On the Impact of Streaming Interface Heuristics on GP Trading
Agents: An FX Benchmarking Study

Alexander Loginov' and Malcolm I. Heywood"

*Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada

Article originally appears at GECCO under ACM copyright 2013
http://dl.acm.org/citation.cfm?doid=2463372.2463522

Abstract

Most research into frameworks for evolving trading agents emphasize aspects associated with the evolution of
technical indicators and decision trees / rules. One of the factors that drives the development of such frameworks
is the non-stationary, streaming nature of the task. However, it is the heuristics used to interface the evolutionary
framework to the streaming data which potentially have most impact on the quality of the resulting trading agents.
We demonstrate that including a validation partition has a significant impact on determining the overall success of
the trading agents. Moreover, rather than conduct evolution on a continuous basis, only retraining when changes
in trading quality are detected also yields significant advantages. Neither of these heuristics are widely recognized
by research in evolving trading agent frameworks, although both are relatively easy to add to current frameworks.
Benchmarking over a 3 year period of the EURUSD foreign exchange supports these findings.

1 Introduction

As per any application of machine learning in general to a task currently performed by humans, there are poten-
tially a wide range of application specific decisions that play a significant role in determining the success of the
resulting application. From the perspective of foreign exchange (FX) currency trading the initial data is described
in terms of a sequence of trades. The trades are summarized with respect to a trading interval, typically in terms
of the following attributes: opening, closing, highest and lowest price. Traders will construct rules to summarize
a trading strategy. FX trading frequently make use of Stop-Loss or “S/L” thresholds in which an order to buy or
sell is defined in terms of the market reaching a specific price. Moreover, trading rules are typically designed in
terms of a combination of technical indicators (TI). The TI attempts to describe properties of the market that are
useful for decision making in general. Such TI are estimated over a historical window of previous data relative to
the current decision point, f.

Most research has concentrated on the application of evolutionary computation (EC) to the optimization of
a priori technical indicators (TI) and decision trees (DT), Section 2. Conversely, less emphasis is placed on the
contribution of parameters associated with interfacing the proposed EC to the application. For example, evolving
trading agents in general assumes an online as opposed to offline application of EC. The data describing the
trading environment is a continuous stream of a non-stationary nature. It is therefore not realistic to assume that
solutions are evolved offline and then deployed. Instead, some heuristic needs to be adopted to either facilitate
continuous evolution or detect changes in the stream and then retrain. In the case of continuous evolution a
natural tradeoff between exploration and exploitation exists, whereas under change detection a poor choice of
metric might result in missing important retraining events.

This research introduces a common framework for symbiotically coevolving TI and DT under representations
appropriate for each task: hereafter FXGP (Section 3). A benchmarking study to quantify the significance of
parameterizations pertinent to interfacing the FXGP trading agents to the stream represents the central contri-
bution of this research. In particular, we are interested in the relative contribution of continuous coevolution
versus change detection in supporting the development of effective trading agents. Secondary parameters are
also considered such as support for a validation partition during application to the stream and the significance
of evolving thresholds specific to the FX task (Section 4). We conclude that including a validation partition is of
paramount importance. Change detection combined with population reinitialization is recommended to explicitly

Appears in GECCO’13 under ACM copyright 2

retrain trading agents as this appears to be more effective at avoiding carrying over unwanted model bias when
a stream is non-stationary. Conversely, the current norm is to continuously evolve a population of trading agents
without reinitialization. This is shown to result in significant bias, thus lack the capacity to react appropriately to
the non-stationary nature of the task.

2 Background

Previous research has been reported with respect to the evolution of technical indicators (TI) alone e.g., [5]. One of
the goals of evolving TI independently is to provide parameterizations for basic statistics such as moving averages,
that are particularly appropriate for the data in question [14]. More recently separate TI were evolved for buying
and selling [6]. Several authors have evolved trading rules or decision trees (DT) relative to a set of a priori selected
Tl e.g., [3], [7]. One of the most well known instances of GP in this context is ‘/EDDIE’ [12]; the resulting IF-THEN
rules are sampled by a human trader to determine which to use. Most recently, systems have been proposed to first
evolve parameters for a fixed set of TI with the identification of DT e.g., [8]. To do so, a representation is assumed
in which all of the information for the TI and DT appear in the same genome. We consider this problematic as
both components need to be correct for an individual to be successful. Instead we assume a recent framework in
which TT and DT are explicitly coevolved in two independent populations [11].

