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Abstract

Co-clustering or simultaneous clustering of rows and columns of
two-dimensional data matrices, is a data mining technique with
various applications such as text clustering and microarray analysis.
Most proposed co-clustering algorithms work on the data matrices
with special assumptions and they also assume the existenceof a
number of mutually exclusive row and column clusters, but itis
believed that such an ideal structure rarely exists in real data. In
this paper, we propose an overlapping co-clustering model which is
able to work with any regular exponential family distribution, and
corresponding Bregman divergences, thereby making the model
applicable to a wide variety of clustering distance functions. The
algorithm using a generative model is able to discover overlapping
co-clusters in the input data matrix. The necessary algorithms
are provided for this model, and the effectiveness of the method
is demonstrated through experiments on subsets of Reuters and
MovieLens datasets compared to several other clustering methods.

1 Introduction

Grouping similar objects together is called clustering andhas
been used in variety of applications such as text, web-log and
market-basket analysis. In these applications, data is usually
represented as a contingency or co-occurrence table such
as the term-document matrix in text analysis. Most effort
has been devoted to one-way clustering, i.e., clustering one
dimension of the table based on similarities along the second
dimension but recently there has been a growing interest
in developing algorithms which are able to simultaneously
cluster both dimensions of the contingency tables.

Most proposed methods partition the data into non-
overlapping areas, where each data item belongs to only one
cluster. But in some applications, we are trying to find group-
ings of data where some data points could belong to more
than one cluster and thus overlapping clustering is more ap-
propriate. For example, in text processing, when cluster-
ing documents into topic categories, documents may contain
multiple relevant topics and an overlapping clustering might
be more relevant.

In this paper, we extend an approach to one-way model-
based overlapping clustering introduced by [1], hereafter
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called MOC model to a model for overlapping co-clustering.
The original algorithm is able to work with any regular
exponential family distribution and corresponding Bregman
divergences, thereby making the model applicable for a wide
variety of clustering distance functions. These algorithm
properties are important in areas where the algorithm is
dealing with high-dimensional sparse data. Gaussian models
and Euclidean distance are known to perform poorly in these
situations. Therefore, these attributes are desirable forour
proposed algorithm as well.

In order to show the effectiveness of our algorithm, we
present experiments in which we used the proposed algo-
rithm to produce overlapping co-clustering for subsets of
Reuters and MovieLens data sets. We compare the clustering
results with the results produced by the original algorithm,
K-Means and information theoretic co-clustering [4] (here-
after referred to as ITCC) algorithm in order to show that
using overlapping co-clustering would give us better results
in terms of recall and F-Measure.

A brief word on notation: uppercase letters such asX

denote a matrix, whoseith row vector is represented asXi,
jth column vector is represented asXj, and whose entry in
row i and columnj is represented asXj

i as well asXij . XT

represents the transpose of matrixX .

2 Background

Co-clustering can be applied in every situation where a data
matrix A is given in which its elementsaij represent the
relation between its rowsi and its columnsj, and we are
looking for subsets of rows with certain coherence properties
in a subset of the columns. Almost all interesting variants
of co-clustering problem are NP-complete. In the simplest
case where we have a binary matrix, a co-cluster corresponds
to a bi-clique in the corresponding bipartite graph which
is a problem known to be NP-complete [11]. For more
general cases where we have a matrix with real values, the
complexity is necessarily higher than this simple case, since
one can use the solution for solving the more restricted
version.

Co-clustering has been used successfully in biological
applications (See [11] for a complete survey), information
retrieval and text mining, collaborative filter- ing, recom-
mendation systems, target marketing and market research,
database research, and data mining. In collaborative filter-
ing, co-clustering can be used for identifying groups of cus-



tomers with similar interests toward a group of products. The
results can be used for target marketing in recommendation
systems [5]. One commonly used example of this applica-
tion is for data matrices where rows indicate customers and
columns represent movies [9].

Other model-based clustering and co-clustering ap-
proaches that tried to solve the mentioned problems are pre-
sented in [3],[4], [6],[7],[8] and [10].

2.1 Mixture Models for Overlapping Co-Clustering
Many algorithms have been proposed for co-clustering [11]
but most of them assume the existence of a number of mutu-
ally exclusive row and column clusters. Although this can be
the first step toward extracting knowledge from contingency
tables, it is believed that such an ideal structure rarely exist
in real data [10].

