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ABSTRACT

A Focused crawler must use information gleaned from pre-
viously crawled page sequences to estimate the relevance of
a newly seen URL. Therefore, good performance depends on
powerful modelling of context as well as the current obser-
vations. Probabilistic models, such as Hidden Markov Mod-
els(HMMs) and Conditional Random Fields(CRFs), can po-
tentially capture both formatting and context. In this pa-
per, we present the use of HMM for focused web crawling,
and compare it with Best-First strategy. Furthermore, we
discuss the concept of using CRFs to overcome the diffi-
culties with HMMs and support the use of many, arbitrary
and overlapping features. Finally, we describe a design of
a system applying CRFs for focused web crawling, that is
currently being implemented.

Categories and Subject Descriptors
H.5.4 [Information interfaces and presentation]: Hy-
pertext/hypermedia; I.5.4 [Pattern recognition]: Appli-
cations, Text processing; I.2.6 [Artificial intelligence]: Learn-
ing; I.2.8 [Artificial intelligence]: Problem Solving, Con-
trol Methods, and Search.

General Terms
Algorithms, performance, measurements, experimentation.

Keywords
Focused crawling, Web Graph, Hidden Markov Models, Con-
ditional Random Fields, World Wide Web

1. INTRODUCTION

The concept of Focused crawler is increasingly seen as a po-
tential solution to the problem of indexing the exponentially
growing Web. It is designed to traverse a subset of the Web
to only gather documents on a specific topic and aims to
identify the promising links that lead to target documents,

and avoid off-topic branches. In the Web graph, relevant
pages tend to link to other relevant ones. For example, if
looking for pages on the topic Linux, the crawler should
ignore Health related web pages. However, off-topic pages
may often reliably lead to relevant pages. For example, a
University page leads to a Department page, which leads to
a People page, Faculty list page, Research and Publications.
When looking for research publications on a specific topic,
the crawler may have to traverse pages that are irrelevant
to the topic, before it reaches highly relevant ones. In this
case, a good strategy is to effectively determine which links
to follow to get to relevant pages.

Focused crawling is designed to traverse a subset of the
Web to only gather documents on a specific topic and aims
to identify the promising links that lead to target docu-
ments, and avoid off-topic branches. Exhaustive crawling
uses Breadth-First search to download as many pages as pos-
sible, while a focused crawler aims to selectively choose links
leading to targets. The major problem of focused crawlers
is to identify the next most important link to follow.

Previous work in focused crawling algorithms can be found
in the literature: Breadth-First search [18], genetic algo-
rithm [10], reinforcement learning [21, 9], arbitrary predicate
[1], Shark-search [8], focused crawling [4, 3] and others [5, 14,
15]. A framework to evaluate different crawling strategies is
described in [17, 16, 23]. They found that the Best-First
strategy performed best. An interesting approach proposed
in [6] uses the backlink service of certain search engines to
construct context graphs. However, it is not realistic
for a focused crawler to rely on search engines like Google
to obtain backlink information. Furthermore, the assump-
tion that all pages in a certain physical layer from a target
document will share terms does not always hold.

This paper proposes probabilistic models for focused crawl-
ing that integrate evidence from both content and linkage.
Our approach is unique in two respects. One is the way we
use Random Markov models for focused crawling. We think
of a focused crawler as a random surfer, over an underly-
ing Markov chain of hidden states, defined by the number
of hops away from targets, from which the actual topics of
the document are generated. Another contribution is mod-
elling the semantic structure of the web by observing the
user’s behavior on a small training data set and applica-
tion of this model to guide the actual web crawler in order
to find the relevant documents. Experiments show that by
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learning from user’s browsing, the crawler often outperforms
Best-First strategy.

The rest of the paper is organized as follows. Section 2
describes the architecture of our focused crawling system.
Section 3 describes an implemented system based on Hidden
Markov models and initial experimental results. Section 4
describes the conceptual design of a system based on CRFs,
that is currently being implemented. Section 5 discusses the
results and future work.

