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ABSTRACT
Size and complexity of data repositories collaboratively cre-
ated by Web users generate a need for new processing ap-
proaches. In this paper, we study the problem of detection of
fine-grained communities of users in social networks, which
can be defined as clustering with a large number of clusters.
The practical size of social networks makes the traditional
evolutionary based clustering approaches, which represent
the entire clustering solution as one individual, hard to ap-
ply. We propose an Agglomerative Clustering Genetic Al-
gorithm (ACGA): a population of clusters evolves from the
initial state in which each cluster represents one user to a
high quality clustering solution. Each step of the evolution-
ary process is performed locally, engaging only a small part
of the social network limited to two clusters and their direct
neighborhood. This makes the algorithm practically use-
ful independently of the size of the network. Evaluation on
two social network models indicates that ACGA is poten-
tially able to detect communities with accuracy comparable
or better than two typical centralized clustering algorithms
even though ACGA works under much stricter conditions.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms

Keywords
genetic algorithms, graph clustering, community detection,
social networks

1. INTRODUCTION
Social network services allow users to create virtual per-

sonalities, represented by user profiles, and establish social
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connections. The user profile can gather personal informa-
tion about the user and user’s interests (e.g., Facebook1),
about webpages the user bookmarked (e.g., BibSonomy2)
or any other information that matches the type of social
networking system. The social connections can be repre-
sented by explicit friendship links, or they can be extracted
from various forms of people interaction (e.g., comments in
blogging service, or citations in a repository of research pa-
pers). The social services allow users to access the informa-
tion about related people by lists of friends or peers. Such
a method seems awkward as humans are used to thinking
about their social relations in terms of the communities they
belong to. The information about community membership
can be a valuable extension of social network services, mak-
ing relations more natural than the basic friendship lists that
are currently available. Despite the fact that community de-
tection can be seen as a type of clustering problem, a well
defined area of machine learning, the complexity of informa-
tion gathered in social networks and their vast size forces us
to redesign the traditional approach. Traditional methods,
which assume that the entire dataset can be processed at
once, are no longer practical. Instead, we propose to move
toward progressive rearrangement of clusters in small sub-
sets of the social network. In this paper we show how the
genetic algorithm concept can be used to design an agglom-
erative clustering algorithm that is able to detect communi-
ties by processing at each step information related to users
of two limited clusters.

Agglomerative clustering is an example of a hierarchical
clustering approach. The algorithm result is a hierarchy of
clusters; however, it can be easily modified to produce a flat
partition of instances. The algorithm starts with a set of n
clusters, each cluster represents one item from the dataset
to be clustered. At each step two clusters are joined based
on a given join criterion. The most frequently used criterion
is the distance between two clusters that are to be joined.
The algorithm needs also a stopping criterion to prevent
the agglomeration process from continuing up to the point
where all instances belong to one cluster. The concept of
agglomerative clustering can be viewed as a greedy search
method in which at each step we look for the currently op-
timal arrangement of clusters given the condition that two
clusters must be joined. Let us assume that we look for the
two clusters with a minimal average distance between mem-
bers of both clusters. To find the currently optimal join the
algorithm examines all possible pairs of clusters. Such an

1http://facebook.com
2http://bibsonomy.org



approach is impractical for the community detection prob-
lem because of the size of social networks and the number
of expected communities. We could easily think of an ex-
tension of agglomerative clustering in which the algorithm
examines a chosen pair of clusters and makes a decision if
they should or should not be joined. The extension lim-
its the computational and operational cost of the processing
step; however, the local character of the decision can easily
lead the algorithm to local optimum.

The objective of our work is to implement the ideas of such
extended, local decision based, agglomerative clustering in
the form of a genetic algorithm. The presented Agglomer-
ative Clustering Genetic Algorithm (ACGA) at each step
locally considers two clusters and based on the provided fit-
ness function tries to join them or rearrange them such that
the newly created cluster(s) improve the global clustering
result. Both representation size and computational cost of
one processing step is limited.

