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Abstract

This paper deals with the validation of topological maps of an environment by
an active agent (such as a mobile robot), and the localization of an agent in a given
map. The agent is assumed to have neither compass nor other instruments for mea-
suring orientation or distance, and, therefore, no associated metrics. The topological
maps considered are similar to conventional graphs. The robot is assumed to have
enough sensory capability to traverse graph edges autonomously, recognize when it
has reached a vertex, and enumerate edges incident upon the current vertex, locating
them relative to the edge via which it entered the current vertex. In addition, the
robot has access to a set of visually detectable, portable, distinct markers. We present
algorithms, along with worst case complexity bounds and experimental results for
representative classes of graphs for two fundamental problems.

The �rst problem is the validation problem: if the robot is given an input map
and its current position and orientation with respect to the map, determine whether
the map is correct. The second problem is the self-location problem: given only a
map of the environment, determine the position of the robot and its \orientation"
(i.e., the correspondence between edges of the map and edges in the world at the
robot's position). Finally, we consider the power of some other non-metric aids in
exploration.

Please address correspondence to Evangelos Milios.



1 Introduction

One of the problems confronting an autonomous mobile robot is that of maintaining an

internal description of its environment. Without a useful internal representation (a map)

and knowledge of the robot's pose with respect to this map, many robotic tasks become

di�cult, if not impossible. This is not to say that all mobile robotic tasks require a map.

Some tasks may be amenable to behaviour-based approaches, and for such tasks an

internal description of the environment may not be required (see, for example [6,7,8,1]).

For other tasks, especially complex structured tasks, which are speci�c to particular

landmarks in the environment, a map of the environment is crucial. If the robot is to

have a map, what form would this map take, and how should it be acquired?

Several map representations have been proposed in the literature. These include:

metric representations [2,20,21,9,15], which explicitly model the two or three dimensional

position of elements of the environment, probabilistic representations [23,25], which re-

tain many metric properties in the representation, but augment the representation with

uncertainty information, and topological or graph-like representations [19,10,3], which

represent locations of interest. Hybrid maps, which combine elements of each of these

representational levels have also been proposed [16,1]. Integration of a map within a

reactive framework has also been explored [22].

When an autonomous agent explores its own environment the fundamental problem

that the robot has to address is the \have I been here before" problem. If the environ-

ment is modelled in a metric manner, this problem can be viewed as equivalent to the

following: Given the current position and orientation of the robot (known with a partic-

ular covariance error matrix with respect to a world-centered coordinate system), has the

robot been to this location previously via this or some other path? If the environment

is represented in a graph-like manner, the question becomes \have I visited this location

before", and, if so, which entrance did I use last time I entered here?
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In previous work [14,12] we described and analyzed an algorithm for exploring an

unknown environment and building a graph-like map of an unknown world (see also x3).
This work assumes that a topological, rather than metric, description of the world is

desirable at some level in a descriptive hierarchy [19]. A graph-like map was chosen

because it represents the minimal information that a robot must be able to represent in

order to distinguish one place from another. The exploration algorithm allows the robot

to form a model of its world by exploring the world systematically with the use of one or

more distinct markers that can be dropped and picked up at will. These markers can be

recognized if they are found on the path of the robot. The exploration algorithm works

by incrementally expanding a \known subgraph" of the world by exploring unknown

edges incident with it. The algorithm requires the robot to make no more than 5MN �
N2 + 2dmax(M � N + 1) + 2N +M edge traversals (where the graph-like world W has

M edges, N vertices and a maximum vertex degree of dmax). This results in a worst case

complexity of O(MN) moves.

In the work presented in [14,12] and extended here, we are concerned with the me-

chanical time complexity (mechanical complexity) of the task, that is, the number of

discrete motions that the robot must perform. As the time constant associated with

moving a robot is considerably longer than the constant associated with a computational

step, mechanical complexity is the limiting factor for these types of operations (given

that the purely computational problem is tractable, of course). That is not to say that

the computational cost is not important { only that for these tasks it is outweighed by

the mechanical or locomotive cost.

Note that it is not possible, in general, for the robot to explore its environment

without some navigational aid. As an example, all regular graphs of degree k (i.e.,

graphs in which each vertex has k incident edges) are indistinguishable from each other

without markers, because each vertex appears identical to every other vertex.

The di�culty of identifying graph vertices and edges in a real environment depends
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on the environment and the type of sensors used. In a 2D polygonal world, a graph model

can be instantiated by considering the Voronoi graph of the world [24]. In practice, a

robot equipped with a laser range scanner should be able to traverse Voronoi edges fairly

reliably. A problem arises when the distance between two adjacent Voronoi vertices is

similar to the accuracy of the robot's pose estimate. In this case, the robot cannot reliably

recognize the edge connecting the two Voronoi vertices. Kortenkamp and Weymouth [17]

have investigated the combined use of sonar and vision sensing for identifying places and

paths between them. Using vision to reliably identify places is a very challenging problem.

After brie
y reviewing the robot and world models and our earlier exploration results,

this paper focuses on two related problems: Given a map of the world, how can an active

agent (a robot) determine whether the map is correct in its description of the connections

between locations. This is the map validation problem. A related problem is that of

self-location: given a map, how can an active agent determine its current location and

orientation with respect to the map, where \orientation" is equivalent to the correct

correspondence between the map edges and the world edges incident on the current

location?

In addition to providing a worst case analysis of the validation and self-location

algorithms, we present empirical expected-case results on particular classes of graphs for

the validation and exploration algorithms. For some classes of graphs the exploration

algorithm, which has higher worst case complexity, actually outperforms the validation

algorithm.

