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Abstract
In this paper, we design succinct index structures for a text
string T of n binary symbols to support efficient searching
of a pattern P of length m. Motivated by the fact that the
standard representation of suffix arrays uses n lgn bits which
is more than the theoretical minimum, we present a theorem
that characterizes a permutation as the suffix array of a
binary string. Based on the theorem, we design a succinct
representation of suffix arrays of binary strings that uses
n+ o(n) bits, which is the theoretical minimum plus a lower
order term, and answers existential and cardinality queries in
O(m) time without storing the raw text. With 2n+o(n) bits,
we can list pattern occurrences in O(m+occ lg n) time in the
general case, and for long patterns, when m = Ω(lg1+ε n),
we answer such listing queries in O(m + occ) time. We
also present another implementation that uses O(n) bits and
supports pattern searching in O(m+ occ lgλ n) time for any
fixed λ such that 0 < λ < 1. More results and trade-offs are
reported in the paper.

1 Introduction

As a result of the growth of the textual data in databases
and on the World Wide Web, and also applications in
bioinformatics, various indexing techniques have been
developed to facilitate pattern searching. Given a text
string T of length n and a pattern string P of length m,
whose symbols are drawn from the same fixed alphabet
Σ, the goal is to look for the occurrences of P in T .
We mainly consider three types of queries: existential
queries, cardinality queries, and listing queries. An
existential query returns a boolean value that indicates
whether P is contained in T . A cardinality query
returns the number of occurrences of P in T (occ denotes
the result). A listing query lists all the positions of
occurrences of P in T . In most of the paper, we assume
that T has a binary alphabet Σ = {a, b}. Most of our
results can be generalized to larger alphabets.

Inverted Files [15] have been the most popular
indexes used in practice. An inverted file is a sorted
list (index) of keywords, with each keyword having links
to the records containing that keyword in the text [12].
They are very efficient indexes for texts that can be
parsed into a set of words, such as English text, but
not for DNA data or texts in far-eastern languages.
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Therefore, they are categorized as word-level indexes.
However, the search for an arbitrary pattern that does
not necessarily start at the beginning of a word is
inefficient on inverted files.

Suffix trees [21] are another type of popular indexes.
A suffix tree is constructed over the suffixes of the
text as a tree-based data structure, which enables us
to perform a query by searching the suffixes of the
text. Because suffix trees index each position in the
text, they are categorized as full text indexes, and are
more powerful than inverted files. Using a suffix tree,
we can support existential and cardinality queries of
an arbitrary pattern P in text T in O(m) time. We
need additional O(occ) time to answer listing queries.
However, a standard representation of a suffix tree
requires somewhere between 4n lg n and 6n lg n bits1,
which is impractical for many applications. Suffix arrays
[17, 8] have been proposed to reduce the space cost of
suffix trees. The idea is to organize the suffix offsets
in a sorted list using the suffixes as sort keys instead
of organizing them in a tree. This takes n lg n bits.
Additional information about the length of the (longest)
common prefixes of positions referred to by consecutive
elements of the suffix array lets the existential and
cardinality queries to be answered in O(m+ lg n) time,
and list the occurrences in O(occ) extra time [17].
Unfortunately, straightforward representation of prefix
length data takes 2n lg n bits. Perhaps as a consequence,
suffix arrays are still less popular than inverted lists for
large text collections.

The straightforward method to represent a suffix ar-
ray is to treat it as a permutation of integers {1, 2, ..., n},
the offsets of all the suffixes, and store it in n lg n bits.
However, there are 2n−1 different texts of length n
drawn from a binary alphabet (assume the last char-
acter is a special end-of-file symbol not in the alpha-
bet), and there are at most 2n−1 different suffix arrays
associated with them. Therefore, there is a canonical
way to represent suffix arrays in O(n) bits. Motivated
by this observation, we start providing a categorization
theorem that lets us tell which permutations are suf-

1We use lgn to denote dlog2 ne.



fix arrays of binary strings and which are not. Further
exploration of the theorem shows some very useful prop-
erties of suffix arrays, which enable us to design space
efficient full-text indexes for fast text searching.

1.1 Related Work A new trend in the design of
full-text indexes is that of reducing the space cost to
make them more attractive in practical applications.
Most of these have been built upon the idea of suc-
cinct data structures [18]. Jacobson [13] first proposed
the idea and method for representing static data struc-
tures such as trees and graphs succinctly (i.e., close
to the information-theoretic lower bound of the space
cost to represent the structures), while at the same
time allowing the navigational operations to be per-
formed efficiently. The compressed suffix array struc-
ture [11, 10] proposed by Grossi and Vitter is the first
method that represents suffix arrays drawn from alpha-
bet Σ in O(n lg |Σ|) bits and supports access to any
entry of the original suffix array in O(lgε|Σ| n) time, for
any fixed constant 0 < ε < 1 (without computing the
entire original suffix array). Based on compressed suffix
arrays, they designed a full-text index that uses O(n)
bits and answers existential and cardinality queries in
O( m

lg|Σ| n
+ lgε|Σ| n) time. Listing queries can be an-

swered in O(occ lgε|Σ| n) additional time. Sadakane [20]
proposed additional structures to make the compressed
suffix array a self-indexing data structure, using which
we can retrieve any substring of the text without storing
the text itself. His structure uses O(nH0+n) bits, where
H0 is the 0

