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Abstract

Parametric spline models are used extensively in representing and coding planar curves.

For many applications, it is desirable to be able to derive the spline representation from

a set of sample points of the planar shape. The problem we address in this paper is to

�nd a cubic spline model to optimally approximate a given planar shape. We solve this

problem by treating the control points which de�ne the spline as variables and apply an

optimization technique to minimize an error norm so as to �nd the best locations of the

control points. The error norm, which is de�ned as the total squared distance of the

curve sample points from the spline model, reects the discrepancy between the spline

and the original curve. The objective function for the optimization process is the error

norm plus a term which ensures convergence to the correct solution. The initial locations

of the control points are selected heuristically. We also describe an extension of this

method, which allows the addition of control points to the spline model based on local

error measures if the initial set of control points fails to represent the given shape within

a prespeci�ed tolerance.

�Funding for this work was provided by an operating grant from the Natural Sciences and Engineering

Research Council of Canada.
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1 Introduction

Planar shape modeling has broad applications to various signal understanding and computer

vision tasks, such as shape matching, feature extraction, data compression, or noise �ltering

[1][2][3][4]. Planar shapes are de�ned by their outline curves. It is desirable to be able to

derive a parametric curve representation from a set of sample points which de�ne a planar

contour. This can be done by either Fourier descriptors or spatial domain models. One

of the most commonly used models is the piecewise spline approximation, which has been

extensively studied by the computer graphics community [5][6][7]. Local spline approximation

is attractive in that it gives a smooth analytic representation of the curve. Much work has

been done on representing signals or images using cubic spline models [8][9][10][11][12].

The problem we want to solve in this paper is the following. Given a planar curve represented

as a sequence of sample points, �nd a spline with a number of control points to approximate

the curve such that the approximation error is minimum. Our approach is to treat the

positions of the control points of the spline as variables and use an iterative optimization

algorithm to �nd the optimal solution in the sense that an error norm is minimum. We start

with an initial set of control points, and we iteratively move them so as to improve the quality

of the approximation. The approximation error norm is de�ned as the sum of the squared

distances of the curve sample points from the spline curve. (The distance from a point to a

curve is de�ned as the minimum distance from the point to any point in the curve.)

It appears that most of the existing work on spline approximation only deals with spline

knots placement in the parametric space, while the spline control points are determined by

using some least-square criteria [8]. For example, McCaughey and Andrews used variable

knot splines to approximate images [9]. Paglieroni and Jain studied B-spline approximation

of planar curves using a control point transformation [10], in which, �rst the spline knots are

determined using some heuristic method, and then the control points are computed by using
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a transformation based on a least-square error criterion.

Our approach di�ers from existing work in that we treat the locations of the spline control

points, rather than the knots in parametric space, as variables and we solve for the control

points by minimizing an error norm which is di�erent from the standard least-square criterion.

We will compare our work with that of Paglieroni and Jain to illustrate the di�erence.

Paglieroni and Jain's control point transformation [10] solves the same problem as ours,

namely how to use a spline model to approximate a planar curve. The control point transfor-

mation is based on a least-squared error between the given curve points and a set of selected

points on the spline, obtained by uniformly (or heuristically) sampling the spline parameter.

In our approach, the error norm measures the distance from each sample point to the spline

itself. In other words, we e�ectively project each sample point onto the spline, and we claim

that the distance between the point and its projection leads to a more natural error norm

than using a point on the spline di�erent from its projection.

In our approach, we �x the knots of the spline as integers from 0 to n (where n is the number

of spline segments or equivalently the number of control points). Nevertheless, we can easily

extend our method to work on an arbitrary set of knots. Our aim is to improve the selection

of control points once the knots are determined.