Finally, we comment on the usefulness of markers as the mechanism by which the

robot validates, explores, or localizes itself, and consider the performance advantages in

using other non-metric mechanisms such as �xed markerd to serve as the reference for

both location and orientation.
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2 The World Model

The algorithms presented in this paper operate on an augmented graph-like representa-

tion of the world, which is de�ned below. This is an abstraction of real world problems

that involve movements of the robot between locations along paths. Metric information

about the world is assumed to have been collected and abstracted away by allowing the

robot to know how to traverse a path, how to recognize that it has reached a path, and

how to recognize paths starting at a particular location.

2.1 De�nitions

The World: The world is de�ned as an undirected graph W : W = (V;E) with set of

N vertices V and set ofM edges E and an ordering relation on the edges at each node, as

described below. Note that in practice such a graph could be de�ned within a continuous

environment based on landmarks or other features. One possible de�nition of a graph

vertex is as a location that maximizes a distinctiveness measure [18]. The vertices of W

are denoted by: V = fv1; :::; vNg. We will restrict the world model to graphs W that

contain no cycles of length � 2. This de�nition prohibits the world from having multiple

edges between two vertices or between a vertex and itself. Although this restriction is

not essential for the operations that follow, it does simplify them considerably.

The de�nition of an edge inW is extended slightly to include the explicit speci�cation

of the order of edges incident upon each vertex of the graph with respect to the other

edges. This ordering can be obtained by enumerating the edges in a systematic (e.g.,

clockwise) manner from some standard starting direction. Such a speci�cation of the

cyclic edge ordering is provided by an embedding of the graph; in conjunction with the

speci�cation of the exterior face of the graph it is equivalent to a planar embedding for

planar graphs.

An edge Ei;j incident upon vi and vj can be assigned labels n andm, one with respect
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to each of vi and vj, given a reference edge in each vertex. The labels n and m can be

considered as general directions; e.g., from vertex vi the nth exit takes edge Ei;j to vertex

vj. More speci�cally, a path can be speci�ed as a series of edge labels such that the entry

edge at a vertex is always the reference edge and the successive labels specify the exit

edges (e.g., take the 3rd edge on the right, then take the 2nd edge on the right, etc.).

Movement and Action: The robot can move from one vertex to another by traversing

an edge (a move), it can pick up a marker that is located at the current vertex, and it

can put down a marker it holds at the current vertex (a marker operation). The robot

in general has K � 1 markers at its disposal.

Assume the robot is at a single vertex, vi, having entered the vertex through edge

Ei;l. In a single move, it leaves vertex vi for vertex vj by traversing the edge Ei;j, which

is located r edges after Ei;l according to the edge order at vertex vi. This is expressed by

the transition function: �(vi; Ei;l; r) = vj. We assume the following invertibility property

concerning the transition function:

�(vj ; Ei;j; s) = vk, then �(vj ; Ej;k;�s) = vi

where �s refers to the inverse edge enumeration: i.e., the label such that if Ej;k has

label s with respect to Ei;j then Ei;j has label �s with respect to Ej;k. This implies that

a sequence of moves is invertible, and can be retraced.

A single move is thus speci�ed by the order r of the edge from which the robot exits

the current vertex, where r is de�ned with respect to the edge along which the robot

entered the vertex. Note that in the special case of a planar embedding of a graph,

enumeration of edges in a clockwise fashion satis�es the above assumption.

A marker operation is fully speci�ed by indicating for each of theK markers whether it

is being picked up, put down, or not operated upon. This is speci�ed by a K-tuple 
K =
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(op1; op2; :::; opK), where the element opk has a value from the set fpickup; putdown; nullg,
according to the operation performed on marker k.

A simple action a is de�ned as a marker operation accompanied by (followed by) a

single move, therefore a = (b; �), where b 2 
K . The robot performs some action on

the markers in the current vertex and then moves to a new location. A path A 2 a+ is a

nonempty sequence of actions. Note that not all action sequences are feasible at all times

since the robot is only permitted to pick up markers that reside in its current vertex or

to drop markers that it is carrying.

Perception: The robot's perception is of two kinds, marker-related and edge-related

perception.

Marker-related Perception. Assume that the robot is at vertex vi. The marker-related

perception of the robot is a K-tuple B = (b1; b2; :::; bK), where bk has a value from

the set fpresent; not�presentg, according to whether marker k is present at vertex

vi.

Edge-related Perception. The robot can determine the relative positions of edges inci-

dent on the vertex vi in a consistent manner given that it knows it arrived by edge

Ei;j, for example, by a clockwise enumeration starting with Ei;j. As a result, the

robot can assign an integer label to each edge incident on vi, representing the order

of that edge with respect to the edge enumeration at vi. The label 0 is assigned ar-

bitrarily to the edge Ei;j, through which the robot entered vertex vi. The ordering

is local, because it depends on the edge Ei;j. Entering the same vertex from two

di�erent edges will lead to two local orderings, one of which is a permutation of the

other. Note that if the graph is planar and a spatially consistent (e.g., clockwise)

enumeration of edges is used, then two permutations will be simple cyclic shifts

of each other. However, this will not hold in general, and in this paper we only
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require that the edges can be ordered consistently.

The sensory information that the robot acquires while at vertex vi is the pair con-

sisting of the marker-related perception at that vertex and the order of edges incident

on that vertex, with respect to the edge along which the robot entered the vertex. If

the robot visits the same vertex twice, it must relate the two di�erent local orderings

produced and unify them into a single global ordering, for example by �nding the label

of the 0-th edge of the second ordering with respect to the �rst ordering. Determining

when the same vertex has been visited twice and generating a global ordering for each

vertex is part of the task of the following algorithms.

