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Abstract Published scientific articles are linked together into a graph, the citation
graph, through their citations. This paper explores the notion of similarity based
on connectivity alone, and proposes several algorithms to quantify it. Our met-
rics take advantage of the local neighborhoods of the nodes in the citation graph.
Two variants of link-based similarity estimation between two nodes are described,
one based on the separate local neighborhoods of the nodes, and another based
on the joint local neighborhood expanded from both nodes at the same time. The
algorithms are implemented and evaluated on a subgraph of the citation graph of
computer science in a retrieval context. The results are compared with text-based
similarity, and demonstrate the complementarity of link-based and text-based re-
trieval.

Keywords Networked information spaces - Document similarity metric -
Citation graph - Digital libraries
1 Introduction

The concept of information space has been proposed for collections of informa-
tion that are organized so that the user can be aware of their structure and content,
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and use such awareness to navigate through them [6, 8, 11, 26]. Some information
spaces are designed [1, 8], however, others are self-organizing and self-evolving
by large numbers of people over a period of time. Several important information
spaces, such as the World Wide Web, are networks consisting of information en-
tities and links between them that imply a relation between the entities. We call
the latter “Networked Information Spaces,” to emphasize their connectivity aspect
and the growing realization in the research community that connectivity is as im-
portant as content in organizing and retrieving information from such information
spaces.

In order to navigate and mine the contents of a networked information space, it
is of crucial importance to be able to judge similarity between information entities.
Traditionally, similarity between information entities is computed based on their
content. However, in a networked information space, a lot of information about
similarity is encoded in the link structure of the graph. This link-based similar-
ity can complement the classic content-based similarity measures [4] to produce
a highly accurate similarity metric. Similarity is a key concept, not only in clas-
sical information retrieval (for which direct methods based on indexing are more
efficient) but also for higher level tasks that involve the organization of large hy-
perlinked document corpora. Such tasks include clustering [16], automatic term
extraction from clusters to build thesauri, and visualization of document corpora
[6].

The body of scientific literature, where information entities are articles and
links represent references to other articles, has existed as a networked informa-
tion space in paper form for a long time, and is rapidly becoming available in
electronic form through digital libraries and the World Wide Web [19]. In this pa-
per, we explore various similarity metrics for the graph of the scientific literature,
the citation graph, purely based on link structure. Our goal here is to investigate
how much similarity information can be extracted just from the link structure. Our
methods are easy to compute. Moreover, they are based only on a local neighbor-
hood of the information entities in the networked information space. Therefore,
they are applicable even when the networked information space is too large to
fit on a desktop machine, provided a mechanism is available for local navigation
from one information entity to its neighbors. For access to the computer science
literature we use the electronic database Citeseer (ResearchIndex) [19].

Use of citation information to compute relatedness between scientific papers
has been studied previously in contexts more limited than ours [14]. Since citations
of other papers are hand-picked by the authors as being related to their research,
the reference list of a paper contains information which can be exploited to judge
relatedness. The simplest relation, a direct reference or citation, is likely to occur
among related papers which are published apart in time. It does not occur very
frequently among papers published in the same year or very close in time. Two
different citation relations between papers have been specifically identified and
used to calculate similarity, namely co-citation (two papers referenced by the same
paper) and bibliographic coupling (two papers citing the same paper) [24]. Two
papers are related by co-citation if they are cited together by the same paper. Small
has studied the co-citation pattern among research papers and highlights its impor-
tance in similarity computation [24]. Co-citation links are often present in two re-
lated older papers. Two papers are bibliographically coupled, if they reference the
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same paper. If two recent papers are published in the same or similar research area,
a bibliographic coupling pattern is very likely to be found in their reference lists.

Bibliographic coupling and co-citation have been employed to compute sim-
ilarity between research papers. But each of them is only suitable for computing
similarity in specific cases. For instance, researchers have used co-citation fre-
quency to compute relatedness between two papers, but the papers to be judged
have to be well cited by other authors for the algorithm to work properly. Appar-
ently co-citation is not efficient in judging similarity among recent papers which
have not yet had the chance to be cited by many other authors. In terms of the
direct link pattern, if the two papers are published almost at the same time, a di-
rect citation link is not likely to be found between them, even if their content is
related. Similarly, papers which appeared in the early stages of the development of
a research specialty are not good candidates for bibliographic coupling analysis.
In our metrics, we do not need to know which of these citation patterns our papers
fall under. All patterns of citation relations are accounted for by using the citation
graph.

Giles et al. [19] proposed a similarity measure based on common citations
to judge the relatedness between papers. The metric, called “common citation X
inverse document frequency”’(CCIDF), is conceptually similar to the text-based
similarity metric “term frequency x inverse document frequency”’(TFIDF). The
CCIDF metric assigns a weight to each paper, which is equal to the inverse of
citation frequency in the entire database. To find documents related to a given
paper, all the papers which have at least one reference in common with that specific
paper are generated. The CCIDF metric is used by the automatic citation indexing
system of Citeseer.

