
On the Impact of Class Imbalance in GP Streaming Classification
with Label Budgets

Sara Khanchi1, Malcolm I. Heywood1, and A. Nur Zincir-Heywood1

1Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada

Article originally appears at EuroGP’16 (LNCS 9594) under Springer copyright 2016

http://link.springer.com/chapter/10.1007\%2F978-3-319-30668-1_3

Abstract

Streaming data scenarios introduce a set of requirements that do not exist under supervised learning paradigms
typically employed for classification. Specific examples include, anytime operation, non-stationary processes, and
limited label budgets. From the perspective of class imbalance, this implies that it is not even possible to guarantee
that all classes are present in the samples of data used to construct a model. Moreover, when decisions are made
regarding what subset of data to sample, no label information is available. Only after sampling is label information
provided. This represents a more challenging task than encountered under non-streaming (offline) scenarios
because the training partition contains label information. In this work, we investigate the utility of different
protocols for sampling from the stream under the above constraints. Adopting a uniform sampling protocol was
previously shown to be reasonably effective under both evolutionary and non-evolutionary streaming classifiers.
In this work, we introduce a scheme for using the current ‘champion’ classifier to bias the sampling of training
instances during the course of the stream. The resulting streaming framework for genetic programming is more
effective at sampling minor classes and therefore reacting to changes in the underlying process responsible for
generating the data stream.

1 Introduction

The streaming data classification task under label budgets introduces a number of constraints that do not appear
under the typical offline supervised learning context [9, 5, 14, 1, 7]. Specifically, a streaming data context implies
that there is no beginning or end to the data, thus there is no prior partition of the data into training and test
sets. Instead, it is necessary to construct a classifier while assuming a limited label budget, i.e. it is too expensive
to label all the data, so part of the task of the learning algorithm is to decide which exemplars to request labels
for (without exceeding some prior label budget). Naturally, only exemplars for which the streaming data classi-
fication algorithm actually requests labels are used for parameterizing candidate classifiers. The remaining data
are ‘unlabelled’ and it is this subset for which a classifier needs to make predictions. Improving the quality of
classifier(s) and labelling unlabelled data are therefore not tasks associated with independent prior partitions of
the data. Moreover, the data itself might well be generated by a non-stationary process [9, 5]. Thus, the underlying
process responsible for creating the data might be subject to sudden shifts or gradual drifts, implying that some
form of change detection and / or continuous sampling for labels is necessary in order for classifiers to keep
‘up-to-date’.

Naturally, it is not possible to make any guarantees regarding the distribution of class labels within a stream.
Moreover, given that streaming classifiers are limited to querying exemplars from a finite ‘window’ to the stream
at any point in time; then, depending on the degree of mixing, the exemplars within the current window location
may only be representative of a single class.

In this work, we adopt a generic framework for interfacing genetic programming (GP) to streaming data [9, 17];
hereafter referred as streamGP (Figure 1). The framework identifies four components:

1. the window interface from which new exemplars may be sampled;

2. a sampling policy for deciding which exemplars to request labels for;

3. the data subset against which fitness evaluation is conducted;

1

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 2

4. an archiving policy for deciding which exemplars should be replaced / retained.

In summary, we are interested in considering how decisions that are made regarding the sampling and archiv-
ing policies impact on the resulting performance of the classifier. Specifically, we investigate how heuristics for
introducing class balance into the data subset can be defined without the use of label information.

2 Related work

Streaming data analysis under label budgets represents a topic of growing interest, with several monographs [1, 7]
and journal special issues [12] being devoted to the topic. However, until recently there has been little reference
to approaches from evolutionary computation that actively construct models (such as GP, learning classifier sys-
tems or neural evolution). Conversely, optimization under ‘dynamic environments’ represents a distinct topic for
evolutionary computation with an emphasis on the accurate ‘tracking’ of multiple ‘peaks’ in a multi-modal envi-
ronment, but without requiring generalization to unseen data. As such, there is no requirement to operate under
the constraints of a framework for addressing the issue of label budgets. The survey article of [9] reviews develop-
ments from the perspective of both non-evolutionary and evolutionary approaches to model building. Particular
highlights include:

Ensemble methods provide the ability to incrementally adapt to changes in the stream. Under a GP context
adopting an ensemble approach might imply that multiple individuals from the same population coevolve,
as in various frameworks for evolving teams of programs [3, 10, 13, 19]. A recent study demonstrated
that supporting coevolutionary teaming under GP is particularly appropriate for streaming data contexts
[16]. In a sense, modularity enables greater refinement in the credit assignment process, so that rather than
having to replace all of a model, only parts of a model require revision. This is particularly important under
tasks that lack a ‘complete’ definition or undergo change. More generally, the capacity to change is related
to representations that are in some way ‘elastic’, with specific authors making the case for the utility of
genotypic-to-phenotypic mappings [4] or neutral networks [18] under dynamic environments.