3 Map building: exploration

In earlier work ([12,14]) it was demonstrated that in general it is not possible for a robot

to explore and map an unknown graph-like environment as de�ned here without markers

or additional sensory information. This is consistent with human intuition: fairy tales,

and mythology are full of stories of heroes who avoided becoming lost within a maze by

dropping markers or unwinding string as they went. The basic problem is that, once a

human or robotic explorer enters an unknown environment, they cannot always determine

when or if they have returned to a previously visited location. The mythological solutions

typically require a potentially large number of markers, breadcrumbs or a lot of string.

In these earlier papers it was also demonstrated that as long as the explorer had

at least a single marker which could be dropped and picked up at will it was possible

for the explorer to fully map the environment (an arbitrary graph). This could be

accomplished with only 5MN �N2+2dmax(M �N +1)+2N +M or O(MN) � O(N3)

steps (although complexity for most typical cases appears substantially better than this

worst-case bound). The basis of the algorithm is the maintenance of an explored subgraph

of the full graph. As new vertices are encountered, they are added to the explored
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subgraph, and their outgoing edges are added to the set of edges that lead to unknown

places and therefore must be explored.

More formally, the algorithm maintains an explored subgraph S, and a set of unex-

plored edges U , which emanate from vertices of the explored subgraph. A step of the

algorithm consists of selecting a set, E, of k unexplored edges from U , and \validating"

the vertex v� at the unexplored end of each edge e = (v�; v�) in the set E (where v� 2 S

by construction). Validating a vertex v� means making sure that it is not identical to

any other vertex in the explored subgraph. This is carried out by placing one of the k

markers at v� and visiting all vertices of the known subgraph S along edges of S, looking

for the marker (and each of the other k� 1 markers dropped at this step). Note that the

other vertex v� incident upon e is already in the subgraph S.

If the marker is found at vertex vi of the explored subgraph S, then vertex v� (where

the marker was dropped) is identical to the already known vi (where the marker was

found). In this case, edge e = (v�; v�) must be assigned an index with respect to the

edge ordering of vertex v�. To determine this, the robot drops the marker at v� and goes

back to v� along the shortest path in the explored graph S. At v�, it tries going out of

the vertex along each of its incident edges. One of them will take the robot back to v�,

which the robot will immediately recognize due to the presence of the marker. Note that

the index of e with respect to the edge ordering of v� is known by construction. Edge e

is then added to the subgraph S and removed from U .

If the marker is not found at one of the vertices of S, then vertex v� is not in the

subgraph S, and therefore must be added to it. The previously unexplored edge e is also

added to S, which has now been augmented by one edge and one vertex. Adding the

vertex v� to the subgraph causes all edges incident upon it to be assigned an index with

respect to the edge e by which the robot entered the vertex (edge e is assigned index 0)

and the new edges are added to the set of unexplored edges U . Note that no other edge

of the new vertex v� has been previously added to the subgraph, because otherwise v�
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would have already been in the explored subgraph. This index assignment establishes

the edge ordering local to v�. The algorithm terminates when the set of unexplored edges

U is empty. A formal proof of the correctness of the algorithm is presented in [14].

The cost of exploring the graph in terms of edge traversals by the robot (mechanical

complexity) is O(MN) � O(N3), where M is the number of edges and N is the number

of nodes. This follows from the need to go back and actually visit all of the locations

in the known sub-graph to solve the \have I been here before" problem. In practice,

it is not always necessary to explore an environment completely from scratch. A map

may already be available and it may su�ce to determine if the existing map of the world

corresponds to its current state and, if not, to determine where the two are inconsistent.

4 Map validation with known initial pose

The problem we will address in this section is de�ned as follows [13]. The robot is given

a map C of its graph-like world W . The map C is a graph of the same form as the one

computed by exploration: it consists of a set of vertices VC = fvC1; vC2; :::; vCng, and a

set of edges EC with a cyclic edge ordering at each vertex. The world W in which the

robot resides is also a graph consisting of vertices VW = fvW1; vW2; :::; vWn0g and a set

of edges EW with an associated ordering at each vertex. The robot is told which map

vertex vC0 corresponds to the world vertex vW0 that it starts in. The robot is also told

which map edge eC0k corresponds to a speci�c physical exit edge from vertex vM0 (this

is the robot's initial \orientation"). The robot is then asked to verify the correctness of

the map C, i.e., to determine whether C is consistent with the world W , by looking for

an isomorphism relationship between C and W that preserves the cyclic edge ordering

at each vertex. An a�rmative answer to this question automatically establishes a one-

to-one correspondence between the elements (vertices and edges) of C and W . We now

present an algorithm for solving the above map validation problem, which requires at
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most 4N2 + 4M � 4N � 6 or O(N2) moves of the robot.

The key idea underlying the validation algorithm is the construction of a spanning

tree of the map C rooted at the initial vertex of the map (an operation requiring (for

example) O(N2 logN) computations using Kruskal's algorithm [5]). The algorithm �rst

veri�es the presence of this tree in the world and then veri�es the remaining edges of the

world with respect to the map (which is akin to an exploration task). We now describe

the algorithm for the case in which the robot is equipped with a single movable marker.

We will use the notation �(vCi), �(eCij) and �(subgraph) to denote the vertex, edge or

subgraph in the world W which corresponds to vCi, eCij or subgraph of C, respectively.

The symbol ��1(�) is used to denote the inverse mapping from W to C. The notation

index(e; vCi) indicates the index of edge e incident on vertex vCi with respect to vCi.