Our motivation for using the citation graph instead of comparing reference
lists as in CCIDF is that the citation graph contains information which is much
richer than that embedded in the reference lists, and which cannot be obtained
just by comparing reference lists from different papers. Two papers may have
no co-citation or bibliographic coupling relationship at all, but they could still
have a strong relationship between them if their local citation graphs intersect
substantially. For example, in Fig. 1 paper A references paper C, paper B ref-
erences paper D, but A and B do not reference each other. Obviously, paper A
and paper B are not related to each other in terms of CCIDF, co-citation or bib-
liographic coupling (i.e., through their direct references). But, if we expand the
citation graph a little further, we may find out that papers C and D are strongly
connected by bibliographic coupling links, and we could infer the relationship
between papers A and B from papers C and D. Our method generalizes this
notion by using both citations and references in the neighborhood of the two
papers.

Dean and Henzinger [9] present algorithms for finding pages in the World
Wide Web that are related to a given page. Their “companion algorithm” is sim-
ilar to our algorithms in that it builds a neighborhood graph of the given page, it
calculates hub and authority values of the nodes in this graph and returns the top
ranked authority papers as the most similar papers to the given page. However,
their algorithm does not, and cannot be trivially adapted to compute a similar-
ity measure between two given nodes. The evaluation metric used is a precision
metric (based on user studies) similar in nature to ours.
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Fig. 1 Relation between papers inferred from citation graph

In our work, we propose two different graph-based metrics: the maximum-
flow metric and the authority vector metric. In the maximum-flow metric, one joint
local citation graph is generated from a pair of papers to be compared by following
incoming and outgoing links from both papers. One paper is treated as a source
node and the other as a sink node. Flow capacities are assigned to the edges. Then,
the value of the maximum flow which could be pushed through from source node
to sink node is computed, and used to represent the similarity between the two
papers. In the authority-based metric, a local citation graph is grown separately for
each paper to be compared, by following incoming and outgoing links separately
for each paper. Then, authority weights [17] are computed for all nodes in each
of the local citation graphs. Each paper is then represented by a vector, whose
elements are the authority weights of the nodes in its local citation graph. Finally,
similarity is computed as the vector distance between these vectors.

The motivation for using a citation graph for the evaluation of our graph-
based similarity measures is twofold. Firstly, recent literature in bibliometrics
[14, 15, 24, 25] suggests considerable interest in the comparison and classifica-
tion of documents based on their citation environment. Secondly, the networked
information space formed by scientific papers and their references can be expected
to have a certain homogeneity. Therefore, such a space is more suited for the ini-
tial testing of new ideas than a less homogeneous space such as the World Wide

Web. To emphasize the linked structure of our information space, we chose an on-
line citation index for our studies, namely Citeseer, an online database of scientific
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papers in Computer Science. Our access to this database was only via the Internet.
We built a web robot to automate this access. Application of our measures on the
World Wide Web, which is a lot less homogeneous than the citation graph, is a fu-
ture research project. The similarities and differences between the citation graph
and the Web are explored in [3].

The advantages of using the particular citation graph are:

The papers included are fairly homogeneous in length and structure, and the
references and citations have a close relation to the semantic content of the
papers.

The papers are in an area familiar to the authors, so the possibility exists to
compare experimental results with our own judgement.

— Access was fairly straightforward, and full papers could be retrieved easily.

The disadvantages are:

Our data consists of a body of scientific literature, so similarity of papers can
only be judged by experts, and involves considerable time and effort.

Citeseer contains a certain amount of “clutter” such as duplicate papers.

— Citeseer itself, as well as any subset that we used for our experiments,
is not complete. In other words, the full text of the references of a pa-
per in the database is not necessarily available in the database. This may
well be a feature of any citation index, though. A cursory comparison with
the science citation index, for example, showed that this well-established
database showed about the same degree of “incompleteness” as our own
collection.

In Sects. 2 and 3 we describe our metrics and the methods to compute them. In
Sect. 4 we evaluate the metrics and the impact of their key parameter settings. We
also describe how the local citation graphs, which are required for the similarity
metrics, are being built. In Sect. 5 we compare the performance of the link-based
metrics with text-based similarity metrics. Finally we discuss the results and pro-
pose future research directions.

2 Authority vector metrics

In this section, we describe the similarity metrics based on a vector representation
of the neighborhoods of the two papers being compared. Given two research pa-
pers A and B, we construct two separate local citation graphs, graph A and graph
B, for each of them. The idea is to compute the similarity of the given papers
by comparing the similarity of their citation environments. It is not a trivial prob-
lem to compare graphs. Rather than comparing local citation graphs directly, we
wish to use the most important or “authoritative” papers to represent a specific
citation environment. The similarity between citation environments will then be
based largely on these authority papers.

2.1 Authority papers

In order to implement this approach, we need to address first how to identify the
authority papers in a given link environment. In other words, we need to find a
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criterion to judge the importance of a given paper. In bibliometrics, citation anal-
ysis was used to measure the importance of scientific papers by Garfield [14].
Garfield also proposed a well-known metric to estimate the importance of jour-
nals by Impact Factor [15]. This metric, in graph-theoretic terms, amounts to a
pure counting of the in-degree of nodes in the citation graph to compute how
important a journal is. In ranking search results on the World Wide Web, peo-
ple face the problem of how to determine the importance of a web page. Brin
and Page proposed the PageRank algorithm [5]. Kleinberg [17] proposed a mea-
sure of the importance of web page by computing hub and authority weights.
Kleinberg’s hub and authority measure has been shown to be more stable [23].
Hubs and authorities as defined by Kleinberg’s method can be seen as follows:
a hub is a paper that points to many authorities; an authority is a page that is
pointed to by many hubs. Hub and authority weights are computed by an iterative
algorithm.