Anytime operation implies that it must be possible to identify at any point in time a ‘champion’ individual that
will attempt to label the stream. At the same time, the development of new individuals may also be taking
place, or alternatively, a change detection process is used to trigger the development of new champion
individuals (see below).

Diversity maintenance contributes to the ability to react to change in the minimum amount of time. Both non-
evolutionary ensemble methods and evolutionary methods appear to benefit from diversity maintenance,
but open questions exist around what ‘type’ of diversity is most appropriate.

Change detection versus sampling represents a requirement unique to the streaming data task under label bud-
gets. Given that models can only be constructed relative to a very limited subset of exemplars at any point
in time and there is only a limited label budget, then decisions need to be made regarding which data to re-
quest labels for. Change detection might be performed relative to stream content in an attempt to detect such
changes. However, this will not detect changes that result from the movement in labels from one concept to
another. With this in mind, benefits have been associated with adopting combined approaches in which both
the periodic uniform sampling for labels is combined with change driven requests for labels (e.g. [14, 20]).

Memory mechanisms are implicit in the use of shared genetic material, support for neutral networks and multi-
population models. All forms of memory have a part to play in contributing to solutions to streaming data
tasks.

In this work, we will adopt the general framework for applying GP to streaming data from [9] (Figure 1) and
make use of the symbiotic bid based (SBB) framework for coevolving GP programs into teams [10]. The capacity
of the latter for task decomposition (or constructing modular solutions) has already been demonstrated to be
superior to monolithic GP under non-streaming and streaming tasks (see [11] and [16] respectively). Moreover,
SBB supports multi-class classification from a single run without having to adopt additional heuristics.

3 Methodology

The advancing stream defines a sequential sequence of exemplars, each of dimension d. Without loss of generality,
we assume a non-overlapping window interface SW, each consisting of an equal number of exemplars (Figure 1).

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 3

Sampling)
Policy)

SW(t))
Data)
Subset)
DS(t))

Data)
Archiving)
Policy)

gen(i))
Gap(t))

ID)data)for)
replacement)

SW(t?1))

SW(t+1))

Sequence)of))
Non?overlapping)windows)

w.r.t.)stream)content)

GP)

Figure 1: StreamGP framework with proposed additional feedback paths (dotted).

Only the exemplars within the current window position, SW(t), are available for sampling. Label information is
not available when making the decision regarding which exemplars to sample from SW(t). Moreover, for simplicity
we assume that each new window location results in Gap label requests, implying that indexes for window
instance and the label request are the same.

Only once the sampling policy identifies Gap(t) exemplars for sampling is label information revealed, i.e.
|Gap| ÷ |SW| denotes the label budget. The data subset, DS, represents the finite sized archive of labeled exemplars
used for guiding the training process; thus, |DS| > |Gap|. A data archiving policy determines which exemplars
are replaced each time a new sample of Gap exemplars are taken from the stream. Once data subset content is
defined for the current window location, DS(t), one or more generations of GP are performed. It is relative to the
content of the data subset that a champion individual is identified for the purposes of anytime operation (Section
3.1).

Naturally, the sampling policy might be based on a measure designed to detect change between sequential
window locations (for a review see [9]). However, this also limits the circumstances under which model recon-
struction is initiated. Conversely, assuming a uniform sampling policy (subject to the label budget) has been
empirically shown to be difficult to improve on in practice [20, 14]. This was also the approach adopted in the
original experiments with the framework of Figure 1 [16, 17].1

The question we are interested in explicitly addressing in this work is to what degree the properties of the
resulting classifier are biased by decisions made regarding the sampling / archiving policy (Figure 1). The under-
lying constraint within which such a sampling policy is required to exist is that label information is not available
when deciding which exemplars to sample. Two protocols will be considered:

1. sample with uniform probability up to the label budget, as per earlier studies [16, 17], hereafter the uniform
sampling policy;

2. make use of the current champion classifier to suggest labels and therefore bias the replacement / selection
of exemplars, hereafter the biased sampling policy.