Finally, edge(l; vCi) indicates the map edge incident on vCi with index l with respect to

vCi. The algorithm is as follows.

1. Validate a spanning tree rooted at the initial robot position.

(a) Compute a spanning tree ST of the map, rooted at the initial map vertex vC0.

(b) Validate ST .

For each vertex vCi of ST ,

i. Move the robot to �(vCi) and place the marker there. Do this by following

a path entirely on �(ST ). Verify consistency between map and world at

that vertex by verifying on the map the observed vertex degree and any

additional sensor information available.

ii. Visit all vertices of �(ST ) by traversing edges of �(ST ) only. Verify

consistency between map and world at each vertex by verifying on the

map the observed vertex degree and any additional sensor information

available. If the marker is found at a physical vertex v di�erent from
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�(vCi) as indicated by following the same physical path on C as well,

then validation fails.

With the marker at each of N nodes in turn, 2(N � 1) edge traversals are

required to do a complete tour of �(ST ) (since a complete tour of a tree need

only traverse each tree edge once in each direction). At most 2(N � 1) � 1

edge traversals are needed to move the marker from node to node. Thus

2N(N � 1) + 2(N � 1) � 1, or 2N2 � 3 edge traversals are required

altogether for step 1.

2. Validate the edges outside the spanning tree, by checking that they connect the

correct two vertices. An e�cient way to do this is to check all edges that are

incident on a single vertex with at most a single physical traversal of the graph.

For each vertex vCi of the map C

(a) Move the robot to �(vCi) and place the marker there. Do this by following a

path entirely on �(ST ).

(b) Leave the marker at �(vCi).

(c) Visit all neighbours vCj on the map of vCi via the ST .

(d) For each such vertex vCj (associated with an edge eCij = (vCi; vCj) according

to the map) check physically whether edge �(eCij) exists by traversing the

edge �(edge(index(eCij ; vCj); vCj)) and looking for the marker at the other

end of that edge.

Using similar reasoning to that used for step 1, this requires at most

2(N � 1) � 1 +
NX

i=1

(2(N � 1) + 2d
0

(vCi)) (1)

edge traversals, where d
0

(vCi) is the degree of map vertex i less the number of

spanning tree edges connected to vertex i. Since
PN

i=1 d
0

(vCi) = 2(M �N), we have
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(a) (b)

Figure 1: Stages in validating a graph. The graph was validated with itself starting with
the correct location and orientation. Edges that have been validated are drawn with
a thicker line. Note that non-spanning tree edges are validated in one direction at a
time and these are drawn half thick/half thin with the thicker end corresponding to the
validated end of the edge. The location of the robot is indicated with a square and the
location of the marker is indicated by a diamond. (a) shows the validation algorithm
after the validation of the spanning tree, while (b) shows the validation algorithm after
validating half of each of the graph edges. This graph was correctly validated.

that step 2 requires 2(N�1) � 1 + 2N(N�1) + 4(M�N), or 2N2 + 4M � 4N � 3

edge traversals.

Thus the validation algorithm requires at most

F = 4N2 + 4M � 4N � 6 (2)

or O(N2) edge traversals.

4.1 Special cases

The following example serves to illustrate brie
y the functioning of the algorithm.
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(a) (b)

Figure 2: Two graphs which fail when being validated by the map given in Figure 1. (a)
fails as the spanning tree cannot be validated, while (b) fails because a non-tree edge is
incorrect.

Example 1. Figure 1 shows the state of the validation process at two stages in the

validation of a simple graph. Figure 1(a) shows the validation process after the validation

of the spanning tree of the graph, while Figure 1(b) shows the same graph after half of

each of the graph edges have been validated. Treating this graph as a map, two corrupted

versions and the point of failure of the validation process are shown in Figure 2. Figure

2(a) is a version of the graph from Figure 1 corrupted by the addition of an extra vertex

and edge. The validation process (indicated by the heavy lines) fails in the spanning

tree validation stage as the spanning trees do not agree (the degree of one of the nodes

on the spanning tree is incorrect). Figure 2(b) shows a corrupted graph in which the

spanning trees agree but in which the graph edges are incorrect. Here the spanning tree

is veri�able, but the non-spanning-tree edges of the map and the world disagree.

Example 2 (Random Graphs). To compare the performance of exploration and

validation, both algorithms were tested on a variety of random graphs [4]. The �rst set

of parameterized random graphs was generated by starting with a complete 2D lattice
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(i.e., a grid) and deleting a speci�ed fraction of randomly selected edges such that the

graph remains connected. This �rst family of graphs should be familiar to those who have

been forced to drive a car in Montreal (where roads are often under repair in the summer),

and are termed Montreal graphs with deletion factor p, or Montreal(p), p 2 (0; 1). They

are also characteristic of the hallway structure of many indoor environments such as

o�ces or warehouses.

The second class of examples, random-connection graphs rc(p), is generated by start-

ing with a tree (p = 0) and adding some number of random edges, to the point of having

a fully connected graph (when p = 1). For each of these sequences we observe how the

number of steps required for exploration and validation varies as a function of the number

of edges in the graph.

Montreal lattices Two dimensional square lattices (with holes) represent the type

of environment that is often encountered in the interior of modern buildings and in

warehouses. (Note that it is the connectivity of the graph, not the distance between

nodes that is important.) Figure 3 shows two sample input graphs. In order to examine

the e�ect of the connectivity of the graph the performance of the algorithm was evaluated

on examples with progressively larger numbers or edges deleted (p decreasing) up to a

maximum deletion factor of 20% of all of the edges in the graph (p = 0:2). A sample

graph with 20% of its edges removed is shown in Figure 3(b).