Intuitively, papers with high authority weight form the core of the most im-
portant papers in a specific research arca. Hub papers might be review papers
or tutorials; their content is broad and therefore papers that cite or are cited by
hub papers are generally more loosely related than those that cite or are cited by
authority papers. This intuitive notion has been confirmed by the hub/authority
calculations done on the Web [17, 18]; web pages with high authority weight tend
to be pivotal and important web pages on a certain subject, while web pages with
high hub weight often are resource pages with many relevant links. One excep-
tion worth mentioning could be the “classic” review papers, that are heavily cited,
therefore making them both hubs and authorities. It is possible to detect such pa-
pers and exclude them from the similarity metric, although we have not done so
in our experiments. In order to get high similarity between two papers, their local
citation graphs must have a large intersection and there must be many authority
papers in the intersection area.

Finally, we note that our metric is different from CCIDF, the citation-based
metric used by Citeseer to locate related papers. First of all, CCIDF uses in-degree
as a measure of importance. Our metric uses authority weight, which is a more
subtle measure of importance than in-degree. In many cases, authority weights
are very close to the in-degree. In some cases, however, authority weights can be
better than in-degree, for example when an authority paper is relatively recent, and
it does not have a high in-degree, but it is cited by hub papers, or when a paper
is near the fringe of the citation graph. This metric also is expected to reduce
the negative effect of survey papers. These kinds of papers will be more likely to
have long list of references, hence they are linked to many papers and can thus
be wrongly treated as related to many other papers. In our authority vector metric,
normalizing the vector before computing similarity will greatly lessen the negative
influence of those papers. The local citation graph of survey papers will be larger
than that of other research papers, and thus the vector of authority weights will
have lots of components. If a vector has lots of components and is normalized,
then in general individual entries will have lesser values, since their squares need
to add up to 1. This will make the inner product smaller and hence lead to lower
similarity with other papers. Also CCIDF is based on the citation frequency over
the entire citation graph, while to compute our metric only a local citation graph
is needed.
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Fig. 2 The distribution histogram of authority weights. The top graph uses a linear scale and
the bottom graph uses a logarithmic scale for the frequencies of authority weights

2.2 Algorithm

Given two papers, taking each of the papers as a seed, we build two separate local
citation graphs, each consisting of k levels. Then we compute hub and authority
weight for nodes for each of the graphs. We associate with each of the two papers
a vector indexed by the nodes in the union of the two graphs. The component
corresponding to a node has value O if the node is not in that graph. Otherwise,
the value of the component is the authority weight of that node. Both vectors
are normalized to length 1. Finally we obtain the similarity of the two papers by
computing the cosine distance (i.e., the dot product, since vectors are normalized)
of the two corresponding vectors.

For the computation of authority weights we use the iterative algorithm of [17].
Approximately 40 iterations were sufficient for convergence. The distribution of
authority weights is shown in Fig. 2. We observe that a few nodes have authority
weight that is much higher than average. These are the nodes we use for the vector
representation of the local citation graph.

The outline of the algorithm is shown in Fig. 3.

3 Minimum cut/maximum flow metric

The key idea of this algorithm is to count the number of different paths in the cita-
tion graph between nodes representing two papers. The number of paths between
two nodes is related to the minimum cut, the minimum number of edges needed
to be cut to disconnect one node from the other. Therefore, our metric is based on
a maximum flow/minimum cut computation in a local citation graph built from
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ComputeVectorDistance(PaperID1, PaperID2)
Grow the citation graph gl and g2 for paper 1 and paper 2.
Set authority weights for g1 and g2
Build vectorl for paper 1
Set the elements of vectorl to the union of vertices of g1 and g2
Initialize the value of each element in vectorl as 0
For all the vertices v in g1
Set value of element[v] in vectorl = AuthorityWeight[v] in g1
End For
Build vector2 for paper 2
Set the elements of vector2 to the union of vertices of g1 and g2
Initialize the value of each element in vectorl as 0
For all the vertices v in g2
Set value of element[v] in vector2 = AuthorityW eight[v] in g2
End For
Normalize vectorl and vector2
Return (inner product of vectorl and vector2)

Fig. 3 Outline of the Vector-based metric computation

Minimum Cut separating A , B

Paper B

/ Local citation graph expanded from A and B

Global citation graph

Fig. 4 Using minimum cut to compute similarity between papers

the two papers simultaneously, as shown in Fig. 4. The capacities of the edges
are chosen judiciously, to represent the fact that longer paths are less indicative of
similarity than shorter ones.

Finding all the possible paths between two nodes is not a simple task. We
introduce a flow idea to compute similarity. All the paths between the two papers
together constitute a flow. If we view the network as having one source and one
sink, the amount of flow between source and sink is restricted by the number and
capacity of the links. The maximum flow from source to sink can be efficiently
computed and is equal to the minimum capacity of a cut of the graph between
source and sink, where a cut is a set of links and nodes that disconnect the graph
[10]. Intuitively the more links and the higher the capacity of links between source
and sink, the more flow can be sent through, and the more links will need to be cut
to disconnect the source from the sink.