Even for one-way clustering, there are few algorithms
known as “soft” clustering algorithms which can identify
overlapping clusters. They first perform probabilistic “soft”
clustering by mixture modeling and then make a hard as-
signment of each data point to one or more clusters using a
threshold on cluster membership probability.

Mixture models has been used to develop soft cluster-
ing algorithms and one can use them for developing soft co-
clustering algorithms as well. Obviously, we can use mix-
ture models to cluster rows and columns separately in or-
der to produce a “soft” co-clustering. But unfortunately the
process is unaware of the correspondence between rows and
columns. A good co-clustering algorithm should be able to
take advantage of interrelations between rows and columns.
This process is also ineffective in detecting homogeneous
blocks [12]. Because of these problems and believing that
using two models for rows and columns is not parsimonious,
a block mixture model has been proposed in [12]. The pro-
posed Block Mixture Model is an extension to the formula-
tion of mixture models for the two-dimensional case. They
have also proposed several learning schemes for estimating
the parameters of the proposed model.

However, there are two problems with using the tradi-
tional mixture model formulation. First, the value of the
threshold for which we make a hard assignment of each data
point to one or more clusters is difficult to learn from given
data. Secondly, one can argue that this is not a natural and
true generative model for overlapping clustering. In mixture
modeling, according to the underlying assumption, a data
point is generated only from one mixture component and the
membership probability simply gives the probability of that
data point being generated from the corresponding mixture
component. However, in overlapping clustering, the model
should be able to activate multiple mixture components to
generate a data point if it belongs to several clusters.

Recently, a model-based clustering algorithm has been
proposed which is able to identify overlapping clusters using

a true generative model [1]. Considering all features of this
algorithm (hereafter referred to as MOC), we propose an
extension to it in order to derive our desired co-clustering
algorithm. We review the MOC algorithm in the next
subsection and then we propose our extension.

2.2 Model-Based Overlapping Clustering (MOC) We
present a brief description of Model-Based Overlapping
clustering following the same notation in [1]. Given a set
of n data points, we represent them by an × d matrix X ,
such thatXi denotes theith data point andXj

i represents
its jth feature value. In the MOC, every pointXi has
a correspondingk-dimensional boolean membership vector
Mi wherek is the desired number of clusters. Thehth

componentMh
i of this membership vector is a binary value

indicating whetherXi belongs to thehth cluster. So,
multiple1’s encode that the point belongs to several clusters.

In this algorithm, the probability of generating all data
points is

p(X |Θ) = p(X |M, A) =
∏

i,j p(Xj
i |Mi, A

j)

whereA is the so-called activity matrix of this model. In
the MOC, every elementAj

h is interpreted as the activity of
clusterh while generating thejth feature of data. In this
model,Θ = {M, A} are the parameters ofp andX

j
i ’s are

conditionally independent givenMi andAj . Furthermore, it
is assumed thatp can be the density function of any regular
exponential family distribution, and also assume that the
expectation parameter corresponding toXi is of the form
MiA, so thatE[Xi] = MiA.

Using the above assumptions and the bijection between
regular exponential distributions and regular Bregman diver-
gences [2], the conditional density can be represented as:

p(Xj
i |Mi, A

j) ∝ exp{−dφ(Xj
i , MiA

j)}

wheredφ is the Bregman divergence corresponding to the
chosen exponential densityp. The MOC tries to selectM
andA that maximize the probability of generating all data
points:

p(X, M, A) = p(M, A)p(A|M, A) =
p(M)p(A)p(X |M, A) =

(

∏

i,h p(Mh
i )

)(

∏

h,j p(Aj
h)

) (

∏

i,j p(Xj
i |Mi, A

j)
)

Assuming independence ofM andA and a uniform distrib-
ution forA over a sufficiently large compact set implies that
p(M, A) = p(M)p(A) ∝ p(M). Then, maximizing the log-
likelihood of the joint probability gives

maxM,A log p(X, M, A) =

minM,A

[

∑

i,j dφ(Xij , (MA)ij) −
∑

i,h log αih

]

whereαih = p(Mh
i ) is the (Bernoulli) prior probability of

theith point having a membershipMih to thehth cluster.