For the family of Montreal graphs (connected random square lattices indexed by the

fraction p of edges present) we have:

dmax = 4

M = 2(1� p)(N �p
N):

Thus the number of steps required by the validation and exploration algorithm is bounded
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(a) (b)

Figure 3: Sample lattice graphs. (a) corresponds to the fully connected case, while (b)
has 20% of its edges removed.

by the following for exploration and validation, respectively.

explore � 9N2 � 10N3=2 + 12N � 18
p
N + 8 + p(�10N2 + 10N3=2 � 18N + 18

p
N)

� O(N2)

validate � 4N2 + (4� 8p)N + (8p � 8)
p
N � 6

� O(N2)

(3)

Figures 3(a) and 3(b) correspond to the extreme conditions for the graphs which were

explored in order to produce the results shown in Figure 4. Figure 4 shows the number

of robot steps required for exploration and validation of rectangular lattice graphs with

holes. As can be seen from the graph, the cost of exploring the graph (marked by +) is

consistently less than the cost of validating the graph (marked by 3), even though the

constant scale factor in the complexity above suggests that the opposite should happen.

Note that over all graphs the validation operation takes far fewer robot moves in the

worst case (O(N2) versus O(N3)). If the graph is planar and has no more than one edge
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per vertex pair, however, the number of edges M satis�es the inequality M � 3N � 6.

In this case, exploration is also quadratic in the number of vertices N . In the random

graph examples shown below, the number of vertices is �xed. In this case, complexity is

a linear function of the number of edges, which is observed in both examples.

For su�ciently large N , both algorithms should perform within a constant factor

of each other. For a �xed N , exploration and validation should be linear decreasing

functions of p. As illustrated by the plot in Figure 4, the curves are approximately linear,

however (i) exploration outperforms the validation algorithm, and (ii) the exploration

algorithm runs roughly 8 times faster than the bound in equation (3) and the validation

algorithm runs roughly 2 times faster than the bound in equation (3).

The bounds in equation (3) are worst-case upper bounds which could be improved for

speci�c classes of graph-like worlds, especially if the algorithm could be correspondingly

adjusted. In addition, there are a number of stages in both the validation and explo-

ration algorithms where heuristics are applied based on \likely" scenarios; we believe

this improves their performance in typical graphs although the worst-case performance

is unmodi�ed. Unfortunately, the di�culty of establishing a suitably general yet mean-

ingful formalization of an \average" graph is a long-standing problem in the �eld and so

these heuristics cannot be readily evaluated in the context of our worst-case analysis. For

example, in the validation code the following optimizations occur during the validation

of the non-spanning tree edges:

� If there are no non-tree edges out of a node then the node does not require the

marker drop and the tree search for edges leading to the node (steps 2a-d in the

presentation of the algorithm). This saves 2(N �1) steps per node lacking non-tree

edges.

� When searching for nodes with edges leading back to the node at which the marker

has been dropped (steps 2c-d), it is not necessary to traverse subtrees which do not
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Figure 4: Regular lattice with holes. The exploration algorithm (+) consistently outper-
forms the validation algorithm (3).

have map edges that return to the node at which the marker was dropped.

Similar optimizations have been applied to the exploration algorithm. In addition, in

both algorithms there are a number of steps in which nodes can be visited in any order

(as long as all of the nodes having a particular property are visited). In particular, nodes

can be visited in an order which would tend to reduce motion of the robot. We will

return to this point later when we consider the addition of metric data to the validation

and exploration algorithms.

Random adjacency matrix: A second class of graphs we consider are those with

random node interconnectivity. Figure 5(a) shows a random spanning tree of 19 nodes.

Additional edges were added to random spanning trees until a complete graph (i.e., all

possible edges) was obtained. This is shown in Figure 5(b).
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(a) (b)

Figure 5: Sample random adjacency graphs. (a) corresponds to the tree case, while (b)
corresponds to the fully connected (regular) graph case.

The number of moves made by the robot while validating or exploring the random

graphs is shown in Figure 6. The horizontal axis shows the fraction of tree edges present

in the graph. Random adjacency matrices were generated with M edges. If a given

node was not connected to the bulk of the graph an extra edge was added above the

M edges to ensure the graph was connected. The left hand side of the graph (0.0-0.04)

corresponds to the type of graph shown in Figure 5a while the right hand side of the

graph (1.0) corresponds to the graph shown in Figure 5b.

For the family of random adjacency matrices indexed by the fraction p of edges of

the complete graph we have:

dmax � N � 1

M = p(N2 �N)=2:

thus for p >> 0:05 (the graph is connected) the number of steps required by the validation

and exploration algorithm is bounded by

explore � �3N2 + 6N + 2 + p(7
2
N3 � 4N2 + 1

2
N) � O(N3)

validate � (4 + 2p)N2 � (4 + 2p)N � 6 � O(N2)
(4)
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Figure 6: Random graph results. The horizontal axis is the fraction of edges in the graph
relative to the complete graph. The vertical axis gives the number of robot moves for
the di�erent cases mentioned. We observe that for a su�ciently well connected graph it
is con�rmed that the validation algorithm outperforms the exploration algorithm.
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Note that if the random graph became disconnected, random edges were added to un-

connected nodes connecting them to the graph. Thus the bounds above under-estimate

the costs for small p.