The first scenario implies that the exemplars within the data subset (against which GP individuals are evolved)
will reflect the underlying distribution of exemplars in the stream. The second scenario has the potential to
incrementally balance the representation of classes within the data subset. In the following subsections, we develop
the framework for anytime operation (champion identification) and then establish the mechanism assumed for
reintroducing class-wise sampling of the stream without recourse to any additional label information.

3.1 Anytime operation

As noted in Section 2, streaming data algorithms are required to identify a ‘champion’ model at any point to label
the stream data as it ‘passes by’ or anytime operation. The only source of information for the purpose of choosing
such a champion individual is the current content of the data subset, Figure 1. Thus, once all GP individuals are
evaluated against all DS content (or generation, i), a candidate ‘champion classifier’ can be identified and deployed.
Thereafter, a new champion might be identified on concluding each generation. The process operates entirely
within the label budget constraint and results in anytime operation. The metric employed for this purpose is that

1Earlier work with SBB under streaming data assumed that label information could be used to ensure the data subset was always balanced
[15].

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 4

of multi-class detection rate, as follows: DR = 1
C ∑ DRi where DRi =

tpi
tpi+ f ni

; C is the count of classes present in
DS(t); tpi and f ni are the counts of true positive and false negative for class i, again relative to exemplars present
in DS(t).

Naturally, during the course of a streaming data sequence multiple champion individuals might be identified,
but only one champion deployed during any segment of the stream. This is distinct from the style of operation
assumed for non-streaming data in which models are constructed from a training partition, a champion individual
is identified relative to the entire training partition (or an independent validation partition) and test is performed
relative to an independent test partition. None of this is possible under streaming data scenarios because access
to the data is very limited (with the process creating the data itself potentially being non-stationary) [9, 5, 1, 7].

3.2 Archiving Policy

The modified archiving policy is designed to target overrepresented classes for replacement by the next sample
of Gap exemplars. This means that exemplars representing the minor class(es) are more likely to be retained in
DS(t) between consecutive t, whereas exemplars associated with the major classes are prioritized for replacement.
Naturally, this also means that the exemplars representing the major classes are more up to date / turn over at a
higher frequency.

The modified archiving policy is detailed as follows:

1. Estimate the current class-wise distribution of exemplars within DS(t), or

∀c ∈ C′ : ∀i ∈ DS(t) IF pi == c THEN wc = wc + 1 (1)

where, C′ are the number of different classes present within DS(t), pi is exemplar i from the data subset.

2. Normalize class counts (wc) so distinguishing between under and over represented classes, or

∀c ∈ C′ : wc = wc −
|DS| − |Gap|

C′
(2)

3. Mark all cases with wc > 0 so identifying the overrepresented classes and identify the corresponding budget
of exemplars for replacement, Mc, or

∀c ∈ C′ : Mc =

{
wc × |Gap|

∑ wc
IF wc > 0

0 otherwise
(3)

4. For each class, mark Mc instances for replacement with uniform probability, subject to a total budget of Gap.
Note that in doing so, older instances are replaced first.

5. IF Step 4 marked less than Gap instances from DS(t) for replacement, THEN the remaining instances Gap−
∑c∈C′ Mc are identified uniformly across the overrepresented classes until a total of Gap instances are marked
for replacement.

3.3 Sampling Policy

Section 3.2 introduced a bias that resulted in the more overrepresented classes being targeted for replacement.
Naturally, this has not done anything to increase the chances of sampling instances from the stream corresponding
to less frequently sampled classes. The principle constraint is that we have a limited label budget. Our approach
will therefore be to make use of the labels supplied by the champion individual, gp∗ (identified in support of
the anytime operational requirement, Section 3.1) to bias the selection of exemplars for inclusion within Gap
relative to the current window location SW(t). Thus, preference will be given to the exemplars that the champion
classifier associates with the underrepresented class(es) in the class distribution present in DT(t− 1). The resulting
sampling policy has the following form:

1. Assume Eq. (1) through (3) from Section 3.2 to identify any underrepresented classes and their associated
exemplar counts, wc. Such a process is performed w.r.t. DS(t− 1) content, i.e. after the last updating of the
Archive Policy.