Plass and Stone [11] used an iterative method which is similar to ours in that, at each step,

it �nds the parameter values corresponding to the projections of the sample points, and then

it �ts a least-square solution to the curve. Through the iterations, the method minimizes the

least-square distance from the curve points to their projections on the spline. However, this

method is limited to �tting a single spline segment at a time, which means the original curve

must be segmented before the �tting process can be applied. Also the tangent directions

at the spline end-points must be predetermined in order to obtain a smooth representation

across the spline segments. Because each segment of the curve is approximated separately, a
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global error measure can not be easily de�ned or minimized. The convergence properties of

their �xed-point iteration are not clear. Moreover, iterations with the Newton's formula are

used to update the parameter values at each step, of which a possible divergence situation is

not considered.

In our approach, the problem is well posed as an optimization problem with the objective

function being the global error norm. It is guaranteed that a solution will be found. By

considering the approximation error globally, we can move the control points to any location

and achieve an optimal solution in terms of the global error norm. Although the optimization

process sometimes only gives a local minimum, we can heuristically choose a suitable initial

estimate, for which the method will converge to satisfactory results. Later we will point out

that the computational cost for each step of our method is less than that of a step of Plass

and Stone's method if it is extended to �t spline globally.

If we only apply the optimization process once, we get an optimal solution for a �xed number

of control points. We can also add new control points to the model according to some

criterion based on the error norm so as to �nd a best solution in the sense of a minimum

number of control points with the error norm not exceeding a given threshold. Our strategy

is as follows. When the error norm is not small enough, we insert a new control point in the

area corresponding to the maximum term in the error norm. With the increased degree of

freedom, the local error is likely to be reduced. We can repeat this process until the total

error is below the given limit.

The paper is structured as follows. In section 2, we review the B-spline model. In section 3,

we present the de�nition and computation of the error norm. In section 4, we introduce the

objective function used in the optimization process. In section 5, we discuss the optimization

process and explain the selection of initial estimate. We also discuss the complexity and the

convergence properties of our algorithm. In section 6, we give a few examples of planar shape

approximation using our method.
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2 B-spline Approximation

We use the standard cubic B-spline model to approximate a given curve. B-splines are

approximating splines. They do not pass through their control points, contrary to local

interpolating splines. Cubic B-splines have the property that they are continuous in �rst and

second derivatives, while interpolating cubic splines are discontinuous in the second derivative

[5][6].

The basis function of the normalized rth order B-spline associated with knots ti; . . . ; ti+r is

de�ned recursively by

Ni;1(u) =

8><
>:

1; ti � u < ti+1

0; otherwise
(1)

Ni;r(u) =
(u� ti)Ni;r�1(u)

ti+r�1 � ti
+
(ti+r � u)Ni+1;r�1(u)

ti+r � ti+1
; r > 1 (2)

The nth order normalized B-spline curve model equation is

P(u) =
n�1X
i=0

Ci �i;r(u) (3)

where P(u) = (X(u); Y (u))T is the curve model of a continuous parameter u; Ci = (xi; yi)T ,

i = 0; . . . ; n � 1, are the control points; and �i;r(u) is the periodic extension of Ni;r(u) with

period tn � t0 in the case of closed curves [7].

The cubic B-spline model (periodic) with integer knots 0; 1; . . . ; n � 1 and control points

C0;C1; . . . ;Cn�1 is de�ned for 0 � u < n, and it can be written in the form

P(u) = [t3; t2; t; 1]B[Ci�1;Ci;Ci+1;Ci+2]
T for i � u < i+ 1; (4)
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where i is an integer from 0 to n� 1 (the index of C should be modulo n), t = u� i, B is the

spline matrix:

B =
1

6

0
BBBBBBB@

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

1
CCCCCCCA

(5)

The above spline model P(u) is a closed piecewise parametric curve consisting of n pieces of

local B-splines. We will use this cubic model P(u) = (X(u); Y (u))T for the curve approxima-

tion.

3 Error Norm of Spline Approximation

The idea behind the formulation of the problem as an optimization problem is the following.

Given a curve S and a set of control points de�ning a spline approximation P of the curve

S, we compute the distance of each point Si of the curve from P. We then sum up all these

distances to form the error norm E between S and P. This error norm is a measure of how

closely P approximates S. We observe, however, that for a �xed curve S, E is a function of

the control points de�ning the spline approximation P. The problem of �nding the optimal

approximation of curve S is then naturally cast as the problem of determining the values of

the variables, which are the coordinates of the control points of P, so as to minimize E. This

problem is addressed in the next section.