3 Model-Based Overlapping Co-Clustering

Our proposed approach for overlapping co-clustering is in-
spired from one-way overlapping clustering. We consider
two boolean membership vectors, one for each data point
and one for each feature. We interpret the activity matrix
in the MOC model in a different way that would help us to
extend the concept to the co-clustering case. We see each
element of activity matrixAj

h as representing the extent that
jth feature would contribute in generating that feature if the
corresponding data point belonged to only clusterh. In other
words, we consider each data value as generated by partial
contributions based on different clusters that the correspond-
ing data point belongs to. The membership vector simply
shows which clusters take part in generating a particular fea-
ture.

In order to extend the idea to the co-clustering case,
we assume that the value of these partial contributionsA

j
h

(partial contribution of featurej in a data point that belongs
to data clusterh) is determined by which categories the
corresponding feature belongs to. In other words, each one
of the categories that the feature belongs to, has a share in the
feature contributionAj

h. Therefore, we can take an approach
for modelingA

j
h similar to the approach taken for modeling

X
j
i . We consider a membership vectorNj for each feature

indicating the feature clusters that this feature belongs to.
We also consider matrixC whereCl

k indicates the activity
of feature clusterl while generating a data point that belongs
to data clusterk. Using a similar notation as MOC, we would
haveE[AT

i ] = NiC or E[Aj ] = CN j .
For a concrete example, let us consider the term-

document matrix. When a document is about to be built,
depending on which clusters it belongs to, the weight of one
specific word would be the sum of the contributions of that
word from the clusters that the document belongs to. Each
word can also be selected from several word clusters and thus
each word contribution can be derived from several word
clusters that the word belongs to. In co-clustering, we as-
sume that instead of words contributing to form document
clusters, word clusters would contribute to form a document
cluster. In other words, instead of viewing each document
cluster as a collection of words, we view a document cluster
as a collection of word clusters, where each word cluster is a
collection of related words.

This interpretation leads to a similar approach for mod-
eling word clusters. So, instead of assuming one activation
matrix that takes care of each specific feature contribution
toward document clusters, we view the contribution ofjth

feature for generating clusterh as the sum of contributions
from several different feature clusters. So, instead of matrix
A, we considerCNT whereC is a k × l matrix andN is
a l × m matrix containingm boolean membership vectors
representing whether the corresponding feature belongs toa
specific feature cluster.

Our extension to co-clustering can also be reached in an-
other way: According to the MOC model, the activity matrix
elementAj

h denotes the activity of clusterh when generat-
ing thejth feature of data. Each row ofAT corresponds to a
feature which is represented by cluster activities while gen-
erating it. Therefore, each feature can be represented as a
vector of cluster activity values. In this view, we can cluster
rows of AT (features ofX) using MOC again. We would
have for each feature a membership vector which we call
Nm×l and one activity matrixCl×k so that the expectation
parameter corresponding toAT

i is of the formNiC, so that
E[AT

i ] = NiC or E[Aj ] = CN j .
Based on either of these interpretations, the probability

of generating all the data points will be

p(X |Θ) = p(X |M, C, N) =
∏

i,j p(Xj
i |Mi, C, N j)

In this model,Θ = {M, C, N} are the parameters ofp
andX

j
i are conditionally independent givenMi, C andN j .

Probability densityp can be any regular exponential family
distribution, where the expectation parameter corresponding
to X

j
i is of the formMiCN j .
Using these assumptions and the bijection between reg-

ular exponential distributions and regular Bregman diver-
gences [2], the conditional density can be represented as

p(Xj
i |Mi, A

j , N j, C) ∝ exp{−dφ(Xj
i , MiCN j)}

wheredφ is the Bregman divergence corresponding to the
chosen exponential densityp. For example, ifp is the
Gaussian density,dφ is the squared Euclidean distance [2].
One can estimate the parametersΘ of the most likely model
explaining the data by maximizing the log-likelihood of the
observed data. The joint distribution ofX , M , N andC is
given by:

p(X, M, C, N) = p(M, C, N)p(A|M, C, N)

= p(M)p(C)p(N)p(X |M, C, N)

=
(

∏

i,h p(Mh
i )

) (

∏

i,j p(Cj
i )

) (

∏

j,l p(N j
l )