In general, authors have placed a lot of effort on designing fitness functions to penalize losses as well as
reward profit [2], [8]. This also has implications for the potential robustness of the resulting trading agent as a
whole. An alternative / complementary approach is to make use of verification data to curtail a training cycle,
or early stopping [13]. Also of widespread utility is the use of some form of continuous training, where this
is in recognition of the non-stationary nature of the task. For example, a ‘rolling window” approach might be
adopted [8] in which a sequence of data (or window) is used for training (N;) and the champion individual
deployed as the trading agent for the next ¢ data points. On reaching the end of the trading period the training
window of N; is realigned with the end of trading and training recommences using the content of the current
population. Questions potentially arise regarding the number of generations to perform [2]. This is related to the
degree of non-stationary (or appropriateness of any model bias) associated with the transition between training
and trading periods. Indeed other authors have adopted training at every sliding window location [15]. In this
work we compare reinitialization and retraining w.r.t. training criteria versus the typically assumed approach of
continuous evolution.

3 FXGP Algorithm

Following the preamble established by the Introduction and Background (Sections 1 and 2) we will assume a
framework capable of evolving both unique TI and DT. Specifically, the FXGP framework will be followed [11]."
In the case of the TI, the desire is to support the evolution of properties pertinent to capturing temporal features
e.g., parameterization of sliding windows over which basic statistics are estimated [14]; whereas the role of the
DT is to combine an arbitrary number of uniquely parameterized TI into a trading rule. Thus, the DT assumes a
comparatively straightforward representation: a sequence of conditional statements based on references to the TI
population.

Naturally, it is not possible to establish the fitness of the TI population independently of the DT population.
Indeed it is only at the DT population that a direct measure of fitness can be established. Hence, FXGP coe-
volves DT and TI populations together under a symbiotic partnership where such schemes have previously been
demonstrated for evolving teams of programs in genetic programming [10, 4].

The second aspect of the task domain to be addressed — and focus of this research — is the non-stationary nature
of trading. That is to say, a champion individual evolved relative to a historical partition of trading data will only
be effective for some duration of the future trading interval. Previous work proposed to employ trading criteria to
define when a retraining cycle should be called [11]. Thus, a historical period of N; records is used to construct a
TI-DT population of trading agents, and a sequential period of N, records is used to validate the champion TI-DT
individual (Figure 1). The champion individual is allowed to trade until the trading criteria indicates that the
champion individual is no longer effective i.e., change detection. The entire content of the TI and DT populations
is then replaced with a corresponding new population of randomly initialized individuals. Retraining would then

*This was previously demonstrated on three FX pairs [11]. However, no consideration was given to the impact of different schemes for
interfacing with the stream, which is the focus of this research.

Appears in GECCO’13 under ACM copyright 3

Deploy Champion ‘g’
——

Detect
Change g+1

| Ni(g) N,(g) |
%—J

Evolve population ‘g’

Deploy
Champion ‘g+1’

—% Detect
Change g+2
| Ny(g+1)

Iﬁ—l

Evolve population ‘g+1’

N,(g+1)

Figure 1: Identifying a new champion trading agent through change detection. g represents the count of inde-
pendent cycles of evolution. Evolution is conducted relative to the most recent sample of training, N;(g) and
validation data Ny(g) from the stream.

Table 1: TT functions. Note the three forms of division
Function Definition

Addition Rlx] < R|x] + Rly
Subtraction | R[x] + R[x] — R|y
Multiplication | R|x| <= R[x| x R]y

Square root R[x] < v/R]y]
Division R[x] < R[x] = R[y]
Invert R[x] <~ 1+ R[x]
Divide-by-2 R[x] < R[x] +2

take place with training and validation partitions re-aligned with the point at which the trading criteria identified
the failure (Figure 1).

3.1 Training
3.1.1 Representation

Individuals of the TI population assume a linear GP representation (e.g., [1]) with instruction set summarized by
Table 1. Moreover, each TI has a header defining the basic TI properties: type, scale, period, shift (Table 2). The
TI scale serves to detect useless TI and is checked after initialization. The TI initialization is repeated until the TI
defines an outcome characterized by the scale type (see last paragraph of this sub-section).