2. SYSTEM OVERVIEW

The Web graph is noisy and multi-topic. Off-topic pages of-
ten reliably lead to highly relevant pages and paths leading
to targets tend to be longer. Links may lead to unrelated
topics within an extremely short radius. At the same time,
there exist long paths and large topical subgraphs where
topical coherence persists. Webmasters usually follow some
general rules to organize web pages semantically, for exam-
ple, university pages are likely linked to department pages,
then to faculty pages and rarely linked to sports canoeing
pages. That is, dominant semantic topic hierarchies exist.
User surfing behavior is likely to follow her intuitive under-
standing of such semantic topic hierarchies to locate pages
relevant to her information needs efficiently while ignoring
areas not linking to targets.

The above observations suggest that the context of the hy-
perlinks the user follows and marks as relevant reveals the
user’s information needs. If we can detect such patterns hid-
den in the surfer’s topic-specific browsing, we may be able
to build an effective focused crawler.

The system consists of three components: User Modelling,
Pattern Learning and Focused Crawling, as shown in Fig.1.
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Figure 1: System Architecture.

2.1 User Modelling

In the User Modelling stage, we aim to collect the sequences
of pages visited by the user during her topic-specific brows-
ing. If user finds current browsing page is interesting, she
can click the Useful button which is added to page be-
ing browsed, then the page will become an annotated target
page. In order to analyze the user browsing pattern, we con-
struct a web graph which contains both nodes and edges.

Each node in the web graph presents a HTML page with a
unique URL, and an edge is established if a referring docu-
ment has a hyperlink pointing to a referred document. After
completing browsing, user clicks Submit button to save en-
tire visited pages as training data.

The documents in the web graph are then processed to ex-
tract the semantic relationships among words in the collec-
tion. The documents are analyzed using Latent Semantic
Indexing(LSI) [22, 2]. After LSI is applied, co-occurring
concepts are mapped onto the same dimension.

To capture semantic relations between visited web pages
during topic-specific browsing, the collection of web pages
visited are clustered [13]. We use a combination of K-means
to obtain initial clusters, with K = 5, and refine the clusters
using the EM algorithm.

Our goal is to capture the concept associative relation be-
tween different types of documents, i.e. the notion that
document type A is more likely to lead to targets than docu-
ment type B, rather than what exact categories they belong
to. After clustering, the associative relationships between
groups are captured into a concept graph G = (V, E), where
each node is assigned to Ci, the label of the cluster it be-
longs to. Details on the construction of the web and concept
graphs are presented in [12].

2.2 Learning Patterns Leading to Targets

Focused crawler can only use information gleaned from pre-
viously crawled page sequences to estimate the relevance of
a newly seen URL, therefore, good performance relies on
powerful modelling of context as well as the current obser-
vations. Probabilistic models, such as HMM and CRF, of-
fer a good balance between simplicity and expressiveness of
context.

We model focused crawling in the following way: We think of
focused crawler as a random surfer and there is an underly-
ing Markov chain of hidden states, defined by the number of
hops away from targets, from which the actual topics of the
document are generated. Let S be the set of finite hidden
states S = {T0, T1, ..., Tn−1}, defined by reaching a target
page by 0, 1,..., n-1 or more hop(s). Let s = {s1, s2, ..., sm}
be some sequence of hidden states, let o = {o1, o2..., om}
be some observed data sequence, such as a sequence of web
pages the crawler has seen, then the sequence of states that
was most likely to have generated the observations can be
estimated. Apparently, for those pages with lower state sub-
script such as T0 will be assign higher visit priorities than
those with higher state subscript such as T2. We will dis-
cuss learning and inference details in section 3 for applying
HMM and in section 4 for CRF model.