)

(

∏

i,j p(Xj
i |Mi, C

j
i , N j)

)

As in MOC, we assume thatM , C andN are independent
of each other apriori andC is distributed uniformly over a
sufficiently large compact set, implying thatp(M, C, N) =
p(M)p(C)p(N) ∝ p(M)p(N). Then, maximizing the log-
likelihood of the joint distribution gives

max
M,C,N

log p(X, M, C, N) =

max
M,C,N





∑

i,h

p(Mh
i ) +

∑

j,l

p(N j
l )

−
∑

i,j

dφ(Xj
i , MiCN j)



 =



min
M,C,N





∑

i,j

dφ(Xij , (MCN)ij)

−
∑

i,h

log αih −
∑

j,l

log βjl





whereαih = p(Mh
i ) is the (Bernoulli) prior probability of

the ith point (i.e. document) having a membershipMih to
the hth row cluster andβjl = p(N j

l ) is the (Bernoulli)
prior probability of thejth feature (i.e. word) having a
membershipNjl to thelth column cluster.

4 Algorithms and Analysis

In this section, we propose and analyze algorithms for esti-
mating the overlapping co-clustering model given an obser-
vation matrixX . In particular, from a given observation ma-
trix X , we want to estimate the prior matricesα andβ, the
membership matricesM andN and finally the activity ma-
trix C so as to maximize the log-likelihood of the observation
matrixX , assumingp(X, M, C, N), the joint distribution of
(X, M, N, C).

The key idea behind the estimation is similar to most
algorithms for co-clustering. Each optimization step consists
of two similar sub-steps. In each sub-step, we assume that
clustering for one dimension ofX is fixed and we optimize
the objective function considering the other dimension. In
the first sub-step, we assume we have fixed column clusters
and we try to find optimal row clustering which optimizes
the the objective function. In the second sub-step, we assume
row clusters being fixed and we do column clustering.

Using this approach, each of these sub-steps would be
reduced to an optimization problem similar to [1] with the
difference that in each sub-step, we use information obtained
from the other sub-step to enhance the clustering result. The
outline of the entire optimization process is showed in Alg.1.
Basically we use a minimization technique that alternates
between updatingα andβ, M andN andC. Because the
two sub-steps mentioned are similar, we will focus on the
first sub-step: having fixed column clusters and trying to find
a row clustering which optimizes the objective function.

4.1 Updating α and β The prior matricesα and β are
directly calculated from the current estimate ofM andN

respectively. If we assume thatπh and µh represents the
prior probability of any row belonging to row clusterh and
the prior probability of any column belonging to column
clusterl respectively, then, for a particular rowi,

αih = π
Mh

i

h (1 − πh)1−Mh
i

and for a particular columnj,

βjl = µ
N l

j

l (1 − µl)
1−N l

j .

Algorithm 1 MOCC
while Row or Column Clusters changesdo
{Assume having fixed column clustering}
⊲ Updateα
⊲ UpdateM {N andC is assumed known and we try
to optimizeM}
⊲ UpdateC {M andN is assumed known and we try
to optimizeC}
{Assume having fixed row clustering}
⊲ Updateβ
⊲ UpdateN {M andC is assumed known and we try
to optimizeN}
⊲ UpdateC {M andN is assumed known and we try
to optimizeC}

end while

Sinceπh andµl are the probabilities of Bernoulli random
variables, we use the sample mean of the sufficient statistics
for the maximum likelihood estimate. The sufficient statis-
tics for Bernoulli is just the indicator of the event. Thus, the
maximum likelihood estimates of the priorsπh andµl are

πh = 1

n

∑

i 1{Mh
i

=1}

and

µl = 1

m

∑

j 1{N l
j
=1}

where1A is the indicator function ofA.

4.2 Updating M and N We optimize membership matrix
M in the first sub-step where we assume that we have a fixed
column clustering and therefore the matrixN is assumed
fixed. If we use an alternating minimization technique, for
a givenX ,C andN , the update forM has to minimize

∑

i,j dφ(Xij , (MCN)ij)

This objective function is similar to the objective function
minimized in [1]. This is an integer optimization problem
and there is no known polynomial time algorithm for solving
this problem. We basically use a similar algorithm proposed
in [1] with some changes in order to handle the new objective
function.