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 5

2. Use the current champion GP classifier, gp∗, to identify any instances under SW(t) that (potentially) corre-
spond to an under represented class, or

∀pi ∈ SW(t) : G(pi, m) =

{
m IF gp∗(pi) == Mc(m)
0 otherwise (4)

where Mc(m) are the subset of classes underrepresented (i.e., those for which Mc == 0 from Eq. (3)),
G(pi, m) is a vector of class labels corresponding to the underrepresented instances and m correspond to the
class label for an underrepresented class.2

3. The non-zero entries of G(·, ·) constitute the instances potentially corresponding to the under represented
class(es). Sample without replacement until either no instances remain (in G(·, ·)) or |Gap| instances have
been sampled. Such a sampling process is biased to prioritize sampling classes least represented in DS(t− 1).

4. If Gap is not yet full, sample from the remaining instances in SW(t) without replacement (uniform p.d.f.).

The above process is enabled once some stability is achieved in the identification of champion individuals. For
the purposes of the experimental evaluation a generic threshold of the first 2.5% of the generations is assumed
across all data sets.3 During this initialization period the Gap individuals are selected with uniform p.d.f. alone.
No such constraint is employed in the case of the Archiving Policy (Section 3.2).

4 Experimental Methodology

An empirical evaluation is performed to investigate the impact of assuming the biased sampling protocol (Section
3) versus a uniform sampling of training instances under fixed label budgets.4 In each case 20 runs are performed
over 4 data sets previously employed for benchmarking streaming data algorithms. Two data sets are artificial
data sets with specific non-stationary properties present (i.e., explicitly designed in), whereas the other two data
sets represent real-world tasks in which general spatial-temporal properties are assumed to be present. Section 4.1
will summarize the properties of these data sets.

Metrics for performance evaluation under streaming data are in itself the subject of active research [8, 2]. That
is to say, streaming data has a dynamic component on account of the model being under continuous development
throughout the stream; thus, the performance metric should be able to characterize performance over the course
of the stream. In this work, we will adopt a count based metric as it is both robust to different class distributions
and capable of expressing the dynamic properties of classifier performance during the course of the stream [9, 16].
The specific formulation is presented in Section 4.2. Finally, Section 4.3 establishes a common parameterization
for use throughout the study.

4.1 Datasets

A total of four data sets will be assumed in which two are artificially constructed in order for specific non-
stationary properties to be embedded within the stream: hereafter Shift and Drift.5 The Shift dataset [20] defines
a 5-class task in 6-dimensions in which two decision trees are used to define rules for two separate 5-class classifi-
cation tasks: C1 and C2. The stream is defined in terms of a sequence of ‘blocks’. Each block is composed from β%
of exemplars defined by decision tree C1 and (100− β)% of exemplars defined by decision tree C2. The first three
blocks assume β = 0% thereafter each block results in β incrementally increasing by 10% until β = 100%. The
Drift dataset [6] is defined by a process of gradual variation in which three classes are described by 10-dimensional
hyperplanes. Every 1,000 exemplars half of the parameters may undergo variation. Class labels are defined on the
basis of whether the hyperplane exceeds a predefined class threshold.

We also make use of the widely used ‘electricity utilization’ dataset in which the goal is to predict whether the
price of electricity (in a region of Australia) are going to increase or decrease relative to a moving average of the
last 24 hours. As such this is an example of a real-world task with implicit temporal properties and has received
considerable interest from the perspective of the empirical evaluation of streaming algorithms (e.g., [2]). The
final dataset is the ‘forest cover type’ dataset from the UCI repository, but preprocessed to introduce a sequential

2Valid class labels appear over the interval [1, ..., C].
3Given the later benchmarking parameterization this corresponds to no more than 25 generations.
4Previous studies had compared StreamGP under the uniform sampling protocol to non-evolutionary streaming algorithms [17, 16].
5Shift and Drift datasets are available from: http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 6

Table 1: Properties of the benchmarking datasets. D: number of attributes per exemplar, N: cardinality of the
stream, k: number of classes present, ‘Class distribution’ reflects the overall frequency with which each class is
represented over the entire stream. No attempt is made to ensure that this ratio is reflected in the window interface
used by the classifier to sample stream content.