2.3 Focused Crawling

The system uses the learned user browsing pattern in fo-
cused crawling. The crawler utilizes a queue, which is ini-
tialized with the starting URL of the crawl, to keep all candi-
date URLs ordered by their visit priority value. The crawler
downloads the page pointed to by the top URL of the queue,
calculates its reduced dimensionality (LSI) representation,
and extracts all the outlinks. Then all children pages will
be downloaded and classified using K-Nearest Neighbor al-
gorithm into one of the clusters. The most likely state se-
quences are calculated for each parent-child pair based on
current observations and corresponding HMM/CRF param-
eters, and the visit priority values will be assigned accord-



ingly Since the queue is always sorted according to the visit
priority value associated with each URL, we expect that
URLs on the top of the queue will locate targets rapidly.

3. USE OF A HIDDEN MARKOV MODEL

3.1 Hidden Markov Model (HMM)
A HMM [20] is a finite set of states S = {s1, s2..., sn} and
a finite set of observations O = {o1, o2..., om} associated
with two conditional probability distributions P (sj |si) and
P (o|sj). There is also a initial state distribution P0(s).
HMMs, widely used in speech-recognition and information
extraction, provide superior pattern recognition capabilities
for dynamic patterns. HMMs are useful when one can think
of underlying unobservable events probabilistically generat-
ing surface events, that are observable.

Let n be the number of hidden states,

• Hidden states: S = {Tn−1, Tn−2, ..., T1, T0}

– Reaching a target page by n−1 or more, n−2,...,1,
0 hop(s).

• Visible states: O = {1, 2, 3, 4, 5}

– Cluster number which web pages belong to.

• HMM parameters θ:

– Initial Probability Distribution Matrix
π = {P (T0), P (T1), P (T2), ..., P (Tn−1)}. Proba-
bility of reaching a target by 0, 1, 2,..., n-1 or
more hop(s) at time 1, respectively.

– Matrix of Transition Probabilities: A = [aij ]n×n,
where, aij = probability of being in the Tj state
at time t+1 given that you are in state Ti at time
t.

– Matrix of Emission Probabilities: B = [bij ]n×5,
where,
bij = probability of seeing cluster j if you are in
state Ti.

Once the state-transition structure is determined, the pa-
rameters of the model to be estimated are the state tran-
sition and the emission probabilities. We use annotated
training data – that is, sequences of user visited pages with
identified target pages from user modelling stage, and label
all nodes in the concept graph as T0, T1, T2,..., Tn−1 in a
Breadth-First search out of the set of target pages (T0) as
shown in Fig.2.
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Figure 2: Parameter Estimation of HMM.

Probabilities are estimated by maximum likelihood with ra-
tios of counts, as is traditional. That is,

aij =
|Lij |

∑n−1
k=0 |Lkj |

(1)

where, Lij = {v ∈ Ti, w ∈ Tj : (v, w) ∈ E}.

bij =
|Nij |

∑5
k=1 |Nkj |

(2)

where, Nij = {Ci : Ci ∈ Tj}.

An example of learned parameters with topic linux is shown
in Fig.3. The sum of each column in matrix A and the sum
of each row in B are 1.
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Figure 3: Example. Topic: /Com-

puter/Software/Operating System/Linux. # of Web

pages=200, # of targets=30.

3.2 Efficient Inference
Given the model and all its parameters, the task is to find
the most likely state sequence given the observed web page
sequence. Determining this sequence is efficiently performed
by dynamic programming with the Viterbi algorithm [20].
Forward value δ(si, t) is the maximum probability of all se-
quences ending at state si at time t, and the partial best
path is the sequence which achieves this maximal probabil-
ity. A recursive relation holds for these values:

δ(s, t + 1) = max
s′

δ(s, t)P (s|s′)P (ot+1|s) (3)

where, P (s|s′) and P (ot+1|s) are transition probabilities and
emission probabilities, respectively.

