action selects a team that was previously visited (on state 5(t)), then the runner up program’s bid is (recursively)
assumed as the action until either an unvisited team or an atomic action is selected (each team must have at least
one atomic action). As soon as the winning program’s action takes the form of an atomic action, evaluation of the
graph (for state 5(t)) is complete and any ‘marked’ teams are reset.

Algorithm 1 TPG algorithm (Section 3) with incremental record keeping (Section 4). The term ‘agent’ is used
to denote a TPG individual. Note that only teams representing root nodes constitute an agent for which fitness
evaluation is performed.

1. Initialize team population, H(g = 0), and program population, P(g).
2. For (b =0;b <Bags;b=b+1,g=g9+1)

(@) S(b) =S > Initialize set of task scenarios
(b) For all (t € Scenarios)
i. s(b) =rnd(S(b)) > Select a task scenario

ii. H(g) = H(g) U create(Hgap)
iii. For all (agent € H(g)) and (k € Episodes)

A. task = rnd(s(b)) > Initialize task scenario instance
B. evaluate(agent, task) > Eq. (1)
iv. Update OverallFitness over scenarios {t, ..., — R} > Eq. (2) and (3)

v. Rank (agents € H(g))
vi. Prune lowest ranked Hg,p agents from H(g)
vii. Prune all p € P(g) without an agent
viii. S(b) = S(b) —s(b) > Remove evaluated task scenario

The number of root teams varies during evolution. That is to say, if a root team receives a pointer from another
team (care of the variation operators), then that graph has been incorporated as a subgraph into another root
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team’s graph. Naturally, the application of P;, P, can also result in a subgraph being decoupled from its parent,
resulting in the reappearance of a root team (a root has no incoming arcs). The resulting complexification of single
team root nodes into graphs is therefore an emergent process in which the complexity of the relation between
teams, team complement and program complexity are all driven by the underlying complexity of the task [8, 9].

4 Scaling TPG to large visual state spaces

In the following we summarize the additional heuristics investigated to deploy TPG under the ViZDoom environ-
ment. Specifically, TPG was originally deployed under the Atari arcade learning environment, [2], with a down
sampled visual state space, 5(t), from the original 210 x 160 pixels to 42 x 32 pixels.3 ViZDoom, on the other hand,
represents a 3D environment capable of presenting a much richer range of encounters than under individual ar-
cade console titles [10]. With this in mind we introduce five factors for specifically scaling TPG up to the challenge
of evolving agents capable of solving challenges present in ViZDoom.

4.1 Representation of Features

The default structure for screen buffer data in ViZDoom is a series of nested arrays of integers, where the outer
array represents the height of the buffer (240 rows of pixels) and the inner arrays represent the RGB integer values
of pixels in a given row (320 pixels per row) [10]. In order to provide SBB with a ‘flat” set of environment registers,
the three RGB values were concatenated into a single 32-bit integer format, thus defining input as an array of 76,800
integers to represent each frame received from the screen buffer. This is distinct from deep learning approaches in
which each of the RGB channels is subject to convolution filtering. Moreover, the computational cost of retaining
independent channels with deep reinforcement learning might require some form of cropping or down sampling
from the resolution of the original input.4 In effect, GP ‘sees’ a single channel consisting of pixel values over a
much larger dynamic range (due to the concatenation of the three RGB channels into a single integer value) as
opposed to retaining the representation of each pixel in three colour channels over a lower dynamic range.

4.2 Task scenarios

As the complexity of task domains increases, it might be beneficial to learn from specific training scenarios or
source tasks. Such approaches have proved effective in a wide range of settings including ViZDoom competitions
[21] and the evolution of soccer skills [20].

The ViZDoom distribution has 8 example scenarios: Basic, Deadly Corridor, Defend the Centre, Defend the Line,
Health Gathering, My Way Home, Predict Position, and Take Cover.> Naturally each scenario represents a different
skill that might be beneficial for a general purpose policy capable of ‘surviving” within the ViZDoom environment.
In addition to the scenarios included with the package, two further scenarios were constructed in order to promote
a particular type of movement called circle-strafing. Circle-strafing is when a player continuously focuses their
aim on a target in the game while sidestepping (strafing). If an agent does both of these things, they will naturally
walk in a circle around their target, potentially making it more difficult for the the target to hit the agent (because
it is moving) while decreasing the health of the target.