For optimizingN in the second sub-step, we follow the
same procedure. Actually if one thinks of the transpose of
matrix X , then row clusters forX are column clusters for
XT and vice versa. Therefore, the procedure for optimizing
M is directly applicable to the optimization ofN if we
considerXT as the input matrix.

Since the optimization forM is an integer optimization
problem, one simple approach is considering a real relax-
ation and allowingM to take values in[0, 1]. Although
the real relaxation approach seems simple, the optimization



problem resulting from it is not always simple for all Breg-
man divergences. In the general case, the relaxed optimiza-
tion problem may not be convex and has inequality con-
straints. In order to avoid that, we try to solve the integer
optimization problem directly and without doing real relax-
ation.

The problem here like in [1] is a more general form
of the subset sum problem: Given a set ofk real numbers
a1, . . . , ak and a target numberx, find a subset such that
the sum over the subset is the closest possible tox. In our
problem, we use Bregman divergence to measure closeness
and we have multiple target numbers to which we want the
sum to be close. Similar to the configuration in [1], the
problem can be viewed as findingM∗

i such that

M∗
i = arg min

Mi∈{0,1}k
dφ(Xi, MiCN)

= arg min
Mi∈{0,1}k

m
∑

j=1

dφ(Xij ,

k
∑

h=1

Mh
i ChN j)

Therefore, we havem target numbersXi1, . . . , Xim, and
for each target numberXij , we should choose the subset
from C1N

j , . . . , CkN j . The total loss is the sum of the
individual losses, and the problem is to find a singleMi that
minimizes the total loss. Using this observation that each
point is more likely to be put in low number of clusters,
we modify the algorithm proposed in [1] which we call
UpdateM (Algorithm 2). There is no theoretical claim that
this algorithm is optimal but empirical evidence presented
in [1] and also in section 5.2 suggest that it is an efficient
algorithm.

The algorithm UpdateM first turns “on” one cluster and
then in a greedy manner, searches for the next best cluster to
be turned “on” so as to minimize the loss function. If such
a cluster is found, then it would be the second cluster turned
“on”. Then, it continues this process with the currently
turned “on” clusters. In general, ifh clusters are turned
“on”, UpdateM considers turning each one of the remaining
(k − h) clusters ”on”, one at a time. If, at any step, turning
”on” each one of the remaining(k−h) clusters increases the
loss function, the search process is terminated. Otherwise, it
picks the best(h + 1)th cluster to turn “on”, and repeats the
search for the next best on the remaining(k−h−1) clusters.

Ideally, this procedure should use all possible permuta-
tions as an order for turning “on” clusters to figure out the
lowest loss achieved along that particular permutation, and
finally choose the best membership vector among all per-
mutations. Obviously, this approach would be infeasible in
practice. Instead, UpdateM starts withk so-called threads,
one thread for each one of thek clusters turned “on”. Then,
in each thread, it performs the above search procedure for
adding the next “on” cluster, till no such clusters are found,
or all of them have been turned “on”.

Effectively, UpdateM searches overk permutations,
each starting with a different cluster turned “on”. The other
entries of the permutation are obtained greedily based on the
described search procedure. The algorithm has a worst case
running time ofO(k3) and is capable of running with any
distance function.

Algorithm 2 UpdateM Algorithm

⊲ Initialize assignment vector[m]1×k to all zeros
⊲ {Separate search thread for each initial cluster turned
”on”}
for h = 1 to k do

⊲ Turn ”on” only the hth cluster, i.e., setm(h) =
1, m(i) = 0, if i = h

⊲ Set thehth threadth to be ‘active’
⊲ Compute objective functionℓh = d(x, mCNT )
⊲ {Run over all possible sizes (> 1) of clusters turned
”on”}
for r = 2 to k do

if threadth is still ‘active’ then
⊲ Setℓold

h = ℓh

⊲ From the rest(k − r + 1) clusters, find best
cluster to turn ”on”
if best cluster to turn ”on” isp then

⊲ Turn ”on” thepth cluster, i.e.,m(p) = 1
⊲ Compute objective function ℓh =
d(x, mCNT )

end if
if ℓold

h ≤ ℓh then
⊲ ℓh = ℓold

h

⊲ Set thehth threadth to be ‘inactive’
end if

end if
end for

end for
⊲ Setm = m0, ℓ = d(x, m0CNT )
⊲ Find the bestm over all threads usingℓh, h = 1, . . . , k