TI programs assume a register level transfer language (Table 1). Thus, R[x] denotes the content of register x,
R[y] denotes either: register y content; a price, or; a price m hours back in (relative) time. Register R[0] is assumed
to contain the TI result after executing a TI program. The MA type of TI is calculated as (1) whereas the WMA
type of Tl is calculated as (2), where V; is a TI price value from the trading data.

n
TV
MA; = 71—111 J (1)

Table 2: TI parameters. Estimated relative to the current hour f of trading.
Parameter Description

TI type Weighted Moving Average (WMA),
Moving Average (MA) or Value
TI scale Defines a TI that crosses o or TI
that crosses price
Period n | Number n of hours in a price history to
calculate MA or WMA
Shift m Price m hours back

Appears in GECCO’13 under ACM copyright 4

n U
WMA,; = = 1HL (2)
k=1 k+1
The DT population is initialized to a fixed size. A DT header declares the following information: DT score
in pips?, number of trades and a size of a Stop / Loss (S/L) order in pips. S/L is therefore an example of a
task specific threshold which could potentially be evolved. The score and number of trades are initialized with o;
whereas the S/L can be initialized in one of two ways: 1) the S/L is initialized with a randomly selected value
between the minimum (s,,,;,;) and maximum (S;2x). 2) S/L is initialized with a maximum S/L size. The maximum
and minimum S/L are currency pair specific and will be defined in Section 4. Likewise the benchmarking study
will consider the degree of utility for each scheme as an experimental parameter.
A DT consists of a variable number of nodes. Each node consists of a conditional statement with either single
or dual antecedent tests of the form:

o if(X; > Y;) then else
o if((X; >Y;) and (X1, < Yiiy)) then else

where X; and Y; can be o, price or a TL. The then and else statements reference either: the next node or one of the
trading signals: buy, sell or stay. Thus, a DT population is randomly generated with respect to X; and Y; scales;
albeit under the following constraints:

1. if X;j is o, then Y; must also be a TI which crosses o and can not be a price or a TI which crosses the price, or;

2. if X; is price, then Y; can be also a price or a TI which crosses the price, and can not be o or a TI which
Crosses o.

Note in the case of a dual antecedent clause, X;,,, and Y;,,, represent the value of X; or Y; respectively, albeit
m samples back in (relative) time. FXGP can generate additional TI during DT population initialization if the TI
population does not have a TI capable of satisfying the DT initialization constraints. Thus, the DT population size
is fixed whereas the TI population size may vary.

3.1.2 Fitness and Selection

The DT fitness is defined as a score in pips over the training records. When TI and DT populations are initialized,
FXGP simulates the trading activity for each DT over the training records and stores the score and the number of
trades in the DT header. The number of trades is used to penalize the DT score for too high or low a frequency
of trading. Moreover, if a DT generates only buy or sell signals its score is discarded and the DT targeted for
replacement. The subset of DT individuals with lowest scores are explicitly identified for replacement cf., a
breeder model of selection / replacement. Thus, a fixed percentage or gap size of the DT population is replaced
per generation. All variation is asexual, thus following parent selection, cloning and variation takes place where
either the DT or TI component of a clone can be varied. Following DT selection, any TI individual that no longer
receive a DT index are considered ineffective and are also deleted; thus another factor contributing to a variable
size TI population.

3.1.3 Mutation

FXGP uses mutation to produce offspring. Only the size of S/L and one DT node or one linked TI can be mutated
in each cloned DT. FXGP randomly selects a parent DT, clones it and then (if enabled) mutates the size of S/L
of the offspring with probability p;. After that the target for mutation (TI or node) is selected based on the
probability of mutation p;;. A DT mutation is performed by applying one of the following actions: 1) Generate a
new conditional function; 2) Increment / decrement shift parameter #:; 3) Generate new X; and Y;; 4) Switch X;
and Y;; 5) Switch content of then and else clauses; 6) Insert new then clause content, or; 7) Insert new else clause
content.

Likewise a mutated TI is first cloned to avoid interfering with other DT employing the same TL The following
parameters and functions of a TI can be mutated: 1) TI type; 2) Period (n); 3) Shift (1m); 4) Generate a new function;
5) Delete a function, or; 6) Insert a function, where function insertion or deletion is performed with respect to the

2‘pips’ or ‘ticks” are the smallest price movement in a currency. In EURUSD, a move of 0.0001 is one pip.