As the connectivity of the graph increases, the performance of the validation algorithm

relative to the exploration algorithm improves. The validation algorithm \wins" in that

its basic step is to drop a marker in a particular location and then visit all nodes with

unexplored edges to see if they are incident on the node containing the marker. Thus,

as the connectivity of the graph increases, validation gets more work done for a given

traversal of the tree. On the other hand the exploration algorithm must continually visit

the boundary of the explored subgraph S and more and more edges extend from it as

the connectivity of the graph increases.

Although validation is a less expensive operation in terms of worst-case mechanical

complexity, unless the domain under consideration is highly interconnected, it may be

more desirable to re-explore the environment, rather than validate an existing graph.

5 Self-location and map validation with unknown

initial pose

Now consider the more general problem in which the robot is given a map of its environ-

ment, but is not told its location and orientation with respect to the map. In this section

we develop an algorithm for performing two tasks at once: validating the correctness

of the map, and, in the case in which the map is correct, �nding the correspondence

between the map and the world. This is the self-location problem, which in our case

involves identifying the initial vertex on the map and/or the correct \orientation" (i.e.,

the mapping between physical exits from that vertex and map edges incident on that

vertex).

20



Two major issues are involved here:

� Under what conditions does the problem have a unique solution? In graphs with

symmetries it may not be possible to identify uniquely the robot position and

orientation.

� Can the problem can be solved e�ciently? This paper gives an algorithm for the

self-location problem that uses O(N3) moves.

The idea behind the self-location algorithm is �rst to form all possible hypotheses

using the given map, corresponding to all possible initial vertices and orientations (i.e.,

their reference edges) in the map, and then to explore the graph, discarding hypotheses

which are found to lead to inconsistencies during exploration. The number of such

hypotheses is
P

i=1::N d(vCi) where dvCi is the degree of vertex i on the map C and N is

the total number of vertices. If dmax is the maximum degree of any vertex, the number

of hypotheses is bounded by Ndmax. Under our assumption that there are no instances

of multiple edges between a single vertex pair, or edges with both ends attached to the

same vertex, then dmax < N � 1 and there will be no more than N(N � 1) or O(N2)

hypotheses in total.

The algorithm for self-location and validation is much like the exploration algorithm

described in [14] in terms of the physical steps of the robot, except that additional data

structures are maintained as the robot moves. For each hypothesis, consisting of an initial

pose depicted on the map, a correspondence is maintained between world nodes/edges

and map nodes/edges as the robot carries out the exploration algorithm. Whenever the

information the robot senses about the real world does not match the information mod-

elled by a speci�c hypothesis, then that hypothesis is rejected. The following hypothesis

rejection conditions correspond to all the instances within the algorithm where sensed

information must be associated with the map, and therefore these conditions are both

necessary and su�cient.
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1. When the robot moves from one location to another, the robot's position on each

hypothesis is updated. If the degree of the map node and the world node disagree,

then that hypothesis is rejected.

2. When the exploration algorithm �nds the marker at a vertex of S which is di�erent

from the vertex expected based on the hypothesis, the hypothesis is rejected.

3. When the exploration algorithm discovers that a particular edge index disagrees

with the edge's index on the map according to the hypothesized initial pose, then

that hypothesis is rejected.

4. When the exploration algorithm fails to �nd the marker, while at the same time the

prediction based on the hypothesis is that the vertex should belong to the explored

subgraph, and hence the marker should have been found, then the hypothesis is

rejected.

When the exploration process is complete, one of the following cases must hold:

1. No hypotheses remain. In that case no starting pose was consistent with the world

model, and the map must be incorrect.

2. One (or more) hypotheses remain. Then for each of these hypothesized starting

points, there does not exist a sequence of operations or sensations that the robot can

perform that illuminates any inconsistency between the hypothesized initial pose(s),

the map, and the robot's true starting pose and the true environment. Thus the

map can be used for navigation and path planning, and any one of the starting

pose(s) can be assumed to be correct. Figure 7 shows the surviving hypotheses

for the validation algorithm with unknown initial pose. Of the 18 possible initial

hypothesized poses, 6 remain after map validation.

A detailed description of the self-location algorithm is given in the appendix.
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(a)

(b)

Figure 7: Part (a) shows a graph with symmetries and a reference position and orienta-
tion. Part (b) shows all of the possible symmetries of the graph that the implemented
self-location algorithm discovered in terms of a reference position and orientation indis-
tinguishable from the one of part (a). The robot's initial pose is indicated by a heavy
circle and a heavy line.
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6 Discussion and Conclusions

We have presented new algorithms that permit a mobile robot to use a priori graph-like

maps of a known environment. In [14] we demonstrated how a robot could explore its

environment using only a single movable marker. This paper presented self-location and

map validation algorithms which allow a robot to localize itself and validate a previously

computed map. We have analyzed the mechanical time (i.e., motion) complexity of the

various algorithms and have demonstrated that for certain classes of graphs (with the

relatively sparse connectivity characteristic of typical real environments), it may be less

expensive to re-explore the environment than to validate the map, even when the worst

case complexity analysis indicates that the opposite could be true. We consider this to

be an open question, if we seek an analytical answer. Based on our experiments, we

propose a heuristic that has to do with the connectivity of the graph. So a simple rule is

to ignore the given map and reexplore if the given map has relatively low connectivity.

Section 4 provides some insight as to what low connectivity means.

Concerning the choice of the number of markers, the more (movable) markers are

available, the faster the exploration, validation and self-location processes. Considera-

tions that may limit the number of markers are practical: the robot may be able to only

carry up to a certain number of markers. Making the size of the markers smaller (thus

allowing the robot to carry more markers) will make the markers harder to recognize.