⊲ If bestm over threads is worse thanm0, setm = m0

4.3 Updating C The next step is updating the activity
matrix C where we don’t have the integer restrictions that
we had forM and N . The only constraint that such an
update needs to satisfy is thatMCN stays in the domain
of φ. For the squared loss case, since the domain ofφ is R,
the problem of

minC ‖X − MCN‖2

is just the standard least squares problem that can be solved
exactly by

C = M †X(NT )†,

where M † is the pseudo-inverse ofM , and is equal to
(MT M)−1MT in caseMT M is invertible.



In case of I-divergence or un-normalized relative en-
tropy, the problemminC dI(X, MCN) is similar to the
problem studied in [1].

5 Experiments

In this section, we describe the details of our experiments
that demonstrate the improved performance of MOCC on
two real-world data sets, compared to the MOC model, K-
Means and information-theoretic co-clustering (ITCC) algo-
rithm.

5.1 Methodology We use two datasets in our experiments:
movie recommendation data, and text documents. We use
subsets of original datasets with the characteristic that the
points in the subset have natural overlapping grouping as
explained later on. Using the full data sets is computationally
expensive. Therefore, we use these subsets of data in
order to make the datasets computationally reasonable to
run experiments. But it should be noted that using smaller
datasets doesn’t make the task much easier, since clustering
a small number of points in a high-dimensional space is
still a difficult task. Using these subsets of original datasets
similar to the ones used in the MOC paper also allows for a
consistent comparison with the MOC method.

100k Movielens dataset - movie recommendations This
is a publicly available dataset from the movie rec-
ommendation system developed at the University of
Minnesota1. The dataset contains100, 000 ratings
for 1682 movies by943 users. It has user ratings for
every movie in the collection: users give ratings on a
scale of1 − 5, with 1 indicating extreme dislike and
5 indicating strong approval. There are943 users in
this dataset, but the mean and median number of users
voting on any movie are59 and27 respectively. Each
user has rated at least 20 movies.

As a result, if each movie in this dataset is represented
as a vector of ratings over all the users, the vector
is high-dimensional but typically very sparse. Each
movie has information about the different genres that
this movie belongs to. If each genre is considered as a
separate category or cluster, then this dataset also has
naturally overlapping clusters. Many movies belong
to multiple genres, e.g., Aliens belongs to3 genre
categories: action, horror and science fiction. Like
in [1], we created 2 subsets from the Movielens dataset:

• Mv1: 679 movies from the 3 genres. Animation,
Children’s and Comedy;

• Mv2: 232 movies from the 3 genres. thriller,
action and adventure.

1http://www.grouplens.org

We clustered the movies based on the user recommen-
dations to rediscover genres, based on the belief that
similarity in recommendation profiles of movies gives
an indication about whether they are in related genres.

Text Data Reuters21578 is currently a very widely used
test collection for text categorization research. The
data was originally collected and labelled by Carnegie
Group, Inc. and Reuters, Ltd2. We created a subset
from this dataset in the following way: In order to
have overlapping classes in the dataset, we removed
all those topics which had less than 100 documents
and therefore we also removed all those documents
that ended up without a topic. We then had 3149
documents belonging to at least one of the six remaining
topics. We used document frequency as a feature
selection criterion for decreasing the dimensionality of
data to1000. We removed words which had very high
document frequencies until we got dimensionality of
1000. We call this subsetRD.

We used an experimental methodology similar to the one
used to demonstrate the effectiveness of the MOC model.
For each dataset, we initialized the MOC clustering algo-
rithm by running k-means clustering, where the Euclidian
distance was used as the similarity measure and the number
of clusters was set to the number of underlying categories in
the dataset. The clustering result of MOC, was then used to
initialize the MOCC clustering algorithm. For all methods,
the number of row clusters was chosen between2 and10.
The number of column clusters for MOCC and ITCC were
chosen between2 and10 in order to investigate its effect on
the co-clustering result.