We use the concept of maximum flow/minimum cut to judge the relation be-
tween two papers, as shown in Fig. 4. The more flow that can be pushed from
source to sink, the higher the similarity between source and sink will be. We want
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to deemphasize the effect of longer paths, which is done by adjusting the edge ca-
pacities. The capacity of an edge is the maximum flow that can be pushed through
the edge. An edge which is far away from the source or sink paper gets a lower
capacity weight. Therefore, edges that are in the middle of long paths will have
small capacity, and therefore longer paths contribute less to the overall flow from
source to sink. The detailed definition of capacity is given in Sect. 3.1.

In this metric, we do not care about the direction of each edge, since we try
to find out how strongly the two papers are connected together in an undirected
graph grown from the papers to be compared. This is done so that paths of all
types are taken into consideration.

3.1 Capacity assignment

The minimum flow similarity metric uses a parameter d, which is used to adjust
the capacities of the edges. Parameter d represents the relative importance of paths
of various lengths. Large values of d will tend to emphasize the importance of
short paths, while smaller values of d will tend to equalize the importance of
shorter and longer paths.

Parameter d should be chosen so that d paths of length £ are equivalent to
one path of length £ — 1. Specifically, parameter d represents the number of paths
of length two that are considered equivalent to a direct edge between two nodes.
In other words, the similarity metric should give the same value for two adjacent
nodes as for two non-adjacent nodes having d common neighbors. Note that in
the first case, the nodes can be separated by cutting one edge, while in the second
case, d edges must be cut. This suggests that the capacity of the edge in the first
scenario should be d times as high as the capacity of the edges in the second
scenario. In view of the above, a reasonable choice for d should depend on the
maximum or average degree in the graph, or the maximum or average number of
common neighbors of any pair of nodes.

The argument suggests that we should assign to each edge e a capacity of the
form c(e) ~ (1/d ), where k should be related to the distance of the endpoints of
e to {u, v}. Let the capacity of an edge for parameter d, ¢y : E(Gk[u, v]) - R,
be defined as follows. For each edge ¢ = ww/,

1 2dist(w,{u,v})
(E) ifdist(w, {u,v}) =dist(w', {u, v})
cale) = 1\ 2dist((w,w') fu,o)+1 (1
(5) otherwise

where dist(w, {u, v}) is the shortest distance from w to u or v, and
dist({w, w'}, {u, v}) is the shortest distance from w or w’ to u or v.

After experimentation, we noticed that a direct link between the papers under
consideration skewed the computation result. Hence we decided to set the capacity
of an edge which is a direct link between source and sink papers as equal to that of
a node at distance one. In other words, we treat a direct link as equally important
as a path of length two which could be co-citation or reference coupling, by giving
it a capacity 1/d, and not 1, as indicated by the formula. We tested several options
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Fig. 5 Example of edge weights in flow-based metric

for the assignment of capacities in our experiments. The capacities assigned in
our research are based on the length of the path or the distance between edge and
source/sink papers. We mention here another option of setting edge capacities,
which is based on how much you trust the edge in similarity computation. An
example of edge weights is shown in Fig. 5.

For d = 1, paths of all lengths are given equal importance, and, by a well-
known result from graph theory (see e.g. [10]), the minimum flow value equals the
number of disjoint paths (of any length) between source and sink. Intuitively, the
equal treatment of paths of all length does not lead to a good measure of similarity.
Our results in Sect. 4.2 confirm this. Analysis of several large subgraphs of the
citation graph of Computer Science literature (see [2]) shows that this graph is
well-connected, and the minimum cut between two nodes will almost always fall
in the neighborhood of one of the two nodes. This was also confirmed by our
results for the case where d = 1. As shown in [20], the maximum flow in this case
depends almost completely on the degree of the source or sink.

In our experiment we tested the maximum flow metric for values of d set to 50,
25,12, 6, 3,2, and 1 (Fig. 6). We found that the precision drops with decreasing
values of d. Further, the results for d = 25 and d = 50 were almost identical.
Therefore to get optimal precision d should be set to 25 or greater.

The results also indicate that the parameter d can be used to control the scope
of the result set. We can let the end user choose different values of d to change
the scope of the papers. For example, the user can start with a higher value of

Precision diagram for maximum flow metric with
different d values
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No. of top similar papers

Fig. 6 Test results for the flow-based algorithm values of d equal to 25, 12, 6, 3, and 2
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ComputeMaximumFlow (PaperID1, PaperID2, d)
Grow the citation graph g for paper 1 and paper 2.
Convert g into bi-directed graph
For each node n in graph g
Set Distance FromSource[n] = level no of n
End For
For all edges e in graph g
Calculate edge capacity from d and DistanceF'romSource]]
End For
Normalize the capacity weights for each edge
Initialize flow value of each edge to zero
Calculate the maximum flow value from paperl to paper2
Return (mazimum flow value)

Fig. 7 Outline of the Flow-based metric computation

d to locate related papers in the immediate vicinity of the query paper, and then
gradually reduce the value of d to locate related papers that are farther away, with
the cost of getting more unrelated papers as well (since precision drops).

