This tutorial walks you through the steps you need to make to run the SESC algorithm. At the
current stage SESC is written in multiple programming languages and uses WEKA and MATLAB
packages, therefore multiple steps are necessary to complete the SESC process. Once a data
set is given a script calls a specified clustering algorithm WEKA (Xmeans or EM) repeatedly until
is created. A MATLAB script then reads the output of WEKA and creates the files the C++ code
needs as input. The whole process is divided into 3 steps and explained in details here.

The code is compiled and tested under MacOS 10.6.8, Ubuntu 12.10 and CentOS 5.5.

I. Create a grid for a given data set

In order to create the grid for a given data set you need the data set file in arff and dim format (a
dim file is a csv file where all commas are replaced with a single space, you can easily do this in
any text editor. From an arff file remove the attributes description header, then replace all
commas with spaces and you will get the dim file)

1. Next step is to run a clustering algorithm that doesn't need the cluster count a priori (e.g.
Xmeans or EM) on each attribute. The Shell script "AttributeWiseClustering" does this. Make
sure to place this script within the WEKA installation folder. You need to provide the following
input arguments to the script: where your data set is located without the trailing slash
(datasetPath), data set name without the .arff extension (datasetName), attribute count of the
data set (AttributeCount) and the clustering method, Xmeans or EM (ClustererName):

USAGE: ./AttributeWiseClustering datasetPath datasetName attributeCount clustererName

This will output a single file for each attribute storing which 1D cluster each instance is assigned
to within that attribute. These files are temporary files that WEKA creates and won't be used later
on, so you can get rid of them once WEKA is done. Another output of the mentioned script is a
file called "dataset-resultsby-clusterer", where dataset is the data set name and clusterer is
either Xmeans or EM. This is the file that stores the 1D cluster centroids for each attribute
separately. This file will be passed to a MATLAB script to extract only the 1D cluster centroids for
each attribute.

2. Once 1D clustering is performed run the MATLAB “prepare_dataset.m” script to produce all
the necessary files for the C++ code. This script uses two other scripts that are included in the
script folder. The inputs to this script are: dataset_name which is the path along with the name of
the data set in dim format, labels _provided is 1 if the last column of the data set contains class
labels and 0 otherwise, clusterer_name defines the clustering method used by WEKA, Xmeans
or EM, and delete_files is set to 1 if we need all temporary files deleted after the script is done. It
is a safe practice to withhold from deleting the temporary files until you are sure you do not need
them. If for any reason you need to modify and re-run the script all temporary files are there, and



there’s no need to redo the WEKA step again. The following script is run within MATLAB Ul:
USAGE: prepare_dataset(dataset_name, labels_provided, clusterer_name, delete_files);

This will create 6 files, two of which are temporary files and can be deleted (they end in _temp).
The other four files are as follow: “dataset-Attribute WiseCentroids” stores the 1D centroids for
each attribute, the first value in each row is the number of 1D centroids and the following values
are 1D centroids. “dataset-AttributeWiseLabels” stores the 1D cluster index of each data
instance for that attribute, therefore it is the same size as the data set file. The third file is
“dataset-NoneligibleAttributes” which is a vector of binary values and tells the ESC algorithm
which attributes are not useful (non-eligible). A value of 1 for an attribute determines an attribute
as not useful and 0 means it is useful and can be indexed by ESC. In our preprocessing script
there are two reasons to mark an attribute as non-eligible; 1. an attribute has only one cluster
(i.e. there is only one single constant value repeating for all instances), or 2. an attribute has a
cluster that covers 99% or more of the instances. The fourth file

“dataset-Noneligible 1DCentroids” is similar to the previous mentioned file, however this file flags
non-eligible 1D cluster centroids to be filtered out instead of non-eligible attributes.

If class labels exist, two other files will be created. Both files are only necessary for post-training
performance evaluation for data sets with class labels. The first file, “dataset-Labels”, only
stores class labels while the second file, “dataset-Attribute GroundTruth” specifies relevant
attributes to each subspace cluster. This file acts as the attribute ground truth for attribute
relevance evaluation.

Il. Initialized S-ESC parameters

Here’s a list of ESC input parameters that you might want to modify in createlnputs.pl script:
my $envType = "datasetEnv";

Do not modify the envType parameter.

Data set name, path, dimensionality and cardinality:

my $dataSetName = "/Users/vahdat/ESC/data/50d4c/EM/50d4c.dim";
my $labelsProvided = 1;

my $dataSetDim = 50;

my $dataSetSize = 1289;

dataSetName is the name (along with the path) of the data set ending in .dim
If the last column of the data set provides class labels set labelsProvided to 1, otherwise 0.



dataSetDim and dataSetSize refer to the dimensionality and cardinality of the data set
respectively.

Input file paths:

my $attrWiseClusCentFileName = "~/data/50d4c-Attribute Wise Centroids";
my $attrWiseClusLabelsFileName = "~/data/50d4c-Attribute WiseLabels";
my $noneligibleAttrFileName = “~/data/50d4c-NoneligibleAttributes”;

my $noneligible ClusFileName = "~/data/50d4c-Noneligible 1DCentroids";

attrWiseClusCentFileName is the path (along with the name of the file that stores the 1D
centroids. attrWiseClusLabelsFileName is the name of the file that stores 1D cluster labels for
all instances. noneligibleAttrFileName is the name of the file that stores the binary vector
determining the non-eligible attributes, and similarly noneligibleClusFileName stores the 1D
cluster centroids that are not useful for ESC to index while forming subspace cluster centroids.