In order to compare clustering results, we use precision,
recall, and F-measure calculated over pairs of points, as
defined in [1]. For each pair of points that share at least one
cluster in the overlapping clustering results, these measures
try to estimate whether the prediction of this pair as being in
the same cluster was correct with respect to the underlying
true categories in the data. Precision is calculated as the
fraction of pairs correctly put in the same cluster, recall is the
fraction of actual pairs that were identified, and F-measureis
the harmonic mean of precision and recall.

Precision= Number of Correctly Identified Pairs
Number of Identified Pairs

Recall= Number of Correctly Identified Pairs
Number of True Pairs

F-measure= 2×Precision×Recall
Precision+Recall

2http://www.daviddlewis.com/resources/testcollections/reuters21578/



Datasets MOCC MOC K-Means ITCC

Mv1-E1 0.63±0.01 0.60±0.04 0.54±0.01 0.29±0.01
Mv1-E2 0.63±0.01 0.51±0.03 0.48±0.02 0.22±0.01
Mv2-E1 0.53±0.01 0.49±0.04 0.43±0.01 0.32±0.02
Mv2-E2 0.52±0.02 0.43±0.06 0.36±0.02 0.25±0.02

RD-E3 0.32±0.01 0.29±0.02 0.31±0.01 0.20±0.01
RD-E4 0.31±0.01 0.27±0.02 0.26±0.01 0.13±0.00

Table 2: Comparison of results of MOCC, MOC and K-
Means algorithm on all datasets in terms of F-Measure.Mv1
andMv2 are two datasets described in section 5.1, E1, E2,
E3 and E4 represents different experiments corresponding to
computed number of row and column clusters equal to(6, 6),
(10, 10), (6, 10) and(6, 12).

5.2 Results Table 1 presents the results of MOCC versus
MOC, K-Means and ITCC algorithms in terms of precision
and recall for the datasets described in section 5.1 for se-
lected experiments. Each reported result is an average over
ten trials.

Table 2 presents the same results in terms of F-Measure.
Table 1 shows that for all domains, even though there is
no considerable difference between these methods in terms
of precision in most cases, the MOCC model has the best
recall by a large margin compared to the other three methods:
therefore MOCC consistently outperforms the other two
methods in terms of overall F-measure as shown in table 2.

The performance of the four examined methods in terms
of recall, precision and F-Measure as the number of movie
clusters increases forMv1dataset is shown in Fig. 1. With in-
creasing the number of movie clusters, the precision perfor-
mance of all four methods increases slowly but the recall per-
formance decreases more significantly. The MOCC method
consistently performs better than the three other methods in
terms of recall and F-Measure. It is worth noting that for
any method and for few clusters, having a good recall is not
surprising. Any algorithm looking for a few clusters could
have relatively good recall performance. The effectiveness
of an algorithm shows itself when the number of clusters is
high and the algorithm still has a good recall without sig-
nificant drop in precision. Results show that for the MOCC
algorithm, increasing the number of movie clusters has less
impact on recall compared to the other three methods. As the
number of movie clusters increases, the gap in performance
between MOCC and the other methods in terms of recall and
F-Measure grows.

The performance of MOCC improves as the number
of user clusters increases, as seen in the curves for two
different choices of number of user clusters,2 and 10, as
well as intermediate values not shown. As the number of
user clusters increases, the performance of MOCC increases.
Furthermore, we see that the performance of MOCC for all
choices of number of user clusters is better than the other
three methods.

Amongst the four methods, ITCC has slightly better
precision in most cases but due to its poor recall, its overall
performance in terms of F-Measure is significantly worse
than the other methods.

Results forRDdataset were similar to movie dataset re-
sults. Results show that for the MOCC algorithm, increasing
the number of document clusters has less impact on recall
compared to the other three methods and the gap in perfor-
mance between MOCC and the other methods in terms of
recall and F-Measure grows. Results also show that the per-
formance of MOCC improves as the number of word clusters
increases.

6 Conclusions

This paper has introduced a generative model for overlap-
ping co-clustering, MOCC, based on generalizing the MOC
model presented in [1]. It uses a generic alternating mini-
mization algorithm for fitting this model to empirical data.
We have presented promising experimental results on real
news abstracts and movie data. In particular, we have shown
evidence that MOCC produces more accurate overlapping
clusters than the MOC model, which are significantly better
than non-overlapping clusters based on K-Means and ITCC
algorithms.
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