We formally de�ne the error norm E as the following.

De�nition 1 Let P(u) be the spline model de�ned by n control points as given in section 2,

with parameter u. For any point Si, the distance from Si to P is de�ned as the distance from
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Si to Pi, where Pi = P(ui) is the point on the spline model that is closest to Si, i.e.,

jSi � Pij = min
0�u<n

(jSi �P(u)j): (6)

De�nition 2 Given a sequence of m sample points, Si = (sxi; syi)
T ; i = 1; . . . ; m, repre-

senting a closed planar curve, and a spline model P(u), the error norm of approximation is

de�ned by:

E =
mX
i=1

wijSi �Pij
2 (7)

where wi's are non-negative weights with
Pm

i=1 wi = 1.

The weights in the error norm can be used to emphasize some of the sample points, such as

those with high curvature. We can select the weights according to the estimated curvature

values.

To �nd the minimum distance from Si to the spline, we need the global minimum of the

distance function Fi(u) = (X(u)� sxi)2+ (Y (u)� syi)2 corresponding to each sample point.

We use two methods to �nd this global minimum. The primary method uses the minimum

from the previous iteration and updates it to become the new minimum. We notice that,

during the iteration, we typically only change the positions of the control points by a small

amount. If we know the point P(ui) on the spline that is closest to curve point Si before the

change, we can update the point P(ui) by updating ui to u
0
i.

Let f(u) = dFi

du
, then f(ui) = 0. Notice that f is the function of the coordinates of 4 control

points. For a coordinate, say xk, of one of the control points,

@f

@xk
+

@f

@ui

@ui

@xk
= 0 (8)
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then
@ui

@xk
= �

@f
@xk
@f
@ui

= �

@f
@xk

f 0(ui)
(9)

where
@f

@xk
= 2Bl(u)

@X(u)

@u
+ 2(X(u)� sxi)B

0
l(u) (10)

where Bl(u) is the basis function (a cubic polynomial) associated with control point Ck.

Now if each (xk; yk) has changed to (xk +�xk; yk + �yk), we can approximate u0i by:

u0i � ui + �ui � ui +
4X

j=1

(
@ui

@xkj
�xkj +

@ui

@ykj
�ykj ): (11)

We can apply the Newton's method to improve ui +�ui. Since ui +�ui is very close to u0i,

it is a good initial value to the iteration. In case that the update gets ui out of the current

spline piece, we need to use the secondary method to �nd a new starting point.

The secondary method, which is used initially and when the update method fails, works by

brute force. It �nds all the extrema of Fi(u) and chooses the minimum among them. We

notice that Fi(u) consists of n pieces of polynomials of order 6 as (X(u); Y (u)) are piecewise

cubic polynomials. By letting dFi

du
= 0, we end up with n polynomial equations of order 5,

although only one of them contains the minimum we want. Here it is possible to heuristicly

choose only those equations which are likely to contain the global minimum. We apply

Laguerre's method [13] to solve these equations. Laguerre's method �nds all the roots of a

function one at a time iteratively. It has the advantage that it is near-globally convergent.

We e�ciently implemented the method in such a way that it avoids unnecessary complex

arithmetic operations.

By solving the equations, we �nd the parameter u = ui and the corresponding point P(ui)

on the spline. Then jSi � P(ui)j is the required minimum distance.
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4 Objective Function for Minimization

Our objective function consists of two terms. The �rst term is the error norm de�ned in the

previous section, with the coordinates of all the control points as variables.

The second term T (u1; . . . ; um) is intended to constrain the spline to stay close to the curve S.