In particular, in the case of focused crawling, we describe
δ(i, w) as the maximum probability of all web page sequences
ending at state Ti when web page w is seen. For each crawled
page w, we calculate all partial best paths for each hidden
state, each of which has an associated probability δ. We find
the overall best path by choosing the state Ti with the max-
imum partial probability δ(i, w), i.e. the maximum proba-
bility of all partial paths ending at state Ti at page w. As
shown in Fig. 4(a), each web page w is associated with it
cluster number Cw and information from its parent in the
form of a cluster number Cp and partial probabilities δ(j, p).
If page w is a start URL, then δ will be calculated using Ini-
tial Probability Distribution Matrix π using equation 4,

δ(i, w) = π(i)bicw
(4)

otherwise, δ will be calculated based on information from
its parent and current observations using equation 5,

δ(i, w) = max
j

(δ(j, p)ajibicw
) (5)

There is also a back pointer ψ shown in equation 6, which
points to the predecessor state Tj that optimally provokes



the current state Ti, and the most probable hidden state
path will be used to obtain the URL visit order.

ψ(i, w) = arg max
j

(δ(j, p)aji) (6)
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Figure 4: Efficient Inference.

The Viterbi algorithm is used to determine the most likely
sequence of underlying hidden states, so we also define a
Url order Matrix to assign visit priority order, as shown
in Fig.4(b). For page w, if the most probable hidden state
path from page p is Tk → Tm, the visit priority order would
be Url order[Tk, Tm]. The total number of state transitions
trans is a function of the number of states n. i.e., trans =
(n2 +3n−2)/2. Some state transitions are not possible. For
example, there is no T3 → T1, since if you can go from T3 to
T1 in one hop, then the page is not a true T3, it is T2. The
same as T3 → T0, T2 → T0 transitions. It is possible to have
Tj → Tj(j = 0..n− 1) transitions. This will happen if there
are cross links at the same distance from the targets.

3.3 Experiments

3.3.1 Evaluation
It is important that the focused crawler return as many in-
teresting pages as possible while minimizing the proportion
of uninteresting ones. To evaluate the effectiveness of our
approach, we use precision measure, which is the percent-
age of the web pages crawled that are relevant. Since target
pages user marked as interesting may belong to different
topics, the relevance assessment of a page p is based on the
maximal cosine similarity to the set of target pages T with
a confidence threshold γ. That is, if

max
t∈T

cos(p, t) ≥ γ

then p is considered as relevant, where cos(p, t) is the stan-
dard cosine similarity function and wdk is the TF-IDF weight
of reduced vector term k in document d.

3.3.2 Results
We selected a variety of topics from DMOZ 1 which are nei-
ther too broad nor too narrow, as shown in Table 3.3.2. For
comparison, we chose Best-First Search (BFS) crawler. Ac-
cording to [17], the Best-First crawling is competitive and
outperforms other focused crawling strategies. Its visit pri-
ority order of URL here is based on maximal cosine similar-
ity between the set of target pages and the page where link
was found.

1http://dmoz.org/

 
 

Topics 

# of pages 

 user 
visited 

# of targets  

user marked γ 
 

Start URL 

/Sports/hockey 207 34 0.7 http://sportsnetwork.com, http://about.com/sports 

/Computers/Software/Operating

_Systems/Linux 
 

200 

 

30 

 

0.9 

http://www.computerhope.com,http://about.com/compute 

http://comptechdoc.org/os, 

http://www.informationweek.com/techcenters/sw/ 

/Health/Condition_Diseases/Dia

betes, Heart Diseases 
112 18 0.8 http://www.cnn.com 

/Health/Condition_Diseases/Dia

betes, Heart Diseases 

 

112 

 

18 

 

0.8 

http://www.nih.gov/, http://www.healthfinder.gov/ 

http://www.healthatoz.com/, http://www.healthweb.org/ 

/Health/Condition_Diseases/Dia

betes, Heart Diseases 
112 18 0.8 http://chealth.canoe.ca/;  http://health.allrefer.com/ 

 

Hockey

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500

# of downloaded

#
 o

f 
R

e
le

v
a
n

t 
P

a
g

e
s BFS

HMM

Hockey

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

# of downloaded

M
a
x
im

u
m

 A
v
e
ra

g
e
 

S
im

il
a
ri

ty

BFS

HMM

Figure 5: Topic Hockey : (a) # of relevant pages re-

trieved; (b) Maximum Average Similarity of all down-

loaded pages.