Dataset D N k ≈ %Class distribution
Shift 6 6, 500, 000 5 [37, 25, 24, 9, 4]
Drift 10 150, 000 3 [74, 16, 10]

Electricity 8 45, 312 2 [58, 42]
Cover 54 581, 012 7 [49, 36, 6, 4, 3, 1.5, 0.5]

ordering in the sequence relative to the elevation attribute [14].6 Table 1 summarizes the generic properties of each
data stream.

4.2 Class-wise detection rate

As noted above, given that under streaming data scenarios there are no mechanisms by which stream content can
be stratified, then there are no guarantees that window content, SW(t), will even contain exemplars from each
class. With this in mind, the following definition for the online estimation of multi-class detection rate is assumed
[9, 17]. A per class detection rate is first defined as follows:

DRc(t) =
tpc(t)

tpc(t) + f nc(t)
(5)

where t is the exemplar index, and tpc(t), f nc(t) are the respective online counts for true positive and false negative
rates, i.e. up to this point in the stream.

The multi-class detection rate now has the form:

DR(t) =
1
C ∑

c=[1,...,C]
DRc(t) (6)

Hence, the multi-class detection rate can also be evaluated at any point in the stream.

4.3 Parameters

GP parameterization follows that adopted in previous work (e.g., [16, 17]) and is summarized in Table 2. Moreover,
given that for benchmarking purposes the datasets are of a finite length, we enforce label budgets through the
use of a fixed number of locations, imax, for the non-overlapping window (SW(t)) and knowledge of the dataset
cardinality (Table 3). The earlier work also reported that letting GP perform multiple iterations per DS(t) content
was beneficial [16, 17]. With this in mind, we perform experiments with a maximum total number of generations
of imax and 5× imax.7 The former implies that one generation is performed per DS update, the latter implies that
five generations are performed per DS update; hereafter referred to as single generation and multi-generation
respectively. The instruction set takes the form of:

• Single argument operators: R[x] = 〈op〉R[y] where 〈op〉 ∈ {cos, exp, log}

• Two argument arithmetic operators: R[x] = R[x]〈op〉R[y] where 〈op〉 ∈ {+,−,÷,×}

• Two argument conditional operator: IF R[x] < R[y] THEN R[x] = −R[x]

6Electricity and Cover Type are available from: http://moa.cms.waikato.ac.nz/datasets/
7Any more than five resulted in negligible improvement [16].

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 7

Table 2: GP Parameters. Mutation rates control the rate of adding / deleting symbionts or changing symbiont
action. DS and Gap refer to the data types in Figure 1. Host population size and gap imply a breeder model of
evolution (the worst Mgap hosts are deleted each generation) [10].

Parameter Value Parameter Value
Prob. Symbiont deletion (pd) 0.3 Data Subset size (DS) 120

Prob. Symbiont addition (pa) 0.3 DS gap size (Gap) 20

Prob. Action mutation (µ) 0.1 Host pop. 60

Max. symbionts per host (ω) 20 GP gap size (Mgap) 20

Table 3: Stream Dataset Parameters. Label Budget is defined as a function of the number of non-overlapping
window locations (imax), DS Gap size (20) and dataset cardinality (N).

Parameter # unique SW locations (imax) Label Budget
Shift (shift) 1,000 0.3%
Drift (drift) 500 6.7%
Electricity (elec) 500 22.1%
Covertype (cover) 1,000 3.4%

5 Results

Given that the overall detection rate (Eq. 6)) can be decomposed into the contribution from each per class detection
rate (Eq. (5)), we can view the independent contributions from each per class detection rate over the course of
the stream; hence, providing additional insight into the relative impact of the original uniform sampling protocol
versus the proposed biased sampling protocol.

Sections 5.1 and 5.2 review the resulting dynamic multi-class DR as a function of single and multi-generation
parameterizations under uniform and biased sampling protocols. Section 5.3 concludes the result section with a
static analysis performed in terms of the end-of-stream performance using the overall detection rate (Eq. 6)).

5.1 Single generation performance

Figures 2 and 3 reflect the detection rate of each class over the duration of the stream for the two artificial datasets
(averaged over the 20 runs). Table 1 details the frequency with which each class is represented. Thus, all figures
report class 1 as the most frequently occurring and class C as the least frequently occurring. It is readily apparent
that the uniform sampling protocol under the Shift dataset explicitly favours the detection of the most frequent
classes throughout the stream. Conversely, under the incremental variation of the Drift dataset, the uniform
sampling protocol does not reflect this bias, possibly implying that it is more difficult to detect class 2 than 3.