3.2 The algorithm

Given two papers, we consider both of them as seeds, and build a common local
citation graph of k levels. We then make the graph undirected, by assuming that
flow can go in either direction through an edge. We assign capacities to all edges
of the local citation graph according to the formula given in Sect. 3.1. Then, using
a standard maximum flow/minimum cut algorithm, we compute the maximum
amount of flow that can go between the two papers. This value represents the
measure of similarity between both papers. The outline of the algorithm is shown
in Fig. 7.

4 Evaluation of the link-based similarity measures

Our metrics were tested on a total of 10 query papers from the field of neural net-
works. The choice of the neural network domain was motivated by the availability
of “experts” to judge the results. For each of these papers, we found a result set
of papers in the citation graph of neural network papers (constructed by crawling
Citeseer), that are most related to it according to each of our similarity metrics,
ranked by degree of similarity. The size of the citation graph was 109,519 nodes,
out of which 23,371 nodes were fully parsed (i.e., their full text, and hence their
references, was available in Citeseer). The degree of relatedness of each paper in
the result set was judged by two of the authors, E.M. and N.J., who represented
the domain experts. The experimental setup was blind, in that the experts received
the query paper and a list of papers for evaluation returned by all metrics in ran-
dom order and without repetitions. In general, our methods compared favorably
to CCIDF, the graph-based method used by Citeseer. In this section, we describe
the details of our experiments, and discuss the effect of the setting of parameters
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and other implementation decisions on the results. In the next section, we will also
compare our link-based similarity measures to more classical text-based ones.

All test results are shown as precision diagrams, that are obtained from the re-
sponse of our domain experts. The domain experts rated each of the top 10 papers
in each result set as “related,” “somewhat related” or “not related,” expressed by
numerical values 1, 0.5, and 0O, respectively. In the precision diagrams, the total
score of the first k papers in a result set is plotted as a function of k. In total, over
500 papers were rated by the domain experts. The precision diagrams represent
the average results over all papers considered.

We chose CCIDF as our comparative metric because it is a metric also solely
based on citation information, and because it is a metric used by the Citeseer
database. It should be pointed out that the retrieval task was chosen to demonstrate
the validity of the proposed algorithms, and not to compete with more efficient
information retrieval algorithms in terms of computational performance. Building
an efficient information retrieval system that incorporates our algorithms is a topic
for future research.

4.1 Building the local citation graph

We now describe in detail how the local citation graphs are obtained. The local
citation graph will be built from one or two papers, and it will be given as input to
our similarity metric computation. We use the term “layer” to represent different
sets of nodes. Nodes in layer 0 only contain the starting points corresponding to
the seed papers. Nodes in layer 1 are nodes citing or cited by layer 0 nodes. Nodes
in layer 2 are nodes citing or cited by nodes in layer 1, but not by nodes in layer 0.
In terms of edges, we say that edge e is in layer n if one endpoint of e is in layer n
and the other endpoint is in layer n — 1. If both endpoints of an edge are in layer
n, we say that the edge is in layer n.5. For instance, if an edge has its endpoints
in layer 1 and layer 2, we call it a layer 2 edge; if both endpoints of an edge are
in layer 2, we call it a layer 2.5 edge. In terms of the local citation graph, we use
the maximum layer number to name the layer of a graph. For example, a 2.5 layer
graph will include nodes in layer 0, 1, and 2, and edges in layer 0.5, 1, 1.5, 2, and
2.5. The process of building our local citation graph is shown in Fig. 8.

4.2 Experimental results

In the computation of the maximum flow metric, we used local citation graphs
of 2.5 and 1.5 levels. For the computation of the authority metric, we used local
graphs of 1.5 level. For CCIDF we used our global citation graph (a subgraph of
the Citeseer citation graph) to compute the citation frequency of each paper. The
results, based on the average precision results taken over all 10 test papers, are
presented as precision diagrams in Fig. 9.

From the precision diagrams, we can see the potential of our methods to give
highly accurate results. The high precision is quite remarkable, given the fact that
only information about the citation graph, not about the content of the papers, is
used in our methods. Moreover, the small vector and flow metrics perform sub-
stantially better than CCIDF, while the big vector metric performs similarly to
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GraphBuilding(Paperl, Paper2, MaxExpandLayer)
Put Paperl and Paper2 into ProcessQueue.
Initialize empty graph G
Set W = end element of the ProcessQueue
Set ExpandLayer = 0
While(ProcessQueue is not Empty)
Set P = pop one paper out of ProcessQueue
Create a new node for P in G // P cannot be in G
For each paper @ citing P or cited by P
if @ already in G then add edge between P and @
else if @ is not in ProcessQueue and ExzpandLayer < MaxExpandLayer
put @ in ProcessQueue // hence papers in ProcessQueue are not in G
End for
If P =W then
EzxpandLayer = ExpandLayer + 1
Set W = end of ProcessQueue
End If
End While
Return (G)

Fig. 8 Growing the local citation graph for one or two seed papers

Comparing different graph-based similarity

metrics
e 1.2
§ o 1 —&— Small Vector
8308 _— = = S
5806 —=— Maximum Flow
o3 (d=25)
g = 0.4
£ CCIDF
§ = 0.2
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No. of top similar papers

Fig. 9 Test results of different metrics

CCIDF. We demonstrate these statements by a two-factor analysis of variance
(ANOVA) with replications on the family of the four metrics together, and then
on all pairs of metrics. We show the F-statistic and P-value for each pairwise test
in Table 1. The result of the overall ANOVA is that there is statistically significant
difference among the four metrics, F3 360 = 24.5, P-value < 0.0001.