th order entropy of the text, while supporting
pattern searching in O(m lg n+occ lgε n) time. Retriev-
ing a part of the text of length l starting at any given
position costs O(l+lgε n) time. Grossi, Gupta and Vit-
ter [9] further proposed a self-indexing data structure
based on compressed suffix arrays that uses nHk+ o(n)
bits, where Hk is the k

th order entropy of the text, while
supporting pattern searching in O(m lg |Σ|+polylog(n))
time. The FM-index [5, 6] proposed by Ferragina and
Manzini is based on the Burrows-Wheeler compression
[3]. It is a self-indexing data structure that encodes
the text in O(nHk) + o(n) bits, and supports pattern
searching in O(m + occ lgε n) time. By designing addi-
tional data structures to facilitate listing queries, they
designed a full-text index that uses O(nHk lg

ε n)+ o(n)
bits and supports pattern searching in O(m+ occ) time
[7].

1.2 Preliminaries A key structure we use in the
paper is a bit vector B of size n that supports rank
and select operations. We assume that the positions
in B are numbered 1, 2, ..., n. Operations rank1(B, i)
and rank0(B, i) return the number of 1s and 0s in B

up to position i, respectively. Operations select1(B, i)
and select0(B, i) return the positions of i

th 1 and 0,
respectively. Lemma 1.1 addresses the problem, in
which part (a) is from [13, 4], and part (b) is from [19].

Lemma 1.1. For a bit vector B of length n, we can
support the access to each bit, rank1(B, i), rank0(B, i),
select1(B, i), and select0(B, i) in constant time using
either: (a) n+o(n) bits, or (b) lg

(

n
t

)

+O(n lg lg n/ lg n)
bits, where t is the number of 1s in B.

There is a less powerful version of rank1(B, i),
which returns the number of 1s in B up to position i
only if B[i] = 1. We denote this operation rank′1(B, i).
Lemma 1.2 [19] addresses this problem.

Lemma 1.2. For a bit vector B of length n with t
1s, we can support the access to each bit, rank′1(B, i),
and select1(B, i) in constant time using lg

(

n
t

)

+ o(t) +
O(lg lg n) bits.

2 Permutations and Suffix Arrays

In this section, we compare a suffix array with an
arbitrary permutation of integers 1, 2, ..., n. We then
describe and prove a categorization theorem by which
we can determine whether a given permutation is a
suffix array. Based on the theorem, we give an efficient
algorithm that checks whether a permutation is a suffix
array.

2.1 Valid and Invalid Permutations We adopt
the convention that the text T of length n is a string
of n − 1 symbols drawn from the binary alphabet Σ =
{a, b}, followed by a special end-of-file symbol #. We
assume that a < # < b. The suffix array SA of T is then
a permutation of {1, 2, ..., n} that corresponds to the
lexicographic ordering of the suffixes of T , i.e. the suffix
of T that starts at position SA[i] is ranked the ith among
all the suffixes in lexicographic order. Based on our
notation, there are 2n−1 different text strings of length
n, so there are 2n−1 different suffix arrays associated
with them. However, there are n! different permutations
of {1, 2, ..., n}. Therefore, not all of the n! permutations
are suffix arrays. We call those permutations that are
suffix arrays valid permutations, and those that are not
suffix arrays invalid permutations. For example, the
permutation 4, 7, 5, 1, 8, 3, 6, 2 is a valid permutation,
because it is the suffix array for the text abbaaba#,
but the permutation 4, 7, 1, 5, 8, 2, 3, 6 is an invalid one
because it is not a suffix array for any text string.
Because there are at most 2n−1 different suffix arrays
of length n, there is a canonical way to represent suffix
arrays in O(n) bits. Grossi and Vitter [11] gave the first
non-trivial method to represent suffix arrays in O(n)



(a) a valid permutation                        (b) an invalid permutation

4    7    5    1    8    3    6    2                    4    7    1    5    8    2    3    6

Figure 1: Valid and invalid permutations.

bits and support efficient searching. However, they did
not provide a method to characterize a permutation as
a suffix array. We now address this problem.

2.2 A Categorization Theorem If M is a permu-
tation, we denote its inverse byM−1. Hence the inverse
permutation of the suffix array SA is SA−1. We find
this notation very useful as M−1[i] simply says where
i occurs in M , so M−1[i] < M−1[j] simply means i
comes before j in the permutationM . We first give two
definitions on permutations.

Definition 2.1. (Ascending-to-max) Given a per-
mutation M [1..n] of {1, 2, ..., n}, we call it ascending-
to-max iff for any integer i where 1 ≤ i ≤ n − 2, we
have:
(i) if M−1[i] < M−1[n] and M−1[i + 1] < M−1[n],
then M−1[i] < M−1[i+ 1], and

(ii) if M−1[i] > M−1[n] and M−1[i + 1] > M−1[n],
then M−1[i] > M−1[i+ 1].

Definition 2.2. (Non-nesting) Given a permuta-
tion M [1..n] of {1, 2, ..., n}, we call it non-nesting iff
for any two integers i, j, where 1 ≤ i, j ≤ n − 1 and
M−1[i] < M−1[j], we have:
(i) if M−1[i] < M−1[i+ 1] and M−1[j] < M−1[j + 1],
then M−1[i+ 1] < M−1[j + 1], and

(ii) if M−1[i] > M−1[i+ 1] and M−1[j] > M−1[j + 1],
then M−1[i+ 1] < M−1[j + 1].