In a practical implementation of the algorithm, there is a variety of errors to be

considered such as failure to recognize the marker or recognizing a marker where none

exists, failure to execute a planned path correctly (taking the wrong exit somewhere). In

an exploration context, if such failures are detected before an incorrect explored subgraph

S has been constructed, repetition of the operations by the robot can help the process

recover from the error. Otherwise, the robot may discover inconsistencies later, if the

error is not systematic, and it will then be forced to start the exploration all over again.
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If the error is systematic (e.g., it *always* misses a particular exit) then it will become

a permanent feature of the map.

Both the self-location and map validation algorithms terminate if the map is found

to be incorrect. One problem that is not addressed in this paper is how to deal with

changes to the environment or errors in the map. We call this the map recovery problem:

given a partially incorrect map of an environment, how can one (optimally or near-

optimally) determine where the errors in the map are and correct them. There are

various ways in which one map can be modi�ed to produce another. If the allowable set

of transformations is limited, it may be possible to devise e�cient algorithms to �x a

\defective" map. Possible constraints could include to assume that the damage is local:

only node deletion might be allowed but no node addition; only edge deletion might be

allowed, et cetera. Many such constraints have real world analogues (for example, only

edge deletions might correspond to navigating in an o�ce where some of the doorways

had been closed). We leave this as a future research problem.

6.1 The addition of metric aids

The algorithms presented in this paper operate independently of any metric positional

information. Metric information can be added in many di�erent ways. One option

would be to add the metric location of a node to the \node signature" [18]. Thus nodes

would only be confused with each other if they had the correct degree and they were

su�ciently close to each other. One potential problem with this approach would be that

\close enough" could be quite di�cult to evaluate in practice.

A second approach would be to use the algorithms as presented here, but to use

metric information as a heuristic to order potential nodes throughout the algorithms.

In each of the exploration, validation, and self-location algorithms, there are a number

of steps which require traversing a subset of the nodes in the world searching for the
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marker. As described above, the order in which these nodes are searched is arbitrary.

If metric information is available then this could be used to choose to search \near"

the expected node �rst. One advantage of this second approach would be that \close

enough" would not have to be de�ned, and failure of the metric information would not

impair the correctness of the algorithm, only its performance.

6.2 Other non-metric graph exploration aids

In this work and in earlier papers we have assumed that the robot is equipped with one

or more unique markers that can be used to help the robot explore (or validate or locate

itself) within its environment. Markers are not the only possible aid that a robot can

use to explore its environment. There are many others. One alternative is to accept

ambiguous world models as inevitable and attempt to retain the simplest model, or use

heuristic cues about the world [11]. Other alternatives are sketched below.

Immovable markers: A single uniquely identi�able immovable marker is su�cient

to solve the exploration, validation and self-location problem. Each node in the graph

v becomes uniquely identi�able by a \door sequence" P (v) back to the \origin" (the

location where the immovable marker lies). The validation of a newly visited vertex va,

for which the movable marker was used, can now be solved as follows. For each vertex

v of the explored subgraph S, the robot starts at va and executes the reverse P (v) and

again the forward P (v) to return to va. If the marker is found at the end of the reverse

P (v), then va must be identical to v. The mechanical cost of this algorithm can become

extremely high. A modi�cation to make the operation more e�cient is to always pick

P (v) to be the shortest path in S from the marker to node v. As S is augmented,

P (v) may have to be updated for each node v to take advantage of possible shortcuts.

The use of r uniquely identi�able immovable markers can make the method even more

e�cient, by associating with each node v a path Pi(v), where i is the marker that is
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closest to v. When a newly visited vertex va must be validated against a vertex v of the

explored subgraph S, the robot will choose the reverse path Pi(v). The average savings

over the single marker case depends on how \uniform" the coverage is. Finally, we can

envision the hybrid case, in which both movable and immovable markers are available.

In the hybrid case, the robot has a choice between two vertex validation operations, one

that uses movable and the other that uses immovable markers. Cost considerations will

determine which one is the more sensible for each vertex.

A single movable directional marker: Consider the exploration algorithm in [14]

and also sketched in x3 but in which the marker is directional, that is, it can be placed

so as to point in a particular direction. The exploration code can then be simpli�ed.

Whenever the robot drops the marker it drops it pointing back towards the explored

part of the graph. Then whenever the robot encounters the marker it can trivially

determine the edge index of the newly explored edge. Without a directional marker, this

process of \validating the back-link" is expensive. As validation of backlinks makes up a

large part of the e�ort in exploration, this minor change in the complexity of the marker

will have a major impact on the algorithm's performance.
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A Statement of the Self-location Algorithm

THE ALGORITHM
The following is a self-contained statement of the self-location algorithm. The self-

location algorithm has the same mechanical steps as the exploration algorithm presented
in [14], with the addition of hypothesis generation and testing, which takes place entirely
in the robot's mind.

We denote the mapping from the model S that the exploration algorithm is contruct-
ing to world W by �; �(v) of a vertex v in S is the real-world vertex to which the robot's
label corresponds. The additional data structure is a set HS of hypotheses fHg. For each
hypothesis H another mapping �H is established between the model S and the hypoth-
esis H; �H(v) of a vertex v in S is the vertex of hypothesis H to which v corresponds.
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A hypothesis H is a possible registration of the given map M with the model S, and
therefore with the real world via the mapping ��1.

A \soft" marker is used for each real marker on hypothesis H.
De�nitions of the subroutines used by the algorithm are given following the statement

of the top-level algorithm. In the top-level algorithm, mechanical steps are in italics,
and electronic steps are in roman. Note that all steps related to the maintainance of
hypotheses are electronic steps.

Comments are preceded by the symbol ..