.

The number of relevant pages against the number of pages
downloaded for the topic Hockey is shown in Fig.5(a). The
system collected a total of 207 user browsed web pages.
The results show a significant improvement over Best-First
crawling. It appears that Best-First crawling pursued the
links that appear the most promising at the expense of
longer term loss, whereas our focused crawler explored sub-
optimal links that eventually lead to longer term gains, in
spite of a penalty at the early stage of the crawl, as shown
in Fig.5(b).
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Figure 6: Topic Linux: Percentage of relevant pages.

Another topic Linux, for which our system showed the least
average performance improvement over Best-First crawler,
although it still outperforms Best-First crawler, is shown in
Fig.6. We conjecture that such topics are those with long
paths and large subgraphs where topical coherence persists,
so Best-First crawler performs well too. However, our sys-
tem locates relevant pages quickly at the beginning.

Another advantage of our system is focusing on what the
user really wants on specific topics. In other focused crawl-
ing systems, target pages are usually predefined or keywords-
based and therefore are more general and less specific on
user’s personal interests. As a result, it will retrieve tons of
returning “relevant” pages to the predefined targets and user
still needs to investigate further to find more specific infor-
mation. With the user browsing stage in our system, user’s
topic-specific interests are effectively captured and they are
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not limited to one topic and single domain. Fig.7(a) shows
the results of crawling topics Diabetes and Heart Disease
for the user at the same time and the numbers of relevant
pages retrieved by our system are 50% more than those by
Best-First crawler when crawling 10,000 pages.
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Figure 8: Effect of different HMM states T. First row:
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In order to investigate the effect of the HMM state tran-
sition structure, we present experimental results using dif-
ferent number of states on each topic, respectively, shown
in Fig.8. There is visible improvement in the performance
using the selected number of states and the best number
of states may vary depending on topic. For topic Hockey,
HMM with 4 or 5 states works much better. In partic-
ular, with 6 states, the performance drops down to that
of Best First crawling, indicating that the typical linkage
structure leading to the topic doesn’t exist anymore. For
topic Linux, HMM with 6 performs the best, and the one
with 8 states yields the worst. These observations match
our initial conjecture that the HMM state transition struc-
ture reflects the general hierarchical concept linkage struc-
ture of a topic, rather than physical layers of Web graph.
On the surface, the Web graph is rapidly mixing with ran-
dom links from topic to topic within both short and long
paths, however, the topical concept linkage structure be-
hind the scene does exist and doesn’t vary too much. Back
to our examples, for topic Hockey, the general rule could
be Top → Sports → Hockey → Ice − Hockey, indicating
that the level varies between 3-5, and HMM with 6 or more
will mislead the focused crawler. For topic Linux, the path
is longer but should be less than 8, which implies Top →
Computers → Software → OperatingSystem → Linux.
Large number of states intensifies the problem of limited
training data.

4. USE OF CONDITIONAL RANDOM FIELD

In the HMM we proposed above, we try to capture semantic
relations along paths leading to targets. Keywords are used
implicitly in the construction of clusters and classification of
pages into them. Furthermore, features associated with an-
chor text, title or metadata, URL token, are not accounted
for. It may, therefore, be useful if a composite criterion were
formed, that directly included keywords and other features.
The hope is that with multiple features, even if only some of
them are present, relevant paths will be identified. Linear-
chain Conditional Random Fields [11] is a formalism that
generalizes HMMs, and may help provide a more flexible
framework, where multiple features are used.

4.1 Conditional Random Fields(CRFs)

Linear-chain CRFs were first introduced in [11]. Its effec-
tiveness has been demonstrated in the tasks of Table Ex-
traction [19] and Labelling Sequence Data [11].