Figure 1 shows the valid and invalid permutations
presented in Section 2.1. In each we draw an arrow
from i to i + 1 for i = 1, 2, ..., n − 1, i.e. from position
M−1[i] toM−1[i+1], and we denote it as arrow (i, i+1).
Forward arrows are drawn above the permutations, and
backward arrows are drawn below the permutations.
In an ascending-to-max permutation, all the arrows
that do not enclose the maximum value are in the
direction that points towards the maximum value in the
permutation. In a non-nesting permutation, no arrow
encloses another arrow in the same direction. From
Figure 1, we can see that (a) is both ascending-to-
max and non-nesting, but neither is true of (b), because
arrow (2, 3) is in the direction away from the maximum

value, and forward arrow (5, 6) encloses forward arrow
(2, 3).

We can now state our categorization theorem.

Theorem 2.1. A permutation is a suffix array iff it is
both ascending-to-max and non-nesting.

The proof is given in Appendix A and the corollary
follows directly.

Corollary 2.1. For a text string T , if its longest runs
of a’s have length l1, and its longest runs of b’s have
length l2, then its suffix array SA can be divided into
l1 + l2 + 1 segments numbered 1, 2, ..., l1 + l2 + 1, such
that:
(i) suffixes corresponding to the entries in segments
1, 2, ..., l1 are prefixed with l1, l1−1, ..., 1 a’s followed
by b or #, respectively, and the forward links in
block i point to elements in block (i + 1), for 1 ≤
i ≤ l1 − 1,

(ii) segment (l1 + 1) only has one entry, n,
(ii) suffixes corresponding to the entries in segments

l1+2, l1+3, ..., l1+ l2+1 are prefixed with 1, 2, ..., l2
b’s followed by a or #, respectively, and the back-
ward links in block i point to elements in block
(i− 1), for l1 + 3 ≤ i ≤ l1 + l2 + 1.

2.3 An Efficient Algorithm to Check Whether
a Permutation is Valid The proof of Theorem 2.1
suggests a method to determine whether a permutation
is a suffix array. We first construct a text string from
the permutation by the method in the proof, and then
construct the suffix array of the text. If the suffix array
constructed is the same as the permutation, then the
permutation is a suffix array. Otherwise, it is not. This
algorithm takes O(n) time and O(n) words of memory,
because the construction of the text string and the
suffix array, and the comparison all cost O(n) time and
space. However, the constants behind the O(n)’s for
suffix array construction algorithms are large [14, 16],
and these algorithms are hard to implement.

Figure 2 shows a simple algorithm that determines
whether a permutation is a suffix array of a binary string
using the characterization of Theorem 2.1. Each phase



B           1    1    0    0    1     0     0     0    0     1    1    0     0    1     0    0 

B           0    0    1    1    0     0     1     1    1     0    0    1     1    0     1    1a

b

SA 8    3    9    4    12   1    10   5    13   16   7    2    11   15   6    14

Figure 3: An example of our data structures over the text abaaabbaaabaabb#.

Algorithm Check(M)
1. Scan M to compute M−1.
2. Scan M−1 to check whether M is ascending-to-
max.

3. Check Condition (i) of the non-nesting feature
by scanning M from the beginning. At the ith

step, compute M−1[M [i] + 1]. If M−1[M [i] +
1] > i, then keep the value. If M satisfies the
condition, the sequence of values computed and
kept at each step is ascending.

4. Similarly, check Condition (ii) of the non-
nesting feature.

Figure 2: An algorithm to check whether a permutation
is a suffix array.

takes O(n) time and the algorithm only needs n+O(1)
additional words of memory, which is roughly the same
as the size of the input.

A more restricted problem is addressed in [2], where
they propose a linear time algorithm to test whether a
permutation is the suffix array of a given text string.

3 Space Efficient Suffix Arrays Supporting
Cardinality Queries

We now explore Theorem 2.1 and Corollary 2.1 to
design a space efficient full-text index. Figure 3 shows
the suffix array for the text abaaabbaaabaabb#. We
divide the suffix array into 6 segments using Corollary
2.1 and draw arrows as in Section 2.2. Each arrow
links a suffix to the suffix whose starting position is
one character behind, i.e. each arrow is from position
SA−1[i − 1] in the suffix array to position SA−1[i], for
i = 2, 3, ..., n. For each position SA−1[i] in the suffix
array, we consider the position SA−1[i − 1]. From the
arrows and Corollary 2.1, we observe that SA−1[i−1] is
either in the last segment before position SA−1[i] whose
corresponding suffixes start with a, if T [SA−1[i−1]] = a,
or in one of the segments whose corresponding suffixes
start with b or #. To encode this information, we

Algorithm Count(T, P)

1: s← 1, e← n, i← m
2: while i > 0 and s ≤ e do
3: if P [i] = a then
4: s← rank1(Ba, s− 1)+ 1, e← rank1(Ba, e)
5: else
6: s← na+2+ rank1(Bb, s−1), e← na+1+

rank1(Bb, e)
7: i← i− 1
8: return max (e− s+ 1, 0)

Figure 4: An algorithm for answering existential and
cardinality queries.

use a bit vector Ba of size n. If SA−1[i − 1] is in
one of the sections that correspond to suffixes starting
with a, we store a 1 in Ba[SA

−1[i]], and we store a 0
otherwise. We set Ba[SA

−1[1]] = 0. We use another
bit vector Bb to encode information for character b
similarly, i.e. Bb[SA

−1[i]] = 1 iff T [i− 1] = b for i > 1,
and Bb[SA

−1[1]] = 0. The two bit vectors store the
information of the Burrows-Wheeler transform [3]. (See
Figure 3.)