Appears in GECCO’13 under ACM copyright 5

TI program size limits (Table 3). Training stops when the specified number of generations (T,x) was reached or
when the best score in the DT population plateaus for a fixed number of generations, ts;; (Table 3). Thereafter a
validation cycle is initiated.

3.2 Validation

The validation process is used to check the quality of the DT-TI population and to select the best DT-TI agent
for trading. To do so, FXGP checks the score of every tree in a DT population and if the DT score is greater
than «, x best score it tests the DT. If DT is active the tested tree’s counter is incremented. When all DT have been
evaluated, FXGP checks the number of the tested DT. If it is greater than Ps;,, — Pgap then the DT (and referenced
TI) with best score on validation assume the role of ‘champion” and employed for trading. Otherwise the TI
and DT populations are reinitialized and the entire training procedure is restarted i.e., rather than invest more
generations in a population which fails under validation we choose to reinitialize and restart the training cycle.

3.3 Trading and Retraining criteria

During FX trading, the following three trading quality criteria are monitored and used to trigger retraining from
an entirely new population pair of TI-DT populations:

e The magnitude of a decline in account value as measured from peak to subsequent trough. This is generally
referred to as the drawdown and characterized in terms of a minimum (d,,;;) and maximum (d,;,x) number
of pips;

e A maximum number of consecutive losses (11;,s); and

e A maximum number of consecutive hours without trading activity (1,;).

The basic goal is to characterize when the trading conditions are deemed to represent a ‘significant” difference
from that of the previous training period. When any quality criteria are exceeded, FXGP stops trading, reinitializes
the TI and DT populations and restarts the training-and-validation cycle (Figure 1). Content of the training and
validation partitions is taken relative to the point ‘t" at which the trading quality criteria interrupted trading. Once
a new TI-DT champion is identified trading resumes at the point trading was interrupted.

4 Results

The following empirical study assumes FXGP as described in Section 3 as the underlying framework for coevolving
TI-DT trading agents. Our interest is in the relative contribution of:

o Criteria based re-triggering of the retraining event (Section 3.3) versus the widely assumed case of continu-
ously evolved trading agents (Section 4.1).

e Significance of including a validation partition. FXGP assumes that the champion individual is identified by
a validation partition. However, this also implies that the most recent data is not available for training. We
will consider the inclusion and non-inclusion of the validation partition.

e Degree of support for evolving market specific thresholds. In this case we consider two different forms of
S/L thresholds (Section 3.1.1). Either a fixed threshold (s; = 0) or thresholds evolved over a market specific
spread interval (s; = 0.2).

In the following we develop the framework for continuous re-evolution and then establish the common param-
eterization assumed throughout the benchmarking study. The specifics of the data source are then characterized.
The results of the benchmarking study are then detailed. In all cases we are interested in performance across mul-
tiple runs; thus we report the distribution of results rather than a single best case. This latter point is particularly
important because it is not known at the start of trading how effective a strategy might be.

Appears in GECCO’13 under ACM copyright 6

Deploy Champion ‘g’
f—lﬁ

Completed
N.(g) N,(g) & trades
%—l

Evolve population

Deploy
Champion ‘g+1’
S

Completed
& trades

‘ N,(g+1)
—

Continue evolving population

N,(g+1)

Figure 2: Identifying a new champion trading agent through rolling window. g represents the count of cycles of
evolution relative to population content at cycle g — 1. Trading is performed for a fixed number of cycles (J) before
a new cycle of evolution is performed.

4.1 Framework for continuous re-evolution

One of the unique characteristics of FXGP is that retraining is only ever performed when a negative change in
trading behaviour is detected (Section 3.3). Conversely, the norm is to perform some form of continuous evolution
e.g., [2], [8]. With this in mind, we assume the following framework for a ‘rolling window’ approach to evolution
[8]. The TI-DT individuals are evolved as per FXGP with respect to training and validation partitions N; and N,
respectively. Trading is then performed for a fixed duration () using the champion trading agent (Figure 2). The
caveat to this is that in the case of an open trade by the end of the period, trading is allowed to continue until
all open trades are closed, resulting in potential variation in the trading period. After the J trading period has
elapsed, then the training and validation partitions are realigned with the end of the trading period (Figure 2) and
the TI-DT populations are either:

1. Utilized as if evolution progressed from the last generation. Any new content assumes the bias established
by the pervious cycle of evolution. This scheme reflects the intent of recent practice (e.g., [2], [8]) and here-
after will be referred to as continuous evolution or ContEv. Such a scheme naturally reflects a bias towards
exploiting previously evolved policies. We also note that current practice is not to employ a separate vali-
dation partition to choose a champion trading agent for deployment. Indeed, under continuous evolution,
benchmarking revealed that it was not possible to employ the validation criteria from Section 3.2 to deploy
a validation partition. Determining the specific source of this remains a topic for future research;

2. Completely reinitialized before a new training—validation cycle begins. This means that any previously
evolved individuals are replaced with an entirely new population as per the initial cycle of evolution. This
represents a natural alternate case that emphasizes exploration and is similar to the approach adopted
in [15]. Hereafter this will be referred to as stepwise evolution or StepEv. Unlike continuous evolution,
benchmarking did not reveal any problems with the inclusion of a validation partition for stepwise evolution.

4.2 Source Data

The historical rates for EURUSD (1 hour resolution) were obtained from the Forex Historical Data repository.3
Each 24 hour period therefore typically consists of 24 samples. Sampling at the rate of one hour intervals is
conducted to reduce the impact of “trading noise” [9]. We concentrate on the most widely traded currency pair
EURO-to-USD for the three year period July 2009 to November 2012 (or = 17,860 hrs). Data is described in terms
of the following fields: Pair, Date, Time, bid price Open (Open), bid price Low (Low), bid price High (High) and
bid price Close (Close).

4.3 Parameterization

Parameters for FXGP are separated into three sets: 1) generic parameters for sizing population, generations and
frequency of operator application, 2) those for validation (Section 3.2), and 3) those for characterizing change
detection (Section 3.3). All three sets of parameters are summarized in Table 3. Naturally, no claims are made

3http://fxhistoricaldata.com/EURUSD/

Appears in GECCO’13 under ACM copyright 7

Table 3: FXGP parameters

| Parameter | Value]
Training period (Ny) 1,000
Validation period (Ny) 500
Probability of TI mutation (py;) 0.5
Max. training generations (Ty;ax) 1,000
DT population size (Ps;,,) 100
DT replaced per generation (Pggp) 25
Max. nodes (instr.) per DT (TI) 6
Max (Min) Stop/Loss (Smax, Smin) (5,100)
| Validation criteria (Section 3.2) |
Proportion with feasible trade («y) 0.95
Plateau detection threshold (i) 200
| Retraining criteria (Section 3.3) |
Max (Min) Drawdown in pips (200, 400)
Max. consecutive losses (1;,gs) 3
Max. consecutive inactive trades (1,) 72

regarding their optimization. Several parameters are then associated with the case of continuous and stepwise
evolution of trading agents, Section 4.1. Specifically, the size of the fixed length trading period is varied over three
independent experiments: 6 € {120,500,1500} or approximately 1 week, 1 month, 3 months. This reflects the lack
of support for being able to dynamically trigger retraining. Hereafter these will be identified as ContEv or StepEv
xxx, where xxx denotes the trading period duration. Naturally, all trading agents assume common N; = 1,000
and N, € {0,500} parameterizations. Finally, we will also have a baseline TI-DT model in which no retraining is
performed after the initial cycle of training. Hereafter this will be referred to as Static.

In total there are four frameworks: FXGP, StepEv (stepwise evolution), ContEv (continuous evolution; repre-
senting current practice) and Static. FXGP follows the single parameterization of Table 3. StepEv (or ContEv)
replace and retrain (or update relative to current population content) after a fixed length trading period, é, hence
the “retraining criteria” of Section 3.3 is replaced by the approach of Section 4.1. As indicated above three different
durations for the trading period are considered relative to fixed size training and validation periods. ContEv will
only be deployed in a single configuration, on account of the approach to deploying validation partitions from
Section 3.2 not selecting champion individuals. However, this also represents the most frequent scenario in which
ContEv is deployed e.g., [2], [8]. For FXGP and StepEv we enable and disable validation (N, € {0,500}) or support
evolution of S/L thresholds or not. In the latter case, S/L is either fixed at 100 pips or evolved. This results in 23
experiments, each run over 100 initializations simulating trading activity for the EURUSD currency pair over the
trading period from January 2, 2010 to November 30, 2012.4