The reason for introducing this term is that by only minimizing the error norm it is possible

that the resulting spline is self-intersecting and part of the resulting approximating spline has

a large deviation from the curve being approximated. Such a solution does not violate the

minimum error norm criterion since our error norm is based on the distance from a point on

the curve to the spline. An appropriate error term should get rid of such self-intersection and

at the same time, ensure that the objective function has continuous derivatives. We introduce

a term of the form:

T (u1; . . . ; um) =
mX
i=1

�(
ui � ui�1

�
)r: (12)

The idea behind this term is that any two successive points Si and Si+1 of the curve S are

close to each other, therefore their projections P(ui) and P(ui+1) should also be close to each

other, not only in space, but also in terms of the values ui and ui+1 of the spline parameter

u. The above error term imposes a penalty if the values ui and ui+1 are not close to each

other, which is the case when the approximating spline self-intersects or it has an o�shoot

that deviates largely from the curve S. The parameters �, �, and r are related to the scale of

the curve. However, the choice of the parameters is not very important since we only need,

qualitatively in some sense, a large value when ui � ui�1 > � (indicating that a piece of the

spline is o� the curve) and a very small value when ui � ui�1 < � (which is normal since

n << m). In the experiment in section 6, we choose them as � = 1, � = 0:5, r = 10. Here

i� 1 and ui � ui�1 should be considered as modulo n.
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Formally, the objective function is:

F (x0; . . . ; xn�1; y0; . . . ; yn�1) =
mX
i=1

wi((X(ui)� sxi)
2 + (Y (ui)� syi)

2)

+T (u1; . . . ; um) (13)

where (X(ui); Y (ui)), which is the function of x0; . . . ; xn�1; y0; . . . ; yn�1, is the projection of

the curve point Si = (sxi; syi) onto the approximating spline P. The function F is continuous

and so are its �rst derivatives.

In order to minimize F e�ciently, we need to �nd the �rst derivatives of F with respect to

all its variables. Without loss of generality, let us only consider @F
@xk

.

Consider one term of the sum in F (without the weight),

Fi(ui) = (X(ui)� sxi)
2 + (Y (ui)� syi)

2 (14)

and notice that ui is a function of x0; . . . ; xn�1; y0; . . . ; yn�1,

@Fi

@xk
= 2(X � sxi)(

@X

@ui

@ui

@xk
+
@X

@xk
) + 2(Y � syi)

@Y

@ui

@ui

@xk
(15)

= 2(X � sxi)
@X

@xk
+ 2

@ui

@xk
((X � sxi)

@X

@ui
+ (Y � syi)

@Y

@ui
) (16)

The second term is 0 at u = ui because ui is a minimizer of Fi(u) and

@Fi

@u

����
u=ui

=

�
2(X � sxi)

@X

@u
+ 2(Y � syi)

@Y

@u

�����
u=ui

= 0 (17)

then
@Fi

@xk

����
u=ui

= 2(X � sxi)
@X

@xk

����
u=ui

(18)

It can be determined on which piece of the piecewise spline model the projection P(ui) is

10



located and @X
@xk

is the spline basis function associated with control point Ck.

For the term T ,
@T

@xk
=

mX
i=1

�r

�
(
ui � ui�1

�
)r�1(

@ui

@xk
�
@ui�1

@xk
) (19)

where the computation of @ui
@xk

is described in the previous section.

In the implementation, 2n derivatives corresponding to 2n variables (the coordinates of the

n control points) are accumulated through the loop of evaluating m components of the error

norm, where each component corresponds to a curve sample point.

5 Optimization Process

The algorithm we apply to minimize the objective function uses a secant method with BFGS

updates to the approximated Hessian matrix [14][15]. The algorithm combines line search to

ensure that it �nds a point with a lower value in the objective function at every step. The

rate of convergence of the secant method is super-linear. We supply a subroutine to evaluate

the objective function and the gradient, and we provide an initial estimate of the minimizer.

The initial estimates of control points are selected heuristically. We �rst select a set of points

on the original curve to be the initial spline end-points (where the spline parameter equals to

a knot) by using curvature heuristics. The heuristic algorithm is as follows. We �rst estimate

the curvature at each sample point by taking the derivative of a smoothed version of the

tangent. Then we select each sample point at which the absolute value of curvature is a local

maximum which also exceeds some threshold. If the curvature at a point is extremely large,

indicating a sharp corner, we take two points around the corner. Finally, we add equally

spaced middle points between two selected sample points if the distance between these two

points is large.
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Note that our optimization algorithm is quite independent of the curvature heuristics. All we

need is to select a sensible set of points from the original curve. We found that the initial end-

points (which determine the initial control points) need not to be chosen too carefully. The

optimization process has the ability to move the points around and converge to the optimal

result.