We build rank structures over Ba and Bb using part
(a) of Lemma 1.1. We also store the number of a’s in
an integer na. The bit vectors Ba and Bb with their
corresponding rank structures, and na are our main
indexing data structures, which together use 2n+ o(n)
bits.

Figure 4 gives an algorithm for answering existential
and cardinality queries using the above data structures.
This algorithm starts from the end of the pattern P and,
at each phase of the loop, computes the interval [s, e]
of SA whose corresponding suffixes are prefixed with
P [i,m]. To show the correctness of the algorithm, we
need to show that we update the values of s and e cor-
rectly. Assume that at the beginning of phase m− i+1,
the interval [s, e] of SA corresponds to suffixes that are
prefixed with P [i+1,m]. Assume, without loss of gener-
ality, that P [i] = a. The entries of SA corresponding to



suffixes that start with a occupy the interval [1, na]. Be-
cause all such suffixes start with the same character a,
they are sorted according to the suffixes whose starting
positions are one character behind them. Therefore, the
lexicographically smallest suffix prefixed by P [i,m], and
the lexicographically smallest one prefixed by P [i+1,m]
that follows character a, are one character apart in T
by their starting positions. On the other hand, because
Ba[SA

−1[i]] = 1 when T [i − 1] = a, rank1(Ba, s − 1)
computes how many suffixes smaller than P [i + 1,m]
in lexicographic order follow character a in the original
text T . Therefore, rank1(Ba, s−1)+1 points to the lex-
icographically smallest suffix that starts with P [i,m]. A
similar analysis applies to e. Therefore, our algorithm
is correct. The runtime is clearly O(m). It is similar to
the backward search algorithm of the FM-index [5].

A careful observation shows that the information
stored in Ba and Bb is redundant: the two bit vec-
tors are compliment to each other, except at position
SA−1[1], where both of them have value 0. There-
fore, by only storing Ba and SA−1[1], we can com-
pute rank1(Bb, i) in constant time, by performing rank0
on Ba, plus additional computations in constant time.
Thus:

Theorem 3.1. Given a binary text string T of length
n, using an index structure of n+o(n) bits, and without
storing the raw text, we can answer existential and
cardinality queries on any pattern string P of length m
in O(m) time.

The same bound can be achieved by combining the
backward search of FM-index [5] and the wavelet trees
[9].

4 Space Efficient Self-indexing Full Text
Indexes Supporting Listing Queries

4.1 Locating Multiple Occurrences To perform
listing queries, we first show that given a position
i in the original text T , if we know SA−1[i], we
can compute SA−1[i − 1] in constant time. We
claim that if Ba[SA

−1[i]] = 1, then SA−1[i − 1] =
rank1(Ba, SA

−1[i]), and if Bb[SA
−1[i]] = 1, then

SA−1[i − 1] = na + 1 + rank1(Bb, SA
−1[i]). The proof

is similar to the correctness proof for Algorithm Count.
Now we describe our auxiliary data structure sup-

porting listing queries. As shown above, we can go back-
ward in the text character by character in constant time.
We explicitly store every position of the original text
that is of the form i lg n + 1, for i = 0, 1, ..., n/ lg n − 1
(assume that n is a multiple of lg n for simplicity), and
organize them in an array S sorted by lexicographic or-
der of the suffixes starting at these positions. We use an
additional bit vector F of length n to indicate whether

a given entry in SA points to a position that is stored in
S. With S and F , we can retrieve the occurrences. Re-
call that in Algorithm Count, we compute the interval
of SA in which the entries point to the actual positions
of all the occurrences of P in T . For a given suffix array
entry with index i in this interval, we need to locate its
corresponding position in the text. We check whether
F [i] is 1. If it is, then S[rank1(F, i)] is the answer. If
it is not, we use the above algorithm to go backward in
the text one step at a time. In each step, we find the
index of the suffix array entry that points to the posi-
tion one character before the current position. We stop
when we reach a position that is stored in S according
to F , retrieve the position from S, and the answer is
the position retrieved plus the number of steps we go
backward in the text.

Array S uses n bits because it has n/ lg n entries
and each of them uses lg n bits. We use part (b) of
Lemma 1.1 to store F , which uses lg

(

n
n/ lgn

)

+ o(n) =

O(n lg lg n/ lg n) + o(n) = o(n) bits. Because we store
every lg nth position of the original text, we need to
go backward at most lg n number of steps to locate
each occurrence. As each of the operations of going
backward, rank and accessing any entry in F and S
costs constant time, we need O(lg n) time to locate an
occurrence. Hence we have the following lemma.

Lemma 4.1. Using an auxiliary data structure of n +
o(n) bits, we can list all the occurrences in O(occ lg n)
additional time.