Circling scenario 1 places the player on one side of a raised ring (6 o’clock). The ring itself causes a small
amount of damage to the player periodically. The floor inside and outside of the ring causes a moderate amount
of damage if a player stands on it for too long. The player is tasked with picking up a health kit on the other side of
the ring (12 o’clock). Whenever a health kit is acquired, another health kit spawns on the opposite side of the ring.
This scenario is meant to help the player specifically perform circular movements, though not necessarily with
strafing involved. There are three atomic actions made available A = {F, TL, TR} (see Table 1) and the rewards
are +1 per time unit alive, —100 on agent death, and there is a scenario time limit of 2100 time units.

Circling scenario 2 is a continuation of the first. The ring remains the same, except health kits spawn sequen-
tially at every go degree section of the ring rather than on opposite sides. An enemy spawns in the middle of the
ring. The player is tasked with moving to acquire the health kit, but has the additional requirement of shooting
the enemy in the centre of the room in order to make the next health kit spawn. Note that the turning speed in
ViZDoom is static when using a key (rather than a mouse) and will not allow the player to run to a health kit, turn,

*For an illustration of the incremental construction of TPG individuals see the presentation slides of Stephen Kelly from EuroGP’17 http:
//stephenkelly.ca/research_files/skelly-mheywood-eurogp-2017.pdf

3Conversely, the deep reinforcement learning approach of [17] cropped the original visual space to 84 x 84 pixels.

4For example, [1] assume a 120 x 160 visual input and [13] assume 60 x 108.

Shttps://github.com/mwydmuch/ViZDoom/tree/master/scenarios
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Table 1: Parameterization of VizDoom environment and training scenarios. Total number of training encounters
is Bags x Scenarios x Episodes

Parameter Value
Dimension of visual input space 320 x 240 = 78,800
Colour Settings RGB24
Move forward (F), Move backward (B),
Atomic action set (A) Turn Left (TL), Turn Right (TR), Strafe Left (SL)
Strafe Right (SR), Shoot/Attack (A)

Record Keeping (R) 2
Bags 6
Scenarios 10
Episodes 20

shoot the enemy, and then return to moving. In order to be successful, the player will need to learn to circle-strafe
around the ring in order to stay alive. There are six atomic actions made available A = {F ,TL,TR,SL, SR, A} (see
Table 1) and the rewards are +1 per time unit alive, —100 on agent death, and there is a scenario time limit of 2100
time units.

Note that in all cases, there is no special ‘task scenario” flag provided as an additional input. The agent has to
infer the nature of the task from the visual clues in the environment itself.

4.3 Graduated Action Space

Programs can potentially assume any atomic action, a; € A. However, different learning scenarios might only
explicitly require a subset of the atomic actions. Given that at initialization the programs are initialized randomly,
limiting programs to a subset of the total set of atomic actions might be beneficial. Thus, instead of allowing all
actions to be used from the beginning of the first generation, we gradually add new actions to the existing pool as
they are required. Thus, the first scenario will determine the starting actions of the population .4y. When the next
scenario, k, is introduced, any additional actions, A’, specific to the scenario are added, or Ay = A;_; + A’. Thus,
new programs will be able to sample from an incrementally expanding set of atomic actions. As the additional
scenarios are attempted, new actions are added until all scenarios have been encountered. This allows TPG to
gradually integrate the new actions into the existing program graphs.

4.4 Random Bags

In order to reduce unintended sequencing biases into the order with which scenarios are introduced during
evolution, we randomize their order. Thus, each scenario is presented for a set of episodes. The collection of
scenarios is placed into a bag, where they are shuffled randomly to produce a scenario permutation (Step 2(b)i,
Algorithm 1). Each agent experiences the task scenarios in the permutation order specific to the bag (Step 2(b)iii).
Once a bag is empty (all of the tasks have been performed) a new bag (ordering of scenarios) is created.

4.5 Fitness through incremental record keeping

One of the most difficult aspects of learning multiple tasks from a single continuous run is forgetfulness, e.g. [11].
Forgetfulness implies that as agents experience different task scenarios, they specialize on their most recent task,
and slowly forget the nuances of the tasks that were encountered earlier. In short, if agents are unable to discover
how to leverage what they have previously learnt from earlier tasks into the new task, they risk loosing important
properties.