After selecting the end-points of the initial spline model, we compute the corresponding initial

set of control points by solving a linear system of equations. Assume Cj�1;Cj;Cj+1 are 3

successive control points. Then from the property of B-splines, the point Qj where

Qj =
1

6
(Cj�1 + 4Cj +Cj+1) (20)

is an end-point of the spline. With n such equations and given Qj 's, we can solve for the

control points Cj 's. These are the initial estimate of control points.

We also use the estimated curvature to derive the weights in the error norm. We want to put

more emphasis on the high curvature regions of the curve so as to obtain an approximation

which is visually pleasing. (Without the weights, the approximation tends to underweight

the corner points.) In the experiments, we have set the ratio of the maximum weight and the

minimum weight to be about 5 to 1.

At some point of the optimization process, we can �nd the largest term in the error norm,

which corresponds to the maximum local error. If this error is large, it probably means that

there are not enough degrees of freedom in the spline model to approximate this region of the

curve. We can insert one or more control points in the vicinity and rerun the optimization

process. The local error should be reduced. If we repeat this process, we can determine the

spline that approximates the given curve within a speci�ed error tolerance.

We will analyze the complexity of the algorithm. For every iteration, the cost in the secant

method is O(n2). The cost involved in evaluating the objective function and gradient (using
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the updating method) is O(m + n), where m, n are the number of sample points and the

number of control points, respectively. So the total cost for one iteration is O(m+n2). Notice

that this is less than the cost of solving a linear system of 2n variables (as would an exten-

sion of Plass and Stone's method do). Also notice that the O(m) part of the computation

is parallelizable as the distances from the sample points to the spline can be computed inde-

pendently. The number of iterations needed to converge to an optimal solution is typically

100{300 (depending on, among other factors, the convergence criterion). Although the itera-

tions move the control points around quite signi�cantly, we note that, after the �rst 50{100

iterations, the approximation error usually can not be reduced much further. If we only want

a reasonably good approximation, we can safely stop at a �xed number of iterations.

The convergence property of our algorithm is worth noting. Our process has three types of

exits. The normal exit, which is reached most of the times, is at convergence (in the sense of

a zero gradient). Very seldomly, the process may exit abnormally when either a given number

of iterations is exhausted, or it fails to �nd a lower point along the search direction. (We

believe that round-o� errors may contribute to the last case.) Note that even at abnormal

exits, we still get very good results. Typically, the process has run a few hundred iterations

when it reaches an abnormal exit and the gradient is already very small; the approximation

will not have much to improve anyway. We mentioned earlier that the optimization routine

always �nds a lower point at every iteration. Divergence should never occur.

6 Experiments

In this section, we will show a few experimental results of spline approximation for closed

planar curves. All the curves used in the examples are obtained by tracing the boundaries of

scanned shapes.
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The �rst example shows the approximation to the map of Africa (Figure 1). The original

curve is shown in (a) which consists of 507 sample points. The width and height of the

shape are 164 pixels by 175 pixels. Part (b) shows the initial estimate of the spline which is

determined by 28 end-points. These end-points (marked with a dots in the �gure) are selected

from the sample points using curvature heuristics. The control points of the spline, which

are derived from the end-points, are also shown in the �gure with small circles o� the curve.

Pixels of the original curve are plotted as small dots. Part (c) is the result of the optimization

process using the initial estimate given in (b). Part (d) gives the optimal spline in terms of

a minimum of control points (which is 43) with the maximum approximation error less then

one pixel. Only the end-points are shown for clarity. In (d), we ran 50 iterations for each

added new control point and �nally let it run until convergence (which took 130 iterations).