When occ is large, retrieving all the occurrences is
costly. We design additional approaches to speed up the
reporting of occurrences in Section 4.3 and 4.4.

4.2 Self-indexing and Context Reporting We
now show how to make our data structures self-indexing.
We make use of the property that the first na suffix
array entries correspond to suffixes starting with a,
the (na + 1)’st entry corresponds to suffix #, and the
rest correspond to suffixes starting with b. Therefore,
we can output the substring T [i, i + l − 1] (without
retrieving T ) by locating the suffix array entry that
points to each position in the substring. To do this,
we preprocess the positions in S, and use another array
V to store the indices of their corresponding entries in
SA, sorted by their positions in the text. Array V uses
(n/ lg n) lg n = n bits. Given the query to retrieve the
substring T [i, i+ l−1], we first locate the first position j
whose value is stored in S, where j ≥ i+l−1. To ensure
that such a j always exists, we always store position n in
S. From V , we can retrieve the index of the suffix array
entry that corresponds to position j in T in constant
time. We can now output T[j]. We then use the method



in Section 4.1 to walk backward in the text. At each
step, we compute the index of the suffix array entry
that corresponds to one position in substring T [i, j] and
output a character according to it. We repeat until we
output the string T [i, j] in reverse order, from which we
have the string T [i, i+ l − 1].

Because we store every lg nth position, we have
i + l − 1 ≤ j ≤ i + l + lg n − 2. Therefore, the above
process outputs a substring of length l using O(l+ lg n)
time, and so:

Lemma 4.2. With additional n bits, we can make in-
dex structure self-indexing. We are able to output a
substring of length l that starts at a given position in
the text in O(l + lg n) time. 2

4.3 Speeding up the Reporting of Occurrences
of Long Patterns Based on an idea in [10, 7], we show
how to reduce the problem of reporting occurrences of
long patterns to range queries on a two-dimensional grid
and solve it efficiently.

We use T ′ to denote the reverse of T , so T ′ =
T [n]T [n − 1]...T [1]. We build a suffix array for T ′

and denote it SA′. For any ε′ and c, where 0 <

ε′ < 1 and c > 0, let d = c lg1+ε
′

n. We mark every
position in T that is a multiple of d. For simplicity, we
assume that n is a multiple of d. Then the ith marked
position is position id, for i = 1, 2, ..., n/d. For the
ith marked position, let s = id, which is its position
in T . Let xi = SA−1[s], which is the index of the
entry of SA that corresponds to suffix T [s, n]. For the
substring T [1, s − 1] that appears before position s, its
corresponding suffix in the reverse text is T ′[n−s+2, n].
Let yi = SA′−1[n − s + 2], which is the index of its
corresponding entry in SA′. We now have a set of pairs
Q = {(x1, y1), (x2, y2), ..., (xn/d, yn/d)}. It is obvious
that all the xi’s and yi’s are different from each other,
so the set Q corresponds to n/d points on an n×n grid.
We have the following easy-to-prove lemma.

Lemma 4.3. Given a pattern P whose length is at least
d, for any given occurrence of P in T , there exists one
and only one j, where 1 ≤ j ≤ d, such that the position
of the jth character in this occurrence is marked.

From the lemma, we observe that for j = 1, 2, ..., d,
if we can report all the occurrences of P whose jth

character is located at a marked position, we can
report all the occurrences of P in T . To report such

2The text T itself uses n bits, so we do not save space

by making our index structure self-indexing. However, when

generalized to the case when |Σ| > 2, using the n bits in the

lemma, we can output a given substring without storing the text,

which uses n lg Σ bits, and this can save space.

occurrences for a given j, we first use Algorithm Count
(Figure 4) to retrieve the interval [i1, i2] in SA in which
all the entries correspond to suffixes of T that start with
P [j]P [j + 1]...P [m], and the interval [i3, i4] in SA′ in
which all the entries correspond to suffixes of T ′ that
start with P [j− 1]P [j− 2]...P [1]. Let i3 = 1 and i4 = n
when j = 1. Now the problem has been reduced to a
range query over n/d points in an n × n grid: we need
to find all the points (xi, yi) in Q such that i1 ≤ xi ≤ i2
and i3 ≤ yi ≤ i4. For any point (xi, yi) returned, its
corresponding marked position in the text is id. There
exists an occurrence of P whose jth character is located
at the above position. Hence we return id− j+1 as the
position of the occurrence.

For range queries over n points on an n×n grid, we
can achieve O(lg lg n+k) query time using O(n lg1+δ n)
bits, for any δ such that 0 < δ < 1, where k is the
size of the answer [1]. Using this result, for range
queries over n/d points on an n/d × n/d grid, we can
achieve O(lg lg n + k) time using O((n/d) lg1+δ n) =

O(n/ lgε
′−δ n) = o(n) bits, for any δ that satisfies

0 < δ < ε′ < 1. However, we need to perform range
queries over n/d points in an n × n grid. Using the
reduction algorithm in Section 2.2 of [1] while replacing
the data structure of van Emde Boas by a rank / select
data structure described in part (b) of Lemma 1.1, we
can achieve O(lg lg n + k) query time using additional

lg
(

n
n/d

)

+o(n) = O(n lg lg n/ lg1+ε
′

n)+o(n) = o(n) bits.