In the remainder of this section, we discuss various observations on the exper-
imental results that may be of interest.

Table 1 Pairwise ANOVA results for the four metrics

Small vector CCIDF Flow (d = 25)
Big vector F =36.6, P <0.000l F =1.07,P =0.30 F =28.5, P < 0.0001
Small vector F =518 P <0.0001 F=1.29,P=0.26
CCIDF F =36.7, P < 0.0001

F = Fy 180 and P = P-value.
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4.2.1 The effect of a hub paper

When analyzing our results, we found one paper containing more than 1000 refer-
ences, which was not judged to be similar to the given query paper by our metrics
but which was nonetheless given a high similarity rank by CCIDF. This points to a
reason why CCIDF may not give satisfactory results. CCIDF is based only on the
common references between two papers. If a paper has a long list of references, it
is very likely to have more papers in common with a given test paper, and hence
it will receive high CCIDF value. As noted earlier, however, hub papers that are
highly cited can still cause problems to our metrics, too.

4.2.2 Overlap in the result sets from the different metrics

In addition to comparing precision curves, it is interesting to examine the amount
of overlap in the result sets obtained from the various metrics. For three different
query papers, we found that there was an overlap between 10 and 40% in the
result sets of the flow-based and vector-based metrics. Furthermore, the result sets
using CCIDF have similarly small overlap with the flow-based and vector-based
metric result sets. This implies that the result sets from the two metrics differ
substantially, and points in the direction of possibly integrating the results from
multiple metrics.

4.2.3 The effect of graph quality

A factor that was found to influence our results is the quality of the local citation
graph. Some nodes in our local citation graphs correspond to papers for which
the full paper, and hence also its reference list, is not available in the database.
Such nodes are said to be not fully parsed. The quality of a local citation graph,
in terms of its proportion of fully parsed nodes, will affect the precision of our
results. To investigate the effect, we used the flow-based metric with d = 25 on
papers with local citation graphs of different quality. We found that the percentage
of fully parsed nodes in the first layer has the most influence on precision. Based
on our test, it appears that at least 30% of the nodes in the first layer should be
fully parsed in order to obtain dependable results [20].

4.2 4 The effect of directly linked papers

In the result set, if one paper is citing or is cited by a query paper, we say it is a
directly linked paper to the query paper. In this section, we compare the percentage
of directly linked papers in the result sets returned by the different metrics.

The importance of direct link has been noticed and studied in previous research
in library science literature. Henry Small found that a very effective predictor
of strong co-citation linkages between papers is provided by the direct citation
patterns [24]. In our research we also analyze the influence of direct link on our
similarity metric. It is easy to see how the existence of a direct link will affect both
the values of the maximum flow metric and the authority metric. For the maximum
flow metric, if there is a direct link between source and sink paper, it provides a
shortcut with high capacity between source and sink that can accommodate more
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flow. For the authority metric, graphs grown from two adjacent nodes will have
a larger intersection than those grown from nodes which are far apart. So it is
intuitive that we will obtain a certain percentage of papers with a direct link to the
query paper in the result set.

We examined the percentage of direct link papers in the result sets of the var-
ious metrics. The results verify that all metrics retrieve a certain percentage of
direct link papers in the range from 30% for CCIDF to 60% for the flow-based
and vector-based metrics [20].

We also experimented with small adjustments to our algorithms in terms of the
treatment of the direct link. For the maximum flow metric, we performed adjust-
ments to the capacity of the direct link, while leaving the capacities of all other
edges the same. Our findings were as expected, namely that we obtain more direct
link papers with a higher capacity of the direct link. For the authority metric, we
modified the way in which we grow the local citation graph, so as not to use direct
link information in the process of growing the local citation graph. We found that
this affects the percentage of direct link papers very little. This result indicates that
when there is a direct link between papers, their local citation graphs have a large
overlap even if the direct link itself is discarded.

4.2.5 Distance of returned papers from source paper

It is useful to know how far the result papers from each one of our metrics are
from the query papers. Intuitively, the farther away from the query papers the
results are, the more unexpected are the uncovered connections. We examine the
average number of hops from the query papers to the result papers in Fig. 10.

We observe that that the Big Vector and CCIDF metrics have similar average
distances to the Flow metric with d = 25. The Small Vector metric tends to re-
trieve papers closer to the query papers. We also observe that the average distance
grows with the decrease of value of parameter d. Figure 11 shows the maximum
distance in the result sets (top 10) for each metric.

The important finding is that from the flow-based metric we can get papers
which are 3 hops away from the query papers when d drops to 3. Such papers

Average graph distance
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. d=3
a
& 2
o
) Big Vector CCIDF
£ 15
3
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E 1
-
g o
2 .5
I

0

1
Different metrics

Fig. 10 Average graph distance (number of hops) of result papers from query papers
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Fig. 12 Visualization of test results from flow-based metric with d set to 3

cannot be found by using CCIDF, bibliographic coupling, co-citation or direct
link metric. The test result of flow with d set to 3 (Fig. 12) shows related papers
found three hops away from the query papers.