Introducing the biased sampling protocol results in a different preference in class detection rates. Under Shift,
the major class (class 1) is still detected most, whereas the second smallest class (class 4) is also detected strongly
throughout the stream. Moreover, compared to the uniform protocol, it appears that there is much less difference
between the rates at which best and worst classes are detected when using the biased protocol. The Drift dataset
resulted in much stronger detection by the biased protocol throughout, albeit with the lest frequent class detected
most strongly.

Figures 4 and 5 repeat the dynamic depiction of per class detection rate, this time for the two real-world datasets
(curves averaged over the 20 runs). Adopting a uniform sampling protocol resulted both classes being detected
equally throughout the stream under Electricity (60%). Conversely, the biased sampling protocol initially resulted
in a strong symmetry, with a very distinct notch appearing for the duration of the first 2.5% of the stream. This
appears to reflect the parameterization choice assumed for delaying the introduction of the Sampling policy (see
comment at the end of Section 3.3). That said, the negatively impacted class 2 returns to a detection rate matching
that achieved by the uniform framework after ≈ 30% of the stream has passed.

Under the Cover dataset the uniform protocol identified all but two classes with a fixed level of detection rate
for the majority of the stream. Class 1 (the major class) is initially detected at a rate of > 60% before dropping by
10% whereas class 7 is only ever identified right at the end of the stream. Conversely, adopting the biased sampling
protocol resulted in class 7 being detected much earlier than under the uniform protocol; likewise for class 6. That
said, the two major classes (1 and 2) were always detected more strongly under the uniform framework.

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 8

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_no_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(a) Uniform

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_no_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(b) Biased

Figure 2: Shift dataset – Average per class detection rate (over 20 runs) under label budget of imax = 1000, single
generation. Curves best viewed in colour

Results of class detection rates (Unified-noSigmoid-2.5%initialization)

Oversampling=1

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%
1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_oversampling

Class#1 Class#2 Class#3

(a) Uniform

Results of class detection rates (Unified-noSigmoid-2.5%initialization)

Oversampling=1

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_no_oversampling

Class#1 Class#2 Class#3

(b) Biased

Figure 3: Drift dataset – Average per class detection rate (over 20 runs) under label budget of imax = 500, single
generation

5.2 Multi-generation performance

Adopting a multi-generation parameterization implies that five generations are performed per data subset update
(DS(t)); thus the label budget is unaffected, but GP is potentially able to react more quickly to change [16, 17].
Other than the addition of multiple generations per DS(t), there are no changes relative to the configuration of
the uniform and biased protocols.

Figure 6 summarizes per class detection rates for the Shift dataset. Relative to the single generation curves
(Figure 2) all detection rates are improved, i.e., less variation between the detection of best and worst classes.
However, it appears that the biased sampling protocol sees most improvement overall. Under the Drift dataset
(Figure 7) all curves are again either improved by the introduction of multi-generation operation or, in the case
of the uniform protocol for class 1, negatively impacted. This is interesting, as class 1 is the largest class, thus it
might be assumed to see preferential detection by the uniform sampling protocol.

Figure 8 summarizes per class behaviour under the Electricity dataset. Performing multiple generations (per
DS update) appears to have very little impact under the uniform sampling protocol, whereas a 5% improvement
appears for the detection of each class under the biased protocol. The notch associated with the delayed introduc-
tion of the biased Sample policy is again in evidence.Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_no_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(a) Uniform

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_no_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(b) Biased

Figure 4: Electricity dataset – Average per class detection rate (over 20 runs) under label budget of imax = 500,
single generation

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 9

Results of class detection rates (Unified-noSigmoid-2.5%initialization)

Oversampling=1

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_oversampling

Class#1 Class#2 Class#3

(a) Uniform

Results of class detection rates (Unified-noSigmoid-2.5%initialization)

Oversampling=1

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_no_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_no_oversampling

Class#1 Class#2 Class#3

(b) Biased

Figure 5: Cover type dataset – Average per class detection rate (over 20 runs) under label budget of imax = 1000,
single generation. Curves best viewed in colour

Finally, the Cover type dataset (Figure 9) was also generally improved by the addition of multi-generation
operation. Note that the uniform sampling protocol tends to result in a wider spread of per class detection rates,
whereas the biased protocol allocated it’s resources more evenly across the 7 classes. Also evident is a strong
preference under uniform sampling to detect the major class, whereas the biased sampling protocol detects the
smallest class the strongest. Naturally, attempting to allocate equal numbers of samples to each class implicitly
assumes that all classes are equally difficult to classify. Conversely, in practice the difficulty in detecting a class is
not related to the number of instances describing it.