To analyze the method, the set Q is preprocessed
in the above data structures that answer range queries
using o(n) bits. Therefore, our auxiliary data structures
occupy o(n) bits. To efficiently retrieve the occurrences,
instead of using Algorithm Count for each j, where
1 ≤ j ≤ d, we use it once on P over T , because during
the execution of the algorithm, for each suffix P [i,m]
of P , we need to compute the interval of suffix array
whose entries correspond to all the suffixes that start
with P [i,m]. It is the same with the reverse of P .
Therefore, inO(m) time, we can retrieve all the intervals
required. We need to perform d range queries, which

cost O(lg1+ε
′

n lg lg n + occ) = O(lg1+ε n + occ) time,
for any ε such that 0 < ε′ < ε < 1. Combined with
Theorem 3.1, Lemma 4.1, and Lemma 4.2, we have:

Theorem 4.1. Given a binary text string T of length
n, for any ε where 0 < ε < 1, using an index structure
of n + o(n) bits without storing the raw text, for any
pattern P of length m,
(i) when m = Ω(lg1+ε n), we can support pattern
searching in O(m + occ) time using an additional
o(n) bits;

(ii) otherwise, we can support pattern searching in
O(m + occ lg n) time using an additional n + o(n)



bits.

We can also output a substring of length l in O(l+
lg n) time using an additional n bits.

4.4 Listing Occurrences in O(occ lgλ n) Addi-
tional Time Using O(n) Bits In this section, we give
another implementation of our index structure that uses
O(n) bits and supports listing queries inO(m+occ lgλ n)
time for any λ such that 0 < λ < 1. In addition to the
structures in Theorem 4.1, we design auxiliary struc-
tures to speed up the reporting of occurrences. To il-
lustrate the approach, we take λ = 1/2. In this case,
we mark every position of the text T that is of the form
1 + i

√
lg n, for i = 0, 1, ..., n/

√
lg n − 1 (assume n is a

multiple of
√
lg n for simplicity). We use a bit vector G

in which the j’th bit is 1 iff the jth entry in SA points
to a marked position, and we store G using part (b) of
Lemma 1.1.

We construct a text string T ∗ of length n/
√
lg n

drawn from the alphabet Σ′ = {0, 1, ..., 2
√
lgn − 1}, in

which symbol j corresponds to the jth smallest binary
string of size

√
lg n in lexicographic order. We generate

T ∗ by replacing every substring of length
√
lg n in T

that starts at a marked position by the corresponding
symbol in Σ′. We also retain an array C that stores the
prefix sum of the vector of frequencies of the characters
(binary strings of length

√
lg n) in T ∗. That is, for

each character j, we count the number of occurrences
of the characters 0, 1, ..., j − 1 in T ∗, and store this
value in C[j]. For each alphabet symbol j in Σ′, we
construct a bit vector Bj in which Bj [SA

∗−1[i]] = 1
iff T ∗[i − 1] = j for i > 1, and Bj [SA

∗−1[1]] = 0.
We store Bj using Lemma 1.2. We use an array
Z to store, for each position in SA∗ except position
SA∗−1[1], the symbol that precedes the suffix it points
to in T ∗. Similar to Section 4.1, we claim that, for
a given position SA∗−1[i] in SA∗, if Z[SA∗−1[i]] = j,
then SA∗−1[i − 1] = C[j] + rank′1(Bj , SA

−1[i]). Then
we can go backwards in T ∗ by one position in constant
time. Finally, we observe that, every

√
lg nth position

in T ∗ corresponds to a position stored in S in Section
4.1, as these positions are of the form i lg n + 1. We
store another bit vector W using part(b) of Lemma 1.1,
in which W [i] = 0 iff SA∗[i] points to a position in T ∗

that corresponds to a position stored in S.
Now we can describe our algorithm. Given the

index of an entry in SA that points to an occurrence
of P , we first check whether it points to a marked
position using G. If it is not, we can find the closest
marked position that precedes it by going backwards in
T at most

√
lg n times using the method in Section 4.1.

When we reach a marked position pointed to by the ith

entry of SA, the index of its corresponding entry in SA∗

is rank1(G, i). We check whether it corresponds to a
position stored in S usingW . If not, we use the method
described above to go backwards in T ∗, at most

√
lg n

times, until we reach a position of T ∗ that corresponds
to a position stored in S. Assume that the jth entry
of SA∗ points to the above position. It corresponds to
the k = select1(G, j)’th entry of SA. We then retrieve
S[rank1(F, k)] (F is defined in Section 4.1). Let s be
the retrieved position. Assume that we go backwards s1
steps to reach a marked position, and then another s2
steps to reach a position stored in S, then the occurrence
is (s+ s1 + s2

√
lg n).

The above procedure clearly takes O(
√
lg n) time.

G uses lg
(

n
n/

√
lgn

)

+ o(n) = O(n lg lg n/
√
lg n) + o(n) =

o(n) bits. C uses 2
√
lgn lg n = o(n) bits. W uses

lg
(

n/
√
lgn

n/ lgn

)

+ o(n/
√
lg n) = o(n) bits. Array Z uses

n√
lgn

√
lg n = n bits. We do not explicitly store T ∗ or

SA∗. To analyze the space cost of all the Bj ’s, we make
use of the following approximation: lg

(

n
k

)

≈ k lg en
k .