4.4 Benchmarking results

Table 4 provides a high level summary of all 23 experiments. The table order reflects the median score in pips
over the trading period as collected over all 100 runs. Naturally, there is a close correlation between median score
and the percentage of runs that were profitable. Several general trends are apparent:

e Retaining population content between cycles of retraining (ContEv) appears to be detrimental to providing
new trading agents capable of reacting to the next cycle of trading. However, neither ContEv nor StepEv
appear to match the effectiveness of FXGP (dynamically identifying retraining intervals).

e Both FXGP and StepEv (the latter for trading periods of 1 to 4 weeks) have a strong preference for including
the validation partition. Interestingly for the longer trading period under StepEv (6 = 1500) there was no
benefit in including a validation partition.

e Enabling the evolution of Stop / Loss thresholds did not result in a general pattern of preference for or
against its inclusion. However, it does appear to be useful w.r.t. ordering FXGP.

+Note that the first population is evolved using data starting from July 2009 in order to support a Jan 2010 start to trading.

Appears in GECCO’13 under ACM copyright 8

Pips — : Pips —
— Best — Best
— Typical — Typical
4500 — @ — Worse 4500 — @ — Worse

3000 — 3000 —

1500 — 1500 —

-1500 — -1500 —

L

-3000 —
[I I 1 [I I 1

Jan. 2, 2010 Jan. 2, 2011 Jan. 2, 2012 Nov. 30, 2012 Jan. 2, 2010 Jan. 2, 2011 Jan. 2, 2012 Nov. 30, 2012

(a) pips (b) USD

-3000

Figure 3: Trading profiles for (a) pips and (b) USD using best configured trading agent: FXGP with validation
partition and S/L.

e In the case of the lengths of trading considered with StepEv and ContEv — ¢ € {120,500,1500} — the longest
trading period was most effective with ContEv, but least effective with StepEv. Further research would be
necessary to obtain a clearer picture of the dynamics behind this.

e It is possible that any configuration can result in profitable (unprofitable) runs (see ‘min’ and ‘max’ columns
of Table 4). However, in most cases at least 25% of runs are unprofitable (1st quartile). Given that it is not
a priori possible to determine which runs will be profitable over the investment period, this means that it is
very important to characterize performance over multiple runs. If only best case runs are considered, then
even the static configuration is ‘profitable’.

e Training once at the beginning of the three year period and then assuming that the resulting champion
individual will be effective clearly does not work. This illustrates that the FX trading task is essentially
non-stationary. Naturally, the use of a validation partition is irrelevant as 1 month of validation data is
not sufficient for characterizing the following three years of trading when the underlying process is non-
stationary.

In the case of the best configured framework — FXGP with validation partition and non-zero S/L threshold
— we also plot the trading curves in pips and USD over the total trading period (Figure 3). The USD account
assumes an initial balance of $100,000 and a leverage of 1:100. One pip is worth 0.0001 USD and buying or selling
actions are limited to 2% of the account balance.> These curves reflect the corresponding best, worst and median
scores from Table 4. By way of comparison, investing in a mutual fund over exactly the same period could result
in yearly rate of return of 3.95% on the same initial investment ($100,000); or a gain of $11,947 by the end of the 3
year period.® However, to obtain such a result the mutual fund was selected post investment i.e., once the three
year investment is complete; whereas most mutual funds failed to match this level of return. Conversely, even the
typical performance of FXGP in Figure 3 better this return.

Figure 4 illustrates the distribution in the ultimate trading outcome for the best configuration from Table 4 i.e.,
FXGP, StepEv, ContEv and Static as indicated by the fsymbol. The FXGP cases (with validation) were the only
solutions with 1st, 2nd (median) and 3rd quartile investments that were non-negative. Thus, at least 75% of the
runs returned profitable training strategies. Conversely, trading agents evolved under any other approach failed to
reach this degree of repeatability. Moreover, this was not achieved at a loss of median or 3rd quartile profitability.
Table 5 confirms the degree of independence in the distributions as a student T-test. FXGP is in the worst case
independent at the g5 percentile (w.r.t. StepEv) and more than a 99 percentile in the case of ContEv (as typically
used when deploying evolutionary trading agents) and Static.

Shttp://www.investopedia.com/articles/forex/07/forex_leverage.asp
®RBC Global asset management. https://services.rbcgam. com/portfolio-tools/public/investment-performance/

Appears in GECCO’13 under ACM copyright 9

Table 4: Result ranking w.r.t. average pips. fcases illustrated in Figure 4.