1.1 Communities in Social Networks
There is a large number of community definitions present

in the literature, for example [4, 13, 16]. All of them carry
the same notion of the subset of a graph (here understood as
a graph of relations between users of a social network, which
we refer to as friendship links) in which nodes (users) are
densely connected, having at the same time low connectivity
with the rest of the graph. Depending on the application,
this definition should be refined by taking into considera-
tion the required granularity of a community partition. For
example, given a group of researchers profiled by their pub-
lications and connected by co-authorship or citation-based
links we can think of different kinds of communities. We can
partition the researchers based on their field, looking for few
large communities (e.g., “theory”, “databases” and “machine
learning”) [4]. However, we might also be interested in de-
tecting the large number of communities that gather small
groups of researchers that actually cooperate and frequently
exchange ideas. In our work we focus on the latter notion of
community, referring to them as fine-grained communities.
This definition of a problem makes most of the traditional
clustering techniques inapplicable as they assume that the
number of clusters k is small and independent of the number
of clustered items. This allows us to neglect the impact of
k in determining the computational complexity of an algo-
rithm. For the fine-grained community problem we should
rather assume that the size of a community is small and
limited, and the number of communities grows linearly with
the number of users. The limited community size assump-
tion is based on sociological and neurological observations of
humans made by Dunbar [2]. Dunbar estimated the average
size of a social group, in which humans are able to maintain
stable group relations, to be 150, which is now referred to
in the literature as the Dunbar number.

1.2 Community detection assumptions
In this section we enumerate all assumptions we make

to transform a vague idea of community detection in social
networks into a well defined clustering problem.

We assume that, because of the profile complexity, there
is no possibility of maintaining a multidimensional space in
which the position of the profile or a central point of a com-
munity can be determined. We shall instead rely on a sim-
ilarity function able to calculate similarity scores between

pairs of users. Such functions are already used in number
of social services mostly to recommend products chosen by
“similar users”. Again, it does not seem practical to calcu-
late the similarity score between all pairs of users. We should
limit ourselves to similarity scores calculated between users
connected by a friendship link. These two assumptions de-
fine the dataset as a weighted graph were nodes represent
users and edges are friendship links weighted by the profile
similarity score. In this work we assume that both friendship
graph and similarity scores are given.

Finally, when looking for fine-grained communities we
should be aware that a user is likely to belong to more than
one community. Because such overlapping clusters greatly
increase the complexity of an already complicated problem,
we decided to leave it out of scope of this paper.

1.3 Clustering as optimization problem
As defined in Section 1.2 we view community detection as

a graph clustering problem. There are various measures of
graph based clustering quality presented in the literature.
Each of them can potentially be used as a fitness function
that guides a genetic algorithm towards the optimal parti-
tion of clusters. We decided to focus on three cluster quality
scores. The choice was made based on the expected behav-
ior in boundary cases of the agglomeration process and an
intuitive motivation of the score.

Two previously proposed optimization functions, normal-
ized cut and modularity try to capture the intuition that
a good community partition should minimize the number
of links between clusters while keeping a high density of
connections between community members. The normalized
cut, proposed by Shi and Malik [16], assumes that a graph
G(V, E), where V is the set of all nodes and E is the set of
all edges between these nodes, is to be divided into two dis-
joint sets A and B, where B = V −A. The score represents
the fraction of all connections cut between A and B with
respect to the number of connections involving nodes in A
and B separately, Eq. 1. The latter is called association and
is meant to balance the size of clusters.

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(1)

where cut(A, B) =
∑

i∈A,j∈B w(i, j),

assoc(A, V ) =
∑

i∈A,v∈V w(i, v),

w(i, j) is the weight of the edge between nodes i and
j. In our application we assume that w(i, j) is equal to a
similarity score if i and j are connected by a friendship link
or zero otherwise.