.

. Initially the robot starts at some vertex vinitial with

. the markers on the 
oor

. Each hypothesis H is de�ned by assigning a possible value to the mapping �H :

. �H(vinit) and �H(e), for all edges e incident on vinit

. As the exploration proceeds, either the mapping �H is completed,

. or the hypothesis is rejected

. At any time, mapping �H has been de�ned for

. all vertices and edges within model (explored subgraph) S.

.
for i from 1 to k

pickup(markeri)
S := (f vinitialg, fg) U := f��1(e) j e is incident with �(vinitial)g

. Elements of U are pairs (v; k), where v is the known vertex and k is the

. index for each edge e
for each e in U

index(e, vinitial) := consistent ordering of �(e)
w.r.t. an arbitrary edge incident on vinit

end for
vcurrent := vinitial
loop

exit when U = fg . i.e. no unexplored edge remains
.
. Select a subset of the unexplored edges in U
. of up to k elements and call this E
.
choose(E)
.
. For each new edge (v1; l) in U , move the robot to �(v1)
. Move physically along the new edge, drop the marker there �(v2)
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. and immediately return to the known graph �(v1).

. Note that although vertex v2 is not yet identi�ed with respect to S,

. and hence �H(v2) is not yet de�ned, we can determine that

. �H(v2) = otherVertex(edge(�H(v1); l); �H(v1))

. and whether �H(v2) 2 �H(S).

.
for each ei = (v1; l)� E, with known vertex v1

walk(�(vcurrent), �(v1))
followEdge(�(ei)) . to �(v2)
.
. Hypothesis test 1. Vertex degrees do not match.
if ( degree (otherVertex(edge (�H(v1); l); �H(v1) ) 6= degree (�(v2))

then reject (H)
.
drop(markeri )
followEdge(�(ei)) . to �(v1)

end for
.
. Search through the graph looking for the dropped markers
.
search(S, markerFound, markerLocation) . and set vcurrent

. markerFound is now a k-vector of boolean 
ags

. markerLocation is a k-vector of vertex numbers
for each i from k down to 1

if markerFoundi then
.
. Found a marker at vertex v2 of S.
.
. Hypothesis test 2. Marker found at the wrong vertex
if ( �H(v2) 6= otherVertex(edge (�H(v1); l); �H (v1) )

then reject (H)
.
. Determine index of ei w.r.t. to its unknown end v2:
.
walk(�(vcurrent), �(v1))
drop(markeri )
walk(�(v1), �(v2))
for each edge f leaving v2

followEdge(�(f)) . to vunknown
if markeri at vunknown then
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index(ei, v2) := index(f, v2)
.
. Hypothesis test 3. Edge index mismatch.
if (index (ei, v2) 6=

index (�H(f), otherVertex(edge (�H(v1); l); �H(v1))
then reject (H)

.
remove ei from U
pickup(markeri)
vcurrent := v1
exit for

end if
followEdge (�(f)) . back to v2

end for
else

.

. Didn't �nd the marker. This is a new vertex

.

. Hypothesis test 4. Vertex expected in S not found.
if otherVertex(edge (�H(v1); l); �H (v1)) 2 �H(S)

then reject (H)
.
walk(�(vcurrent), �(v1))
followEdge(�(ei)) . to �(v2)
pickup(markeri)
add v2 to S
add ei to S
.
. Hypothesis maintenance action: Set value of �H(v2) and �H(ei)
�H(v2) := otherVertex(edge (�H(v1); l); �H(v1))
�H(ei) := edge (�H(v1); l)
.
index(ei, v2) := 0
for each other edge f leaving �(v2)

index(��1(f), v2) :=
consistent ordering with respect to ei

add ��1(f) to U
end for
for each other markerj at �(v2)

pickup(markerj)
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markerFoundj := true
markerLocationj := v2

end for
end if

end for
end loop

subroutines:

choose(E)
. choose up to k edges e1; e2; :::ek from U such that the known
. incident vertex of e1 is closest to vcurrent, and
. for i = 1; 2; :::k � 1 we have that the known incident vertex of
. ei+1 is closest to the known incident vertex of ei
run shortestPath k times to �nd edges satisfying the above
description.

walk(vfrom, vto)
run shortestPath to get shortest path (e1, e2,... ek)
from vfrom to vto, through S.
for i from 1 to k

followEdge(�(ei))
end for

search(S, markerFound, markerLocation)
. a breadth-�rst approximation
. to a travelling salesman problem solution seems appropriate
. since markers are likely to be close to current vertex in S
. Do traversal of S, stopping when k markers have been encountered
. or all vertices have been visited
run Kruskal's algorithm to get min spanning tree of S
for i from 1 to k set markerFoundi to false
do breadth-�rst traversal, taking \short cuts" across non-tree
edges to next vertex where possible. We consider two versions here:

a) only take single-edge short cuts (check if current and next
vertex in traversal are adjacent).
b) run shortestPath to �nd shortest path from current
to next vertex at each step.

whenever a marker i is encountered, set markerFoundi to true
and set markerLocationi to the vertex number in S, and
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execute pickup(markeri).

shortestPath(source)
. do a breadth-�rst labelling of vertices starting from vertex \source"
. where labels indicate previous vertex in path back to sink. This
. is inspired by the Ford-Fulkerson labelling algorithm.
. It su�ces for �nding shortest paths in an unweighted graph,
. taking O(n) time. Use Dijkstra's algorithm if there are weights
. on the edges (O(n2)).
label source
loop

for each newly-labelled (i.e. from last loop pass) vertex v
label all vertices adjacent to v

end for
end loop
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