Algorithm Validation (Ny) | Stop/Loss (ps;) | % Profitable Score (pips)
(500 / 0) (0.2 /0) runs min | 1st quartile | median | 3rd quartile | max
FXGPy 500 0.2 82 -3087.9 383.375 1522.5 2639.525 5298.6
EXGP 500 0 79 -2024.2 296.425 1447 2580.9 5086.1
StepEv 5007 500 0 73 -3879.1 -234.85 1118.3 1947.15 5231.8
StepEv 120 500 0.2 73 -2722.9 -89.3 995.85 1862.975 4403.1
StepEv 500 500 0.2 73 -3200.9 -33.55 922.75 2167.825 4902.1
FXGP 0 0.2 60 -4377.5 -746.05 671.4 1792.35 4682.8
StepEv 120 0 0.2 63 -3659.0 -717.775 580.35 1663.275 3959.7
StepEv 120 500 0 66 -3438.4 -433.05 550.45 1630.375 5795.5
ContEv 15007 0 0.2 61 -3920.9 | -1020.875 534.55 1852.025 4115.7
StepEv 1500 0 0.2 58 -3167.4 -852.825 365.55 1460.3 3624.0
StepEv 1500 0 0 55 -4017.5 -1373.3 302.65 1482.425 3715.8
StepEv 500 0 0 53 -4558.4 -1150.65 169 1275.2 44543
ContEv 500 0 0.2 53 -3205.8 -739.5 122.45 1136.85 3553.8
EXGP o o 53 -3841.7 -1029.8 66.65 1123.15 4763.9
StepEv 500 0 0.2 52 -3855.6 -938.95 59.2 1416.925 4695.4
StepEv 1500 500 0 50 -4205.9 -1205.95 55.35 1019.05 4049.9
ContEv 120 0 0.2 52 -4135.8 -1099.925 15.3 1372.625 3908.2
StepEv 120 0 0 49 -3051.7 -1194.75 -48.2 1013.55 4043.4
StepEv 1500 500 0.2 45 -4490.8 | -1202.225 -68.95 1129.95 4086.9
Statict 0 0.2 38 -4960.9 -1358.375 -421.25 467.7 2602.1
Static 0 0 37 -3775.7 -1531.55 -668.3 780.65 3631.3
Static 500 0.2 23 -5733.7 | -2031.125 -804.55 -144.1 3166.5
Static 500 0 23 -5911.1 -2347.125 -1161.7 -109.775 3844.3

Pips —

4000 —

2000 — H

-2000 —

-4000 —

-6000 —

[I I 1
FXGP StepEv 500 ContEv 1500 Static

Figure 4: Comparison of ‘pips’ distribution associated with trading strategies from first ranked FXGP, StepEy,
ContEv and Static parameterizations from Table 4. 100 runs per distribution.

Appears in GECCO’13 under ACM copyright 10

Hours —
2000 —
1500 —
1000 —

500 —

Figure 5: Distribution of intervals between re-triggering of FXGP training. Statistic collected across all 100 runs.

Table 5: p-values for pairwise Student T-test of FXGP versus StepEv, ContEv and Static identified by tin Table 4.

| FXGP vs.StepEv | EXGP vs.ContEv | FXGP vs.Static |
| 0.0332 | 6112x10° | 4448x10° 5 |

Finally, with respect to FXGP (with validation) we can also assess the frequency of training re-triggering. Figure
5 summarizes the trading interval between the re-triggering of training. The spread of the box plot (internal to the
violin) reflects that variation in re-triggering does appear with a median of ~ 200 hours, but a 1st / 3rd quartile
spread of [+140, —80]; thus indicating that significant tuning of the retraining period is occurring.

5 Conclusion
A benchmarking study is performed to assess the relative value of:

e Selecting a champion trading individual from an independent validation sample of data before deploying as
a trader;

e Dynamic re-triggering versus continuous evolution of trading agents;

e Incorporating the evolution of task specific thresholds.