4.2.6 Metrics in the formal sense

The various metrics proposed in this paper are not guaranteed to be metrics in
the formal sense (in that they satisfy the triangle inequality). There are algorithms
for efficient indexing using distance measures that are not metrics in the formal
sense. For example, FastMap [12] is a method that maps data entities to points in a
Euclidean space, given a distance measure, while preserving the distance structure

of the data space.
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4.2.7 Computation time

Computation time for a single query paper on a Pentium III, 700 MHz with
128 MB of RAM is about 5h for the flow-based methods and about 2h for the
vector-based methods and CCIDF. In the vector-based methods, the vector rep-
resentation of each paper in the database is computed once and stored, however
no special file structures are used to quickly identify whether two papers have any
overlap in their local neighborhoods (which could reduce the computation time by
orders of magnitude). In the flow-based methods, the joint local citation graph is
different and must be grown for each pair of papers. Design of appropriate index-
ing structures for quickly identifying the papers, for which the graph is connected,
and therefore similarity is non-zero, is a topic of future study.

5 Comparison of link- with text-based similarity measures

In this section, we present results of the application of text-based similarity mea-
sures to the same retrieval task using the same document corpus and the same
query papers that were used in the evaluation of link-based similarity measures
presented in the previous section.! The key lesson from this comparison is the
complementary nature of term/word-based and link-based methods.

Two variants of text-based similarity are presented, based on words and on
multi-word terms extracted using the C-value/NC-value method [13]. The first
variant uses single-word nouns as features. The second variant uses noun phrases,
obtained by the application of a linguistic filter on the sequence of part-of-speech
tags of the text, and treated as candidate terms. The candidate terms are further
ranked on the basis of statistical metrics that account for the frequency of the noun
phrases in the corpus, and nesting relations between noun phrases (C-value) and
in addition the presence of “context” words that appear in the vicinity of candidate
terms (NC-value).

Words or terms are used to define a document vector space for defining a doc-
ument similarity measure. The vector space model is widely used for the measure-
ment of similarity between documents [21] because of its conceptual and compu-
tational simplicity. Documents and queries are represented as vectors in a vector
space, where the dimensions correspond to “features” (words or terms). We ap-
plied the following equation [21] to define the term weight.

N .
(1+10gtﬁ,j)-1ogd—ﬁ, if tfi;j>1 ?)

0, if 1fij=0

weight(i, j) =

where tf; ; is the frequency of term i in document j, df; is the number of doc-
uments in which term i occurs, and N is the total number of documents in the
corpus.

Documents are ranked in the vector space model by measuring their similari-
ties with the query vector using the standard cosine similarity metric.

' This research was first presented in [22].
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5.1 Features used for text-based similarity

Two different methods were used to evaluate document similarity based on con-
tent, term-based and word-based.

In the term-based method, we generated the corpus terms from full papers
sorted by NC-value. There were 189,043 candidate terms extracted from the whole
corpus with a specific linguistic filter, but not all the terms are suitable for informa-
tion retrieval [28]. For example, those terms appearing in most documents in the
corpus are not useful, because they do not help discriminate among documents.
So we re-rank the list of terms, according to their Document Frequency in order
to set proper upper and lower cut-offs for selecting terms appearing with interme-
diate frequency [28]. Document frequency is the number of documents in which
the term occurs [21]. Cut-offs were determined empirically, as is common practice
in information retrieval. We specified the cut-off interval (4, 250) to exclude the
most frequent and the least frequent terms, leading to a subset of 6100 terms with
document frequency between 4 and 250.

In the word-based method, we extracted all the nouns from the corpus as fea-
tures. The number of nouns is 11060, after setting the cut-off interval based on
document frequency at (12, 8700), almost twice the number of terms.

The top 10 similar papers for each query paper were judged by two domain
experts, and were assigned a score 1 (related), 0.5 (somewhat related) or O (not
related).

5.2 Comparison of term-, word- and link-based methods

The term-based method gave on the average somewhat better precision than the
word-based and link-based methods, as shown in Fig. 13.

To determine the statistical significance of the differences in precision curves,
we performed a two-factor Analysis of Variance with replications on the raw
scores from the above experiments. We show the F -statistic and P-value for each

Precision of top 10 similar papers
1 —

0.9 K

0.7

0.6 —+-term-based
0.5 -=- word-based
0.4 link-based

0.3
0.2
0.1

Precision

Paper

Fig. 13 Precision comparison of three methods: term-based, word-based, and link-based
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Table 2 Pairwise ANOVA results for the three experiments

Term-based Word-based
Word-based  Fi 162 = 2.28, P-value = 0.13

Link-based F], 162 = 3.10, P-value = 0.08 Fl, 162 = 0.04-, P-value = 0.85

4.4 common related papers

1.5 unrelated papers 2.3 unrelated papers
3.8 related papers with 3.0 related papers with
term-based method word-based method

0.3 common unrelated papers

Fig. 14 Venn diagram for the complementarity of the results from the term-based and word-
based methods

pairwise test in Table 2. As we can see, the significance level of the difference
between the term-based and word-based methods is 87% (i.e., there is probability
13% that the observed difference came about by chance). The significance level of
the difference between the term-based and link-based methods is 92% (i.e., there
is probability 8% that the observed difference came about by chance). There is no
significant difference between the word-based and the link-based methods.