Table 1 shows the error measures of the above approximation results. (Maximum error is the

maximum of the distances from the curve sample points to the spline. Average error is the

square root of the error norm. The unit of the errors is pixel width.)

Spline No. of CPs Maximum Error Average Error

Figure 1(b) 28 5.5949 1.3555

Figure 1(c) 28 1.7692 0.6644

Figure 1(d) 43 0.9894 0.3604

Table 1: Errors of the spline approximations in Figure 1.

In the second example, we show the converging process of approximating the contour of a leaf

(named trifoliate) (Figure 2). The original curve has 366 sample points. The initial estimate

is given in (a). The derived spline at 30, 75, and 277 iterations (convergence) are shown in

(b), (c), and (d), respectively. Table 2 gives the approximation errors. The unit for the errors

is pixel width.

Next, we illustrate the process of adaptively adding new control points to the model when

approximating the shape of a peltate leaf. Figure 3 shows the results of the optimal spline

with 9, 10, 11, and 13 control points. Table 3 gives the errors of the approximations.
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Spline Iterations Maximum Error Average Error

Figure 2(a) 0 3.8160 0.8334

Figure 2(b) 30 1.2091 0.3977

Figure 2(c) 75 1.0020 0.3466

Figure 2(d) 277 0.9774 0.3107

Table 2: Errors of the spline approximations in Figure 2.

Spline No. of CPs Maximum Error Average Error

Figure 3(a) 9 4.3594 1.7643

Figure 3(b) 10 3.2655 1.1371

Figure 3(c) 11 2.3054 0.8246

Figure 3(d) 13 1.1079 0.3405

Table 3: Errors of the spline approximations in Figure 3.

The shapes of our last example are taken from the experiments in Paglieroni and Jain's work

[10]. Figure 4(a) shows the original curves (contours of three keys); (b) shows the spline

approximations to the key contours. In each of the three cases, the spline model has a

minimum number of control points while its maximum approximation error is less than one

pixel. By comparing the results visually, we note an improvement compared with the control

point transformation method presented in [10]. Table 4 lists the number of sample points of

each curve, the number of control points used in each spline, the approximation errors, and

the number of iterations for the optimization process to converge.

Curve No. of Samps No. of CPs Maximum Error Average Error Iterations

Key 1 436 30 0.8717 0.2870 233

Key 2 337 22 0.7295 0.2685 97

Key 3 385 23 0.9073 0.2928 138

Table 4: Errors of the spline approximations in Figure 4.
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7 Conclusion

In this paper we have described an algorithm for optimally approximating a planar curve with

a piecewise spline model, by using numerical optimization techniques. Here \optimal" means

minimum error norm of approximation for a given number of control points. We de�ne the

error norm to be the sum of squared distance from each sample point to the nearest point

on the spline. The coordinates of the spline control points are treated as variables, which are

computed by the optimization process. By a simple extension, we can also use our method

to �nd the spline model with a minimum number of control points while the error norm is

less than a given bound.

The algorithm compares favorably with previously reported methods in terms of the quality

of the approximation. Being an iterative algorithm, our method has a relatively high com-

putational cost. However, we note that a large part of the algorithm is parallelizable. In

addition, we can exibly trade between complexity and quality of approximation by limiting

the number of iterations.
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Figure 1: Spline approximations to the contour of the map of Africa: (a) original curve; (b)
initial estimate of spline model with 28 control points; (c) converged optimal spline model
using the initial estimate in (b); (d) optimal spline model (with 43 control points) by which
the approximation error is less then one pixel.

18



a b

c d

Figure 2: Converging process of the spline approximation of a leaf shape: (a) initial estimate;
(b) after 30 iterations; (c) after 75 iterations; (d) at convergence (after 277 iterations).
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Figure 3: Adding new control points to the spline model: (a) spline with 9 control points
(initial result); (b) spline with 10 control points (with 1 added CP); (c) spline with 11 control
points (2 added CP's); (d) spline with 13 control points (4 added CP's).
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Figure 4: Approximating key contours: (a) original curves; (b) spline approximations with
the spline end-points shown as dots.
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