Similar to the HMM formulation, let S be the set of hidden
states S = {T0, T1, ..., Tn−1}, defined by reaching a target
page by 0, 1, ..., n−1 or more hop(s). Let s = {s1, s2, ..., sm}
be a sequence of (hidden) states, and o = {o1, o2..., om} the
corresponding observed web page sequence. CRFs specify
the probability of possible state sequences given an observa-
tion sequence p(s|o) rather than joint probability p(s, o), as
in HMMs, as follows:

p(s|o) =
1

Z0
exp(

m
∑

t=1

∑

k

λkfk(st−1, st, o, t)) (7)

where s is a state sequence, o is an observed data sequence,
k is the number of features, θ = {λ1, λ2, ..., λk} are parame-
ters to be estimated from the training data set, fk are pre-
defined feature functions. Z0 is an observation-dependent
normalization factor over all data sequences which can be
calculated as follows:

Z0 =
∑

sεSm

exp(

m
∑

t=1

∑

k

λkfk(st−1, st, o, t)) (8)

where Sm represents the set of all data sequences.

4.2 Features

4.2.1 Feature set
In HMM, we focus on capturing semantic content and link-
age relations leading to targets by applying LSI and clus-
tering algorithms. Normally, a document relevant to a spe-
cific topic frequently contains explicitly a set of topic-specific
keywords. For example, a TCP/IP document often contains
keywords “tcp, ip, header, protocol”, etc. Therefore, the
lexical keywords are a significant factor and it may be ben-
eficial to use them directly.

To build good topic-specific keywords, we extend the User
Modelling stage in Section 2.1 by adding a Keyword Ac-
quisition step: we let the user specify 3-5 keywords before
or after her topic-specific browsing. Additional keywords
are extracted from the text in the title and meta tags of
the pages annotated as relevant. For example, keywords for
topic Linux could be “Linux, software, operating system,
OS, Redhat, LinuxPro, OpenLinux, manual, documentation
project”.



When defining feature functions, we construct a set of real-
valued features to capture whether the observed web pages
have specific characteristics. The notation for feature k and
observed web page o is bk(o). We propose nine features
(k = 1..9).

1. Cluster Feature: For each cluster j = 1..5, we define a
feature capturing whether the observed web page o belongs
to the cluster.

bj(o) =

{

1 if o is in cluster j;
0 otherwise.

2.Text Feature: Maximal similarity value between the con-
tent of a given candidate page and the set of targets. We
define it as the 6th features.

b6(o) =

{

1 if sim(target, o) ≥ a threshold;
0 otherwise.

3. URL Token Feature: The tokens in the URL of an
observed page may contain valuable information about pre-
dicting whether or not a page is a target page or poten-
tially leading to a target. For example, a URL containing
“linux” is more likely to be a web page about linux related
information, and a URL which contains the word “operat-
ing system” or “OS” indicates that with high probability, it
may lead to a Linux page. We first parse the URL into to-
kens, then compute the similarity between tokens and topic
keywords.

b7(o) =

{

1 if sim(keywords, URL tokens of o) ≥ a threshold;
0 otherwise.

4. Anchor Text Feature: The anchor text around the
link pointing to an observed page o often is closely related
to the topic of the page. Human’s skills and knowledge of
discriminating between links when they browse mostly rely
on the anchor texts.

b8(o) =







1 if sim(keywords, anchor text of page pointing to o)
≥ a threshold;

0 otherwise.

5. Meta Data Feature: Meta Data and title often capture
the content of the observed web page.

b9(o) =







1 if sim(keywords, Title and Meta Data of o)
≥ a threshold;

0 otherwise.

4.2.2 Feature Representation
In CRFs, each feature can be represented as either a binary
or a real value. For binary value, a 1 indicates the presence
of the feature, whereas, a 0 means the lack of the feature,
as shown in last section. With CRFs, we also can use real-
valued features directly and in this case, the actual similarity
values are the inputs.

Each feature function fk(st−1, st, o, t) is defined to have a
boolean output and to take as inputs the value of one of
the features and particular values on current state st and
previous state st−1.