5.3 Overall Detection Rates

Overall performance of streaming algorithms is generally characterized in terms of the performance metric at the
‘conclusion’ of the stream (see for example the widespread use of prequential error as measured at the end of
the stream [8, 2]). In this case, we can utilize the average class-wise detection rate (Eq. (6)) and then apply a
nonparametric Mann-Whitney U test to verify the significance of any difference.8 Table 4 provides the quantitative
summary of this comparison for both the single generation and multi-generation parameterizations under uniform
and biased sampling protocols.

In short, under the single generation mode of operation, significant improvements appeared for all but the
case of Cover type at the 99% Confidence interval (with the biased sampling protocol preferred). Under the multi-
generation mode Cover type was also improved, thus, both algorithms improved with the inclusion of the biased
sampling protocol.

6 Conclusion

Building classifiers for non-stationary streaming data applications with label budgets represents a new challenge
for machine learning in general [9, 5]. Moreover, only a little research has been conducted to this end using genetic
programming. In this work, we benchmark a general framework for applying genetic programming to this task.

8Violin plots were used to establish that the distributions did not conform to a normal distribution. Space precludes their inclusion.

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(a) Uniform

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(b) Biased

Figure 6: Shift dataset – Average per class detection rate (over 20 runs) under label budget of imax = 1000, multi-
generation. Curves best viewed in colour

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 10

Oversampling=5

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_oversampling

Class#1 Class#2 Class#3

(a) Uniform

Oversampling=5

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

5
1
4

5
4
1

5
6
8

5
9
5

6
2
2

6
4
9

6
7
6

7
0
3

7
3
0

7
5
7

7
8
4

8
1
1

8
3
8

8
6
5

8
9
2

9
1
9

9
4
6

9
7
3

1
0
0
0

Cover_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Drift_oversampling

Class#1 Class#2 Class#3

(b) Biased

Figure 7: Drift dataset – Average per class detection rate (over 20 runs) under label budget of imax = 500, multi-
generation

We show that the current champion from the GP population can be used to provide the basis for defining a biased
sampling protocol that more rapidly adapts to dynamical properties in the stream, as well as returning stronger
classification performance on the under represented classes. This is achieved without requiring additional label
information.

Further investigations will be conducted to determine the relative impact of the ‘Archiving Policy’ and ‘Sam-
pling Policy’ independently from each other. We also anticipate characterizing at what points there are changes to
the champion classifier during the course of a stream and expand the types of data such algorithms are applied
to. Moreover, from the application perspective, we have not sort to explicitly address the issue of how delays
in applying an ‘oracle’ to provide labels when requested impact on the quality of the anytime operation of the
classifier.

Acknowledgments. This research is supported by the Canadian Safety and Security Program(CSSP) E-Security grant. The
CSSP is led by the Defense Research and Development Canada, Centre for Security Science (CSS) on behalf of the Government
of Canada and its partners across all levels of government, response and emergency management organizations, nongovern-
mental agencies, industry and academia.

References

[1] A. Bifet. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, volume 207 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 2010.

[2] A. Bifet, I. Z̆liobaitė, B. Pfahringer, and G. Holmes. Pitfalls in benchmarking data stream classification and
how to avoid them. In Machine Learning and Knowledge Discovery in Databases, volume 8188 of LNCS, pages
465–479, 2013.

[3] M. Brameier and W. Banzhaf. Evolving teams of predictors with linear genetic programming. Genetic Pro-
gramming and Evolvable Machines, 2(4):381–408, 2001.