Assuming that B is the complement of A, the formula can
be used to calculate the normalized cut for a single cluster
Ck. Making this assumption we can transform Eq. 1 into:

Ncut(Ck, V − Ck) =

=
cut(Ck, V − Ck) ∗ assoc(V, V )

assoc(Ck, V ) ∗ (assoc(V, V )− assoc(Ck, V ))
(2)

Given the function of a normalized cut for a single cluster,
we define the normalized cut score for a complete k cluster
partition as a weighted average of individual cluster scores,
Eq. 3. Intuitively, large clusters should have larger impact
on the score.



Ncut =

∑
k |Ck| ∗Ncut(Ck, V − Ck)

|V | (3)

Using a similar rationale Newman and Girvan [13] pro-
posed a modularity score. The score awards partitions that
keep a high fraction of connections inside communities. Mod-
ularity was formulated based on matrix operations [13]; how-
ever it is possible to represent it in terms of cut and associa-
tion scores, Eq. 4. Given this representation, the total value
of modularity is a sum of scores calculated for individual
clusters, Eq. 5.

Q(Ck) =
assoc(Ck, Ck)

assoc(V, V )
− (

assoc(Ck, V )

assoc(V, V )
)2 (4)

Q =
∑

k

Q(Ck) (5)

This representation allows us to reveal the relation be-
tween normalized cut and modularity calculated for an in-
dividual cluster (transformation is based on the fact that
assoc(Ck, V ) = assoc(Ck, Ck) + cut(Ck, V − Ck)).

Q(Ck) =
cut(Ck, V − Ck)

assoc(V, V )
(

1

Ncut(Ck, V − Ck)
− 1) (6)

Essentially modularity is a weighted inverse of the nor-
malized cut. However, it is weighted by cluster’s cut instead
of cluster’s size. Clusters with low cut value has their mod-
ularity score decreased which may be an additional factor
that balances the size of clusters.

The third score that can be used as an optimization func-
tion is silhouette width, proposed by Rousseeuw [15]. The
score is based on the intuition that a cluster should gather
similar elements. The score is calculated for each individual
item (node) i, Eq. 7. The total silhouette width is an average
over all nodes in the graph.

S(i) =
a′(i)− b′(i)

max(a′(i), b′(i))
(7)

where a′(i) = avgj∈A(w(i, j)), i ∈ A
b′(i) = maxCd′(i, C)
d′(i, C) = avgj∈C(w(i, j)), i /∈ C

In his original work, Rousseeuw calculated the silhouette
width based on dissimilarity matrix; however, the analogous
formula for similarity matrix, Eq. 7, was also presented. In
our work we use the similarity-based approach.

2. RELATED WORK
The problem of community detection in social networks

using genetic algorithm was recently addressed by Pizzuti [14].
The algorithm uses a locus-based adjacency representation [6],
where value j of gene on position i represents a link between
instances i and j. All instances connected by a chain of links
should be assigned to the same community. This representa-
tion does not require explicit information about the number
of clusters; however, a decoding step is necessary to find all
connected components. It can be done in O(n) time. The al-
gorithm optimizes a community score based on assumptions
similar to modularity. A community detection GA based on
modularity was presented by Tasgin and Bingol [17].

Community detection can be addressed by a broader class
of clustering algorithms – network clustering. Feng et al. [3]
proposed a genetic algorithm for network clustering. The
algorithm operates on a weighted graph that represents sim-
ilarities between network users. The authors modified the
modularity score to capture hubs connected to many com-
munities. According to the authors such hubs should be
placed in distinct communities. Graph based clustering was
also an object of multi-objective genetic algorithms. Uyar
and Ogunducu [18] proposed a multi-objective GA approach
extended by a heuristic post-processing step that limits the
number of clusters created by the crossover operator. Two
fitness functions are min-max cut and silhouette width.