Number of levels and objectives in each level

my $numLevels = 2;
my $numObjectivesO = 0;
my $numObjectivest = 2;

numLevels should be set to 2. numObjectivesO determines the number of objectives at level 0 in
case there is a multi-objective process going on for level 0. In our case it should be 0, however
since this value is used for allocating memory purposes as well we set it to 2. numObjectives1
is similarly the number of objectives for level 1. In our case it is 2.

Identifying objectives:

my $doDistortion = 1;
my $doConnectivity = 1;
my $doAttrCount = 0;
my $doClusterCount = 0;

doDistortion, doConnectivity, doAttrCount, and doClusterCount tell ESC which objectives to use.
Currently we use distortion (compactness) as the primary objective and connectivity as the
secondary objective. In some experiments Cluster count is used instead of connectivity. The
objectives to be used are set to 1, and 0 otherwise.



Point population parameters:

my $doSubsampling = 1;
my $pointPopSize = 100;

doSubsampling determines whether subsampling is performed (set to 1) or not (set to 0), and
pointPopSize determines the number of points (instances) in case subsampling is being used.

Host (team, clustering solution) level parameters:

my $hostPopSize = 100;
my $minSymbionts = 2;
my $maxSymbionts = 20;

my $pc = 1.0;

my $pm = 1.0;
my $psd = 0.1;
my $psa = 0.1;
my $pss = 0.1;
my $pmim = 1;

hostPopSize is the number of clustering solutions (hosts / level1 individuals), minSymbionts and
maxSymbionts being the min and max number of clusters (symbionts) within a clustering
solution (host) respectively, i.e. the min and max value for k. pc is the probability of crossover
(not used in current version of ESC). pm the overall probability of mutation (always set to 1.0).
psd, psa, pss are the probability of symbiont deletion, symbiont addition, and symbiont
swap/replace for the second time. They all get performed at least once, however they might are
re-applied with the above-mentioned probabilities a second time. The probability of further
re-application of each operator is multiplied by these values, 0.01, 0.001, etc. pmim is also the
probability of multi-level mutation (keep at 1.0 also.)

Symbiont (cluster) level parameters:

my $minAttributes = 2;
my $maxAttributes = 20;

my $pad = 0.1;
my $paa = 0.1;
my $pas = 0.1;
my $plc = 0.1;

minAttributes and maxAttributes are the min and max number of attributes to be indexed in a
subspace cluster centroid (symbiont) respectively. pad, paa, pas, and plc are the probabilities of



attribute deletion, attribute addition, attribute swap, and 1D centroid change mutation operators
respectively. Similar to host-level mutation operators all the above operators are applied at least
once, and the above-mentioned probabilities are used if an operator is to be applied a second
time. The probability of further re-application of each operator is multiplied by these values, 0.01,
0.001, etc.

Number of generations at each level:

my $numGenerations0 = 0;
my $numGenerations1 = 1000;

numGenerationsO0 is the number generations in case there is a multi-objective process assigned
for level 0 (symbiont). In our case this is set to 0. numGenerations1 is similarly the number of
generations for level 1 (host) multi-objective process. A typical value for this is 1000, however
this can be changed according to the task and data set.

Evolutionary parameters:

my $symbsToUse = 0;

my $exe = "esc”;

my $seed = 1; # first seed number, last seed number is the input from command line
my $statMod = 100;

my $maxAttempts = 20;

my $epsilon = 0.001;

my Sinfinity = 1000000.00;

These set of parameters can be left unchanged. Set symbToUse to 0 to use all the symbiont
population (recommended in case first level doesn't have a MOEA), 1 to use only the unique
symbionts on PF of the level0 MOEA, and 2 to use all symbionts on PF of the level0 MOEA
(recommanded if first level uses a MOEA). exe determines the name of the executable file once
the code is compiled. seed determines the first seed number, the last seed number is defined as
the second argument of the command line instruction.

lll. Run the S-ESC C++ code

Once the 4 required files (Attribute WiseCentroids, AttributeWiseLabels, NoneligibleAttributes,
and Noneligible 1DCentroids) are created by WEKA and MATLAB, we can go ahead and run the
SESC C++ core.

1. To simplify passing parameters to SESC, all parameters are defined in an input argument file



ending with “.arg”. The perl script “createlnputs.pl’ contains all SESC parameters. The path to
the data set as well as the required four files along with all other SESC parameters such as
population size, generation size, mutation probabilities, etc are defined here. Once all
parameters are set, run this script with the prefix of output filenames, number of runs (N) and
number of runs per batch (M) as input arguments:

USAGE: perl createlnputs.pl filename_prefix numRuns numBatch

This script creates N .arg files and a single “.run” file that has the script to run the N runs M by
M.

2. Run the “.run” script:
USAGE: nohup sh filename_prefix.run > filename_prefix.out &

This will put all the runs in a queue and run them M by M until N is reached. Each run generates
a “.std” output file with all the algorithm output in it, and an “.err” file if an error occurred.

Once all runs are done you will end up with N .std files that store the outputs of SESC.