Ideally, we would evaluate agent performance on all tasks at each generation. This might lead to a multi-
objective evaluation through Pareto dominance, e.g. [7, 9]. However, in this case we have additional factors to
consider, including the cost of maintaining an absolute measure of fitness over the 10 visual reinforcement task
scenarios for the entire population at any point in time, i.e. each task scenario requires evaluation over multiple
task initializations (‘Episodes’ parameter, Table 1).

In essence, we are attempting to strike a balance between an absolute performance function (as measured
across all task scenarios) and measuring performance on the single current task scenario. Thus, an individual is
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not considered fit merely for their ability to solve the current task, but based on their ability to solve the most
recently attempted R tasks. Once an agent’s current task fitness is calculated, we then go back and retrieve fitness
scores for the agent in the previous R tasks. Naturally, the Hg,, agents created in the current task evaluation
(Step 2(b)ii, Algorithm 1) lack appropriate fitness evaluations for the R previous tasks. In these cases, additional
evaluations are performed to establish fitness on the past R tasks. Thus, at each generation up to Hgjze — Heap
agents are evaluated on the current task, and up to Hg,p agents on the current and R previous tasks.®

Fitness scores are calculated in the following way:

1. Estimate the raw fitness for each agent across a set of episodes for the current task scenario (Section 4.2).
Thus, the raw fitness of agent i on task ¢ is:

Episodes
RawFitness(i,t) = Y score(i, ) (1)
k=1

2. Normalize all fitness values by dividing every agent’s by the maximum:”

. . RawFitness(i, t)
NormFit ,t) = -
ormFitness(i,t) maxy(RawFitness(k, 1)) @
3. Estimate overall fitness of agent 7 in terms of the performance over the last R tasks
R
OverallFitness(i) = ) NormFitness(i,t — k) (3)

k=0

Note that Eq. (3) is limited to the evaluated scenarios in the case of a ‘code start’ (first bag with less than R
scenarios evaluated).

Once the overall fitness is calculated for all agents, they are ranked in descending order and the worst Heggp
agents removed. In short, we are attempting to balance the cost of evaluation across all task scenarios versus
reduced accuracy introduced by only estimating fitness over a subset of tasks. Moreover, in continuously shuffling
the order of scenario evaluation we hope to mitigate the introduction of other biases. Unlike the previous instance
of multi-task learning with TPG [9], we anticipate some continuity between the tasks encountered, but this same
continuity also potentially makes it more difficult to resolve which task an agent is facing. Moreover, in this work
we are facing a total of 10 tasks as opposed to a maximum of 3 tasks in [9].

5 Results

TPG is based on the symbiotic bid-based (SBB) teaming framework from Lichodzijewski et al. [15], for which there
are several code bases. In this work, we assumed the open source Java code base of SBBJ (https://web.cs.dal.
ca/"rsmith/_sbb_fcube/) and added additional functionality to support TPG as summarized in Section 3.

Training sessions were divided into permutations of scenarios, with each scenario appearing for a number
of episodes, or a bag (Section 4.4), Table 1. In total, 6 bags (entire rounds through all the task scenarios) are
conducted and results summarized for 12 independent runs. All runs were performed on desktop computing
platforms without recourse to parallel hardware. Table 2 summarizes the TPG algorithm parameters assumed in
this work.

After all the episodes from the same task scenario conclude Eqn. (1) can be estimated. This reward is normal-
ized relative to the highest scoring agent in order to determine the fitness of agents, Eqn. (2). This normalization
is important due to the mis-alignment of reward scales across the various scenarios (see for example the difference
between column values in Table 3). Once all teams are given a fitness value for the current task scenario, then the
normalized fitness values from the previous R completed scenarios are retrieved for each agent or Eqn. (3). For
the purposes of this experiment, R = 2, (Table 1), implying that the three most recently attempted scenarios are
considered in fitness calculation.

®Note that Hy;,, is the number of teams present and reflects the number of agents (root teams) at initialization. However, as teams are
subsumed into graphs, the number of agents (root teams) will decrease. Likewise, application of the variation operator could switch an action
from a team pointer to an atomic action, breaking a graph into two smaller graphs, resulting in an increase in the number of agents.

7 Any negative normalized fitness values are treated as o, thus producing a number in the range [0, 1]
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Table 2: Parameterization of Tangled Program Graph algorithm.