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(a) Uniform

Electricity:

Shift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Electricity_oversampling

Class#1 Class#2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Shift_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5

(b) Biased

Figure 8: Electricity dataset – Average per class detection rate (over 20 runs) under label budget of imax = 500,
multi-generation

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 11

Oversampling=5

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

Cover_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

4
6

3

4
7

7

4
9

1

Drift_oversampling

Class#1 Class#2 Class#3

(a) Uniform

Oversampling=5

Cover:

Drift:

0%

10%

20%

30%

40%

50%

60%

70%

80%

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

5
1
4

5
4
1

5
6
8

5
9
5

6
2
2

6
4
9

6
7
6

7
0
3

7
3
0

7
5
7

7
8
4

8
1
1

8
3
8

8
6
5

8
9
2

9
1
9

9
4
6

9
7
3

1
0
0
0

Cover_oversampling

Class#1 Class#2 Class#3 Class#4 Class#5 Class#6 Class#7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Drift_oversampling

Class#1 Class#2 Class#3

(b) Biased

Figure 9: Cover type dataset – Average per class detection rate (over 20 runs) under label budget of imax = 1000,
multi-generation. Curves best viewed in colour

[4] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammatical Evolution for Dynamic Environments,
volume 194 of Studies in Computational Intelligence. Springer, 2009.

[5] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary environments: A survey. IEEE
Computational Intelligence Magazine, 10(4):12–25, 2015.

[6] W. Fan, Y. Huang, H. Wang, and P. S. Yu. Active mining of data streams. In SIAM International Conference on
Data Mining, pages 457–461, 2004.

[7] J. Gama. Knowledge Discovery from Data Streams. CRC Press, 2010.

[8] J. Gama, R. Sabastiao, and P. P. Rodrigues. On evaluating stream learning algorithms. Machine Learning,
90:317–346, 2013.

[9] M. I. Heywood. Evolutionary model building under streaming data for classification tasks: opportunities and
challenges. Genetic Programming and Evolvable Machines, 16(3):283–326, 2015.

[10] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving with Symbiotic Bid-based
Genetic Programming. In ACM Genetic and Evolutionary Computation Conference, pages 363–370, 2008.

[11] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity under GP. In ACM Genetic
and Evolutionary Computation Conference, pages 853–860, 2010.

[12] R. Polikar and C. Alippi. Guest editorial: Learning in nonstationary and evolving environments. IEEE
Transactions on Neural Networks and Learning Systems, 25(1):9–11, 2014.

[13] R. Thomason and T. Soule. Novel ways of improving cooperation and performance in ensemble classifiers.
In ACM Genetic and Evolutionary Computation Conference, pages 1708–1715, 2007.

[14] I. Z̆liobaitė, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with drifting streaming data. IEEE
Transactions Neural Networks and Learning Systems, 25(1):27–54, 2014.

[15] A. Vahdat, A. Atwater, A. R. McIntyre, and M. I. Heywood. On the application of GP to streaming data
classification tasks with label budgets. In ACM GECCO (Companion), pages 1287–1294, 2014.

Table 4: End-of-stream Median multi-class detection rates for uniform and biased sampling protocols and corre-
sponding p-value from Mann-Whitney U test

Single generation mode Multi-generation mode
Dataset Uniform Biased p-value Uniform Biased p-value

Shift 56.74% 67.5% 1.33× 10−8 74.71% 80.37% 1.69× 10−7

Drift 58.01% 73.94% 0.0 72.55% 79.48% 0.0
Electricity 59.0% 69.07% 0.0 57.95% 72.6% 0.0

Cover 35.49% 34.21% 0.46 41.9% 42.9% 0.063

Appears in EuroGP’16 (LNCS 9594) under Springer copyright 12

[16] A. Vahdat, J. Morgan, A.R. McIntyre, M.I. Heywood, and A.N. Zincir-Heywood. Evolving GP classifiers for
streaming data tasks with concept change and label budgets: a benchmarking study. In Handbook of Genetic
Programming Applications, chapter 18, pages 451–480. Springer, 2015.

[17] A. Vahdat, J. Morgan, A.R. McIntyre, M.I. Heywood, and A.N. Zincir-Heywood. Tapped delay lines for GP
streaming data classification with label budgets. In European Conference on Genetic Programming, volume 9025

of LNCS, pages 126–138. Springer, 2015.

[18] N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series forecasting for dynamic environ-
ments: The DyFor genetic program model. IEEE Transactions on Evolutionary Computation, 11(4):433–452, 2007.

[19] S. Wu and W. Banzhaf. Rethinking multilevel selection in genetic programming. In ACM Genetic and Evolu-
tionary Computation Conference, pages 1403–1410, 2011.

[20] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using optimal weight classifier
ensemble. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 40(6):1607–1621, 2010.