Assume that symbol j occurs nj times in T
∗. Then Bj

uses lg
(

n/
√
lgn

nj

)

+ o(nj) + O(lg lg n) ≈ nj lg
en

nj
√
lgn

+

o(nj) + O(lg lg n) bits. When we compute the total
space cost of all the Bj ’s, the last two items clearly
sum up to o(n). The first item sums up to nH∗

0/
√
lg n+

(lg e)n/
√
lg n = nH∗

0/
√
lg n+o(n) ≤ n+o(n), where H∗

0

is the 0th order entropy of T ∗. Therefore, the Bj ’s use
n+ o(n) bits together. These auxiliary data structures
use 2n+ o(n) bits.

With the above data structures, we can also output
a substring of length l starting at a given position in
T in O(l/

√
lg n +

√
lg n) time using additional o(n)

bits. From the definition of suffix arrays, we observe
that SA∗ can be divided into 2

√
lgn segments, and

the entries in the jth segment point to suffixes of T ∗

that start with character j. We store another bit
vector R of size n/

√
lg n using part (b) of Lemma 1.1,

in which we store 1 at the starting positions of each
segment, and 0 otherwise. It is easy to prove that
T ∗[SA∗[i]] = rank1(R, i). This enables us to output√
lg n bits in constant time and what we claimed above

follows directly.
For an arbitrary λ, we design additional data struc-

tures of λ−1 − 1 levels. In each level, we group lgiλ n
bits to construct a string drawn from an alphabet of size

2lg
iλ n, for i = 1, 2, ..., λ−1 − 1. We design similar data

structures and search algorithms as described above.
Data structures for each level occupy 2n + o(n) bits,
and we can answer listing queries using O(m+occ lgλ n)
time. The overall data structures occupy 2λ−1n+ o(n)
bits. This multi-level tradeoff is similar to the multi-
level compressed suffix array in [11]. With additional n
bits to store V in Section 4.2, we can output a substring



of size l using O(l/ lg1−λ n+ lgλ n) time.
Another technique can be used to support existen-

tial and cardinality queries for patterns of length at
most lg n in O(1) time using 2n+ o(n) bits of space, ei-
ther with or without any of our index structures. This
is by storing a bit vector of length 2n which has 1s
corresponding to all the suffix array entries and 0s cor-
responding to all possible patterns of length lg n in the
positions where they “fit” in the suffix array; and storing
a rank / select structure for this bit vector. A cardinal-
ity query for a pattern is done by finding the difference
between the positions of pth and (p + 1)st 0s in the bit
vector, where p is the value obtained by treating the
pattern as a number in binary (if m < lg n, we shift
the binary representations of p and p+ 1 to the left by
(lg n − m) before the select operations). The number
of 1s between these two positions is the number of oc-
currences of the given pattern. From the two positions,
by performing rank operations, we can get the interval
of SA in which all the entries point to suffixes that are
prefixed with P , and use our index structures designed
above to list the occurrences.

Theorem 4.2. Given a binary text string T of length
n, for any λ and ε such that 0 < λ, ε < 1, using O(n)
bits, we can answer existential and cardinality queries
on any pattern P of length m in O(m) time, and answer
listing queries in additional O(occ lgλ n) time. When
m = Ω(lg1+ε n), we can support pattern searching in
O(m + occ) time. We can also output a substring of
T in O(l/ lg1−λ n + lgλ n) time, where l is the length
of the substring. Existential and cardinality queries for
patterns of length at most lg n can be answered in O(1)
time.

5 Conclusions

In this paper, we present a theorem that characterizes a
permutation as the suffix array of a binary string. Based
on the theorem, we design a succinct representation
of suffix arrays of binary strings that uses n + o(n)
bits (the theoretical minimum plus a lower order term),
and answers existential and cardinality queries in O(m)
time without storing the raw text. With additional
data structures in n + o(n) bits, we can answer listing
queries in O(m + occ lg n) time in the general case.
For long patterns (i.e. when m = Ω(lg1+ε n)), we
answer listing queries in O(m+ occ) time. Using only n
additional bits, we can make our index a self-indexing
structure, which can output a substring of length l in
O(l + lg n) time without storing the raw text, and this
technique can be used to save space for text strings
drawn from larger alphabets. Another implementation
of our index uses O(n) bits, answers listing queries in

O(m+occ lgλ n) time, and outputs a substring of length
l in O(l/ lg1−λ n + lgλ n) time, for any 0 < λ < 1.
This implementation also provides the same support for
long patterns. An independent approach that answers
existential and cardinality queries for patterns of length
at most lg n in O(1) time using 2n + o(n) bits of
space is also presented. In addition to designing text
indexes, an efficient algorithm that checks whether a
given permutation is a suffix array of a binary string is
also developed.

Each of the three different implementations of our
index structures has its own merits. The first one, al-
though only supports existential and cardinality queries,
has space cost of only n + o(n), which is optimal. The
constant factor of the second one is also small. The
third approach supports more efficient searching using
O(n) space. When combined with the compressed suf-
fix tree designed in [11], it supports listing queries in
O( m

lgn + occ lgε n), which is the same as the result in

[11], while at the same time, we provide better support
for patterns whose length is at most lg n.