4.3 Parameter Estimation

Given a set of features and the conditional probability func-
tion, Eq. 7, the training task is to estimate the parameters
θ = {λ1, λ2, ..., λk}. As we have done with HMM, we label
all nodes in the concept graph as T0, T1, T2,..., Tn−1 in a
Breadth-First search out of the set of target pages (T0) as
shown in Fig.2. Unlike in HMM, we extract all annotated
page sequences the user visited to form the training data
set. In our case, since we focus on goal-directed browsing,
a sequence of pages terminates on reaching a target page
(T0). For example, we have both 4 → 1 → 2 → 3 and
4 → 1 → 2 → 5. The training procedure is summarized as
follows:

• Input: training data D = {< o, s >(i)}, while i = 1..N
labelled sequences.

• Output: parameters θ = {λ1, λ2, ..., λk}

• Maximize: the log-likelihood objective function L [19]:

L =

N
∑

i=1

log(p(si|oi)) −
∑

k

λ2
k

2σ2

where σ2 is the variance of a Gaussian prior that pro-
vides smoothing.

• Method: L-BFGS. It has been shown [19, 7] that this
method is faster than iterative scaling and gradient
based method and the optimization procedure only re-
quires the first derivative of the log-likelihood function
L:

δL

δλk

= (

N
∑

i=1

Ck(si|oi))− (

N
∑

i=1

∑

s

p(s|oi)Ck(s|oi))−
λk

σ2

where Ck is the count of all feature k values given s
and o.

4.4 Efficient Inference

As in HMMs, efficient inference in CRFs can also be calcu-
lated by the Viterbi algorithm with slightly modified forward
value δ as in Eq. 3:

δ(s, t + 1) = max
s′

δ(s, t) exp(
∑

k

λkfk(s′, s, o, t))

The task in our case is to find the most likely state sequence
given the observable web page sequence.

The normalization factor Z0 can also be efficiently calculated
by dynamic programming. Let α(si, t) be the forward value,
representing the probability of all sequences ending at state
si at time t, and recurse:

α(s, t + 1) =
∑

s′

α(s′, t) exp(
∑

k

λkfk(s′, s, o, t)) (9)

and Z0 in equation 8 is then
∑

s
α(s, m).

In this case, CRFs can be roughly understood as conditionally-
trained Hidden Markov Models with great freedom to com-
bine arbitrary complex and non-independent feature sets by



applying efficient training and decoding algorithms. As we
have seen, it is easy to integrate it into our current system
and we expect that better predictions should result in from
this robust model [19].

For example, if we are looking for topic Linux, several se-
quences of pages ending at a target page will be extracted
from the Web graph built in the User Modeling stage. These
sequences contain linkage and content information leading
to targets that we are trying to capture. The parameters
θ = {λ1, λ2, ..., λ9} will be estimated as shown in Section
4.3, e.g., θ = {0.25, 0.15, 0.1, 0.05, 0.0, 0.10, 0.15, 0.15, 0.05},
indicating that with high probability, cluster 1 and 2 are
more likely lead to targets, and keywords are more likely to
appear in Url tokens and Anchor text for topic Linux, there-
fore higher weights are given to parameters λ1, λ2, λ7, λ8.
When a new page is seen during Focused Crawling, features
will be calculated, the Viterbi algorithm is used to find the
most likely state sequence, and higher weights make the cor-
responding features play a more important role in inference.
For example, if a page belonging to cluster 1 or 2, and/or its
Url or anchor text contains keywords ”linux” or ”operating
system”, or ”OS”, it is more likely to lead to targets.

5. DISCUSSION

In this paper we present our focused crawler system using
two probabilistic models, HMMs and CRFs, to model the
link structure and content of documents leading to target
pages by learning from user’s topic-specific browsing. Our
system is unique in several respects. The proposed way of
capturing and exploiting user’s personalized interests can
potentially lead to more effective focused crawlers.

While the architecture using HMM we presented already
shows promising performance, the CRF design needs to be
implemented and evaluated. Furthermore, the effect of clus-
tering/classification algorithms on the performance of the
system must be investigated. We are in the process of em-
pirically evaluating the effectiveness of augmenting features
using CRFs.
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