Validation of traders before deployment appears to be of central significance. A previous study pertaining
to the use of early stopping criterion in financial applications [13] was not performed relative to streaming data
(batch offline learning relative to static training and test partitions was employed). However, the authors did
indicate that they believed that care was necessary when determining the criterion for applying early stopping.
In this research, the very poor performance of the trader evolved under offline ‘Static’ training conditions verifies
that the task was indeed non-stationary. It was also apparent that using trading criteria to re-trigger training was
more effective than ‘fixing’ retraining at the end of each trading period as in continuous or stepwise evolution.
Current practice is to assume the case of training on a continuous basis at the end of each trading period without
the use of validation e.g., [2], [8]. This is certainly better than assuming ‘static” offline deployment, but appears to
be less effective than enforcing a fixed rate of retraining from an entirely reinitialized population (StepEv). Con-
versely, retraining at every sliding window location has been considered [15], but naturally incurs a computational
overhead. Introducing retraining criteria provides a potential middle ground.

Part of the reason we see for continuous evolution to fare so badly in this context is that diversity is being
compromised. In the monograph of Dempsey et al. [2], Chapter 2, various factors are identified as being of
particular importance when constructing frameworks to operate on non-stationary domains. One of these was the
maintenance of diversity. However, when evolution is performed on a continuous basis (ContEv), there is a natural
bias towards exploitation rather than exploration. We do not see continuous evolution as fundamentally limited in
this respect, but it certainly appears that the trading domain requires more emphasis to be placed on maintaining

Appears in GECCO’13 under ACM copyright 11

diversity than currently appears to be the case. Both of the frameworks that explicitly reset population content
before retraining (StepEv and FXGP) avoided this pathology. In summary, rather than assume a specific interface
between EC and trading data, the authors suggest that several schemes should be considered in which different
exploration / exploitation tradeoffs are explicitly represented.

Acknowledgements

The authors acknowledge support from NSERC and MITACS grant programs.

References

[1] M. Brameier and W. Banzhaf. Linear Genetic Programming. Springer, 2007.

[2] I. Dempsey, M. O'Neill, and B. A. Foundations in Grammatical Evolution for Dynamic Environments, volume 194
of Studies in Computational Intelligence. Springer, 2009.

[3] M. A. Dempster and C. M. Jones. A real-time adaptive trading system using genetic programming. Quanti-
tative Finance, 1:397—413, 2001.

[4] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbiotic coevolutionary genetic
programming. Genetic Programming and Evolvable Machines, 13(1):71-101, 2012.

[5] P. Fernandez-Blanco, D. Bodas-Sagi, F. Soltero, and J. Hidalgo. Technical market indicators optimization
using evolutionary algorithms. In ACM Conference Companion on Genetic and Evolutionary Computation, pages
1851-1858, 2008.

[6] A. Hirabayashi, C. Aranha, and H. Iba. Optimization of the trading rule in foreign exchange using genetic
algorithm. In ACM Conference on Genetic and Evolutionary Computation, pages 1529-1536, 2009.

[7] A. Hryshko and T. Downs. An implementation of genetic algorithms as a basis for a trading system on the
foreign exchange market. In IEEE Congress on Evolutionary Computation, pages 1695-1701, 2003.

[8] H. Iba and C. C. Aranha. Practical applications of evolutionary computation to financial engineering, volume 11 of
Adaptation, Learning, and Optimization. Springer, 2012.

[9] Investopedia, accessed Sept, 2012. http://www.investopedia.com/terms/n/noise.asp#axzz27d0d2rid.

[10] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity under GP. In ACM Genetic
and Evolutionary Computation Conference, pages 853-860, 2010.

[11] A. Loginov and M. I. Heywood. On the utility of trading criteria based retraining in Forex markets. In
EvoApplications, LNCS, to appear, 2013.

[12] E. P. K. Tsang and J. Li. Eddie for financial forecasting. In S. H. Chen, editor, Genetic Algorithms and Genetic
Programming in Computational Finance, pages 161—-174. Kluwer Academic, 2002.

[13] C. Tuite, A. Agapitos, M. O’Neill, and A. Brabazon. A preliminary investigation of overfitting in evolutionary
driven model induction: Implications for financial trading. In EvoApplications: Part II, volume 6625 of LNCS,
pages 120-130, 2011.

[14] N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series forecasting for dynamic environ-
ments: The DyFor genetic program model. IEEE Transactions on Evolutionary Computation, 11(4):433—452, 2007.

[15] G. Wilson and W. Banzhaf. Interday and intraday stock trading using PAM GP and linear GP. In A. Brabazon,
O'NEeill, and D. G. Maringer, editors, Natural Computing in Computational Finance 3, volume 293 of SCI, pages
191-212. Springer, 2010.