Our index structures can be generalized to text
strings drawn from larger alphabets by the following
approach. Conceptually, we think of having a bit vector
for each alphabet symbol as in Section 3. However,
the actual implementation uses a wavelet tree [9] to
combine the conceptual bit vectors and reduce the space
cost. For each alphabet symbol, we store the number
of characters in the text that lexicographically precede
it. The search algorithms can easily be modified for this
situation.
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A Proof of Theorem 2.1

In this proof, given two strings α and β, we use α < β to
denote that string α is lexicographically smaller than β.
First, we prove that a suffix array is ascending-to-max
and non-nesting. Assume that we have a suffix array
SA of length n. Lemma A.1 immediately follows from
the definition of a suffix array.

Lemma A.1. Given an integer i, where 1 ≤ i ≤ n − 1,
if SA−1[i] < SA−1[n], then T [i] = a. If SA−1[i] >
SA−1[n], then T [i] = b.

To prove the ascending-to-max feature, given an
integer i where 1 ≤ i ≤ n− 2, we first consider the case
when SA−1[i] < SA−1[n] and SA−1[i + 1] < SA−1[n].
By Lemma A.1, T [i] = T [i+1] = a. Therefore, T [i, n] =
aT [i + 1, n] < T [i + 1, n]. By the definition of the
suffix array, we have SA−1[i] < SA−1[i+1]. By similar
reasoning, we can prove that if SA−1[i] > SA−1[n] and
SA−1[i + 1] > SA−1[n], then SA−1[i] > SA−1[i + 1].
This proves the ascending-to-max feature.

To prove the non-nesting feature, assume we have
two integers i, j, where 1 ≤ i, j ≤ n− 1 and SA−1[i] <
SA−1[j]. We first consider the case when SA−1[i] <
SA−1[i + 1] and SA−1[j] < SA−1[j + 1]. By the
definition of the suffix array, we have the following three
inequalities: (i) T [i, n] < T [i + 1, n], (ii) T [j, n] <
T [j + 1, n], and (iii) T [i, n] < T [j, n]. T [i] 6= #
because i < n. We conclude that T [i] = a, because
otherwise if T [i] = b, then T [i, n] = bT [i + 1, n] >
T [i + 1, n]. Similarly, we obtain that T [j] = a = T [i].
Because T [i, n] = aT [i + 1, n] < T [j, n] = aT [j + 1, n],
the inequality T [i + 1, n] < T [j + 1, n] holds, and
the inequality SA−1[i + 1] < SA−1[j + 1] follows
immediately. By similar reasoning, we can prove that if
SA−1[i] > SA−1[i+1] and SA−1[j] > SA−1[j+1], then
SA−1[i+1] < SA−1[j+1]. This proves the non-nesting
feature.

Second, we prove that an ascending-to-max and
non-nesting permutation is a suffix array. We first
describe an algorithm [11] that constructs a text from
its suffix array. Given a suffix array SA of length n, we
need to find its corresponding text T . First, we assign
# to T [n]. We then scan SA to find the position v such
that SA[v] = n. By Lemma A.1, for the ith entry in SA,
where 1 ≤ i < v, we assign a to T [SA[i]]. For the jth

entry in SA, where v < j ≤ n, we assign b to T [SA[j]].
The above algorithm can construct a text string for

any given input permutation M . However, if M is not
a suffix array, the suffix array of the text constructed is
different fromM . We must prove that ifM is ascending-



to-max and non-nesting, it is the same as the suffix array
SA of the constructed text T . Assume that M [v] = n.
Then in the text string T , there are (v − 1) a’s and
(n − v) b’s. In SA, the first (v − 1) entries point to
suffixes starting with an a, the vth entry points to suffix
#, and the last (n− v) entries point to suffixes starting
with a b. Therefore, SA[v] = n = M [v]. Now we must
prove that all the other entries in M and SA are the
same. We give a proof by contradiction.

Assume, contrary to what we are going to prove,
that M is different from SA. Then there exists at least
one pair of integers (i, j), where 1 ≤ i, j ≤ n, such
that M−1[i] < M−1[j] but SA−1[i] > SA−1[j], i.e. the
relative positions of i and j in M and SA are different.
We call such a pair a reverse pair. We have the following
easy-to-prove lemma on reverse pairs.

Lemma A.2. For any reverse pair (i, j), one of the
following two conditions holds:
(i) M−1[i] < M−1[j] < v and SA−1[j] < SA−1[i] < v;
(ii) M−1[j] > M−1[i] > v and SA−1[i] > SA−1[j] > v.

There exists one reverse pair (g, h) such that g is the
greatest among the first items of all the reverse pairs.
We observe that both g and h are less than n because
neitherM−1[g] orM−1[h] is v. Therefore, the inequality
1 < g + 1, h + 1 ≤ n holds. We first consider the case
when pair (g, h) satisfies Condition (i) of Lemma A.2.
In this case, we observe that M−1[g] < M−1[g+ 1] and
M−1[h] < M−1[h + 1], because otherwise, M is not
ascending-to-max. Because M is non-nesting, we have
M−1[g + 1] < M−1[h + 1]. By similar reasoning, we
can prove that SA−1[g + 1] > SA−1[h + 1], as SA is
also ascending-to-max and non-nesting. Now we have
another reverse pair (g+1, h+1). Its first item (g+1) is
greater than g, which is a contradiction. We can reach
a contradiction by similar reasoning for the case when
pair (g, h) satisfies Condition (ii) of Lemma A.2. This
completes the proof.