5.3 Complementarity of methods
5.3.1 Term-based vs. word-based

The word-based and term-based methods complement each other by producing
different sets of related papers as shown in Fig. 14. Averaged over the query pa-
pers, they had 4.4 relevant papers in common against the top 10 similar papers
and for the remaining non-common papers, 3.8 papers were judged as relevant
with term-based method and three papers were judged as relevant with word-based
method.

5.3.2 Term-based vs. link-based

The link-based and term-based methods complement each other by producing dif-
ferent sets of related papers, as shown in Fig. 15. Averaged over the query papers,
they had 2.4 relevant papers in common against the top 10 similar papers and for
the remaining non-common papers, 5.3 papers were judged as relevant with term-
based method and 4.8 papers were judged as relevant with link-based method.
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2.4 common related papers

2.3 unrelated papers 2.8 unrelated papers

5.3 related papers with 4.8 related papers with
term-based method link-based method

Fig. 15 Venn diagram for the complementarity of the results from the term-based and link-based
methods

2.8 common related papers

2.5 unrelated papers 2.7 unrelated papers
q
4.6 related papers with 4.4 related papers with
word-based method link-based method

0.1 common unrelated papers

Fig. 16 Venn diagram for the complementarity of the results from the word-based and link-
based methods

The term-based method can get higher precision but needs time to preprocess
the texts and build an inverted index. Term- and link-based methods can be used
together to gain higher precision and attract more similar papers to the top similar
paper list.

5.3.3 Word-based vs. link-based

Figure 16 demonstrates that the link-based and word-based methods complement
each other too by producing different sets of related papers. Averaged over the
query papers, they had 2.8 relevant papers in the 2.9 common papers against the
top 10 similar papers and for the remaining non-common papers, 4.6 papers were
judged as relevant with word-based method and 4.4 papers were judged as relevant
with link-based method.

6 Future work

In the experiments presented here, we limited the evaluation of results to the top
10 similar papers to a given query paper. It would be interesting to see whether
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the conclusions presented here still hold if we considered instead a larger number
of top similar papers, such as 20 or 50, especially the conclusion about similar
papers found by one metric but not the others. The general problem is that reli-
ably evaluating the similarity of hundreds of results requires substantial additional
amounts of the experts’ time. Making relevance judgments on research papers re-
quires deep domain expertise beyond that of graduate students, while faculty and
researcher time who possess such expertise in in short supply. A way to address
the evaluation problem is to follow the text retrieval conference (TREC) model,
where an organization such as the National Institute of Standards and Technology
(NIST) pools resources together to create standard corpora with associated rele-
vance judgments, on which researchers from around the world could evaluate their
algorithms.

A related issue is the size of the optimal neighborhood used in the metrics. We
noted that a larger neighborhood does not seem to improve retrieval performance
but it may uncover unexpected relations. Defining the sense of optimal and de-
termining the optimal neighborhood for the various metrics is an important future
research topic.

In the future, we may want to take more detailed citation information into
account. One direction for future work is to assign weights to the citations made in
an article. Namely, citations made in the same paper have a different importance to
the author or research. We might assign different weights to references in terms of
where they appear (introduction, body) and how often they appear in the research
paper as opposed to treating all the references equally.

Another direction for future research is to treat co-citation and reference cou-
pling differently in computing the similarity, by assigning weights to different
edges using directed graph. In this paper we do not consider the direction and
treat co-citation and bibliographic coupling equally. Depending how much you
trust each of these two relationship in judging relatedness, one could set up an
adjustable parameter to leverage the similarity judgment.

Combining text-based metric and link-based similarity metrics is worth pur-
suing. One simple way is just use a weighted sum of each individual similarity
measure to compute similarity. Another option is to use text-based methods to
simplify the citation graph by highlighting important citations, that are identified
by analyzing the text.

Finally, there are other contexts besides the citation graph in which the link-
based similarity algorithms we propose here may be applicable. One example is
the problem addressed in [7] of determining fraudulent telephone accounts by
analyzing the calling patterns. The idea of that paper is the following: someone
who has previously used a fraudulent account may set up a new one under a
different name and address, but the calling patterns are largely the same. That
paper extracts the local neighborhood of the calling pattern graph for each, and
compares them using an ad-hoc way of computing the similarity. The authority
vector metric we present here has the potential to improve upon those results,
especially with respect to the problem of popular nodes (toll-free numbers, in-
formation numbers) that are common to a lot of calling patterns, but do not give
much information about similarity, so they can skew the results. Similar issues
appear in the domain of tracking financial transactions for detection of financial
crime [27].
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7 Conclusions

Our research aims to find efficient ways to judge relatedness among research pa-
pers using only citation information represented in the citation graph. Our key
hypothesis is that, if two research papers are related, it should be possible to infer
this from their local neighborhoods in the citation graph. Our work can be viewed
as an effort to generalize and improve upon bibliographic coupling and co-citation
analysis, that have been shown to reflect similarity and relatedness between pa-
pers. The maximum flow algorithm can be used to find out how strongly each
pair of papers is connected in the citation graph; the authority metric measures
the similarity of the local neighborhood of two papers in the citation community.
From our experiments, we conclude that both metrics are promising and effective
in finding related papers for scientific research. Our algorithms can be viewed as
complementary to the global analysis of citation graph carried out in [2].
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