Teams Learners
Parameter Value Parameter Value
Team Population Size (Hys,) 450 Max. Instructions 1024
Team Gap (Hgap) 50% of Root Teams | Prob. Delete Instr. (Py,;) 0.5
Max. Prog. per Team (w) 9 Prob. Add Instr. (P,4,) 0.5
Py,P, 0.7 Prob. Mutate Instr. (Pput) 1.0
P, 0.2 Prob. Swap Instr. (Pswp) 1.0
P, 0.1

Table 3: Best multi-task agent and best single-task agent vs. Human. In all cases larger scores are better. Perfor-
mance reflects game score over 200 test games for each scenario for each agent (1st, 2nd, 3rd quartile performance).
Human score reflects a single best play by an experienced player. {%,,¢,4 } identify each single-task agent and the

subset of tasks on which they were best.

Multi-task agent Single-task agent

Task Scenario Q1 Median Q3 Q1 Median Q3 Human
Basic 59 63 68 74 76.57% 79 76
Deadly Corridor 272.8 3935 508.8 258.5 470.7%  653.08 2280
Defend the Centre 9 11 12 8 10° 12 16
Defend the Line 5 9 1 9 11° 13 25
Health Gathering  595.75 642 778.25 1006 1021¢ 1032 1065
My Way Home 0.81 0.86 0.88  0.813 0.8347  0.869 0.982
Predict Position -0.071 0.88 0951 -0.055 0.892% 0.919 0.965
Take Cover 125.75 172 21525 147.25 1807 216.25 1445
Health Circle 57 73 88 82 110.5°  143.25 848
Circle Strafing 18 24 35 17.75 23¢ 29 632

The overall fitness score then allows all agents (root teams) to be ranked according to their overall utility across
multiple scenario types. Since the assortment of scenarios is randomly bagged, there is no predictability of previ-
ous records in practice. Thus, given enough generations, each agent should be evaluated across all permutations
of scenarios bound by R + 1.

5.1 Human Results

The human results were gathered from a full test run by the researchers. Each scenario was played 10 times with
the same mechanical restrictions presented during a normal training scenario. The values in Table 3 reflect a
moderate level of familiarity with the ViZDoom control scheme and a high amount of familiarity with first person
shooters in general. The labels in Table 3 have the following interpretation: 1) Singe task reflects the best single
agent on a specific task scenario (larger scores are better). Hence, this need not be the same agent on each task.
2) Multi-agent reflects the best agent across all task scenarios. It is interesting to note that the ‘single best agents’
also actually returned best performance on more than one game. Moreover, the Multi-agent actually had better
median performance for 3 of the 10 tasks.

Some of the human results shown in Table 3 are the result of discovering how to exploit the specifics of the task
environment. For example, the Take Cover scenario has a simple dominant strategy where you slowly sidestep all
the way to one side and then sprint back to the other side to avoid all projectiles. Similarly, the Deadly Corridor
scenario is seemingly difficult for learning agents, but generally simple for human players to complete. The score
of 2280 in this scenario is reasonably close to the maximum for Deadly Corridor. This also applies to the result in
Health Gathering, which requires a player to continuously collect health kits on the floor in order to not die. Since
this scenario is timed, understanding the bounds of the problem ahead of time provide prior knowledge that a
human player is able to use to their advantage. In short, humans are still most effective at playing task scenarios
of the VizDoom environment.

Relative to contemporary research using deep learning or hybrid deep learning and neuroevolution, we note
that results only appear to exist for the ‘Basic’ and ‘Health Gathering’ task scenarios. Moreover, such results
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Table 4: Comparison with deep learning results under ‘Basic’ and ‘Health Gathering’ task scenarios. Skip Count
reflects the frequency with which an agent is required to make decisions.

Framework Skip Basic task Health Gathering task
Count Average score (Std. Dev.) Average score (Std. Dev.)

Deep learning [10] 0 51.5(£74.9) unknown

Deep learning [10] 4 82.2(+9.4) ~ 1,300

Hybrid [1] unknown unknown 657.1(£397.1)

TPG Multi-task 0 63.3(£4.91) 680.8(+97.7)

TPG Single-task 0 76.6(£4.5) 1020.9(+18.7)
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Figure 1: Score of the top team across an increasing number of scenario sessions (bags) using (a) normalization of
single best agent, and (b) normalization relative to average game score.

represent the performance of the agent trained on a single task. Caveats aside, Table 4 compares scores for each
agent under the two tasks for which we could find comparative results. Note also, that it is also likely that different
numbers of testing events are assumed in each case (for TPG we used 200 task initializations).

Kempka et al. recognized that increasing the Skip Count from zero (requires the agent to make a decision
at each frame) to an optimal value of 4 skipped frames had a significant positive impact on the quality of deep
learning agent policies [10]. All TPG runs were performed with a Skip Count of zero. We note that the comparator
solutions are only significantly better than TPG when the non-zero Skip Count was employed. Future work could

revisit this parameterization.

5.2 Population and Team Results

Incremental population champions were saved at the conclusion of each bag, the skills of which are shown in
Figure 1(a). This graph shows the normalized scores of that bag’s champion when compared to the highest
scoring individual of each category. It should be noted that the champion is not necessarily the same root team at
each level or task scenario.

As the number of bags increases, we see that the range of scenario scores are slowly moving toward unity, but
do so relatively uniformly. For the first three bags only the Health Gathering task saw any significant improvement
and thus the results show very low rewards. In the later bags, individual teams were capable of successfully
completing those scenarios and drew their relative position higher. Since this experimental design rewarded
better overall capabilities rather than localized specialization, this is an outcome we would expect to see as the
TPG agents become more sophisticated throughout the learning process.

Figure 1(b) illustrates the impact of removing key scaling factors from the approach as outlined in Section 4.
That is to say, 12 independent runs were also performed with a single missing scaling factor, after which we again
summarize performance relative to the best agent from each task scenario. Specifically, without incremental record
keeping during fitness evaluation (Section 4.5), it is not possible to maintain a consistent front of development
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Table 5: TPG Model complexity for Multi-task agent. Num. Teams/Instr/Pixels represent the average number of
Teams (graph nodes), Instructions executed (including introns), Pixels indexed per decision

Task Scenario Num. Teams Num. Instr Num. Pixels
Basic 3.18 17,238 10,951
Deadly Corridor 3.53 18,038 11,847
Defend the Centre 2.86 16,081 10,692
Defend the Line 3.34 16,709 11,637
Health Gathering 3.41 16,524 10,685
My Way Home 3.91 17,423 11,225
Predict Position 3.37 16,952 11,749
Take Cover 2.76 15,746 11,488
Health Circle 3.34 17,785 10,653
Circle Strafing 3.47 17,537 11,866

across all task scenarios. Specifically, the ‘MyWayHome’ task scenario seemed to fail to improve at all without
incremental records. Removing graduated actions did not seem to have a significant positive or negative effect.

The structure of the champion TPG agent is illustrated in Figure 2. This individual corresponds a ‘Multi-task
agent’ with performance as summarized in Tables 3 and 4. Each node represents a team (of programs) and each
arc indicates the action of the program, i.e. pointer to either another node (a different team of programs) or an
atomic action. There are a total of 18 teams, organizing a total of 72 programs which index a total of 33,708 unique
pixels from the original visual input (or 43.9%). However, only a fraction of these programs (pixels) are executed
(indexed) when TPG determines what action to suggest for any given state, Table 5. Thus, in order to make any
particular decision between 14% (min) to 15.5% (max) of the input space is actually used. Likewise, only 2 to 4
teams are evaluated per decision, implying that although the TPG solution might be ‘complex’, the path from root
to action is still short.

6 Conclusion

We demonstrate the scaling up of tangled program graphs (TPG) to a set of visual reinforcement learning tasks
described in the ViZDoom environment. Specifically, TPG agents are evolved from the entire content of the
320 x 240 = 76,800 pixel state space. Several mechanism are investigated for achieving this scaling of which
basing the fitness function on recent previous task scenarios as well as the current task scenario appears to be the
most significant.

TPG is still able to discover solutions that only index a fraction of the input space and only executes a subset
of the programs in order to make each decision. At the same time, scaling across multiple task scenarios is
demonstrated, where this is achieved through the ability to organize over 70 programs hierarchically using the
discovery of appropriate graph connectivity. This capacity for emergent task decomposition/modularity provides
a unique approach to discovering solutions under visual reinforcement learning problems. It is also fundamental to
providing solutions that can be discovered and deployed without specialized hardware support (as is generally the
case for deep learning). Comparison with contemporary deep learning results (for a subset of the task scenarios)
indicates that the quality of the resulting policies does not appear to be compromised.
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