A variety of multi-objective clustering genetic algorithms
was proposed by Handl and Knowles [6]. The most recent
approach, MOCK uses two clustering criteria – compact-
ness and connectedness as fitness functions. The number
of clusters does not have to be explicitly defined thanks to
the locus-based representation. The fitness functions pro-
posed by the authors operate in a multidimensional attribute
space. A possible extension to graph-based datasets can be
made using a semi-supervised modification of MOCK [7].
Unfortunately the high computational cost of MOCK may
make it inapplicable to realistic social networks. Despite
some recent improvements in the computational cost of the
cluster number determination step [12] there are still issues
of processing the initialization step based on a minimal span-
ning tree and the locus-based representation decoding.

The above examples indicate that a GA may be used to
optimize one or more clustering quality scores to produce
high quality clusters. Each of the presented approaches as-
sumes that the complete dataset can be represented as a
single individual and processed at once. The main objec-
tive of our work was to reduce the size of an individual and
the computation cost of a single fitness score to make the
algorithm feasible given the real sizes of social networks.

3. AGGLOMERATIVE CLUSTERING GE-
NETIC ALGORITHM

In standard approaches to applying GAs to clustering
problems each individual denotes a complete solution. The
solutions compete and exchange genetic material evolving
toward a well-fitted individual that represents the final par-
tition. In our Agglomerative Clustering Genetic Algorithm
(ACGA) each individual represents one cluster. The cross-
over operator allows two individuals to exchange genetic ma-
terial of two clusters to locally improve the value of fitness
function. The number of individuals is equal to the current
number of clusters and the complete solution is represented
by the whole population. Given the assumption that a clus-
ter size is small and limited (fine-grained communities) this
modification allows the algorithm to calculate the value of
the fitness function engaging only a small part of the graph
at a time, hence making the processing feasible indepen-
dently of the size of the social graph. This section describes
modifications of genetic operators required by ACGA.

Representation.
Clustering is an optimization problem that can be mapped

to a variety of GA representations. The straight-forward
representation, string-of-group [9] encoding represents each
individual as a string of n integers (genes), where n is the



(a) An example of social network with 14 users (nodes)
grouped into three communities.

Individual “A”
id 1 2 3 4 5 6 7 8 9 10 11 12 13 14

value 2 1 2 1 3 2 1 3 2 3 2 3 1 1

(b) Straight-forward string-of-group encoding, where each
individual represents a complete clustering solution.

Individual “A”
id 2 4 7 13 14

value 1 1 1 1 1

Individual “B”
id 1 3 6 9 11

value 2 2 2 2 2

Individual “C”
id 5 8 10 12

value 3 3 3 3

(c) Localized encoding, each individual represents one clus-
ter, the complete solution is represented by the whole pop-
ulation. The inactive genes are not included in the repre-
sentation of individual, which is thus of variable length.

Figure 1: Clustering solution and its representation.

number of items (i.e., users in community detection prob-
lem) in the dataset. The genes take values from 1 to k, where
k is the expected number of clusters (Fig. 1(b)). This fixed-
length, fixed-order representation can be used in a broad
range of genetic algorithms. When the values of n and k
are high this representation becomes impractical, and not
only because of the large length of individual encoding. The
huge search space(nk possible distinct individuals) creates
the need for an initialization function. In addition, obtaining
a value for the fitness function for the complete individual is
likely to be time consuming. Analogous issues can be found
in the locus-based representation, presented in Section 2.

These shortcomings lead us to a simplified representation
that can be used in the agglomerative clustering approach.
In ACGA each individual represents one cluster. Using the
string-of-group encoding we can think of an individual as a
string of n genes, where n is the number of items collected
in the cluster represented by the individual (Fig. 1(c)).

Selection operator.
The algorithm is based on a two-step steady-state selec-

tion operator, with an elitist replacement strategy (µ + 2).
The introduced localized representation requires significant
modifications on the selection operator. Selection of the two
individuals to be recombined cannot be based on the fitness
value, as each individual represents only a part of clustering
solution and there is no notion of fitter individuals among
the population. ACGA chooses parents based on the poten-
tial improvement of their fitness rather than the fitness prior
to recombination. The choice of the first parent is done by
a random activation of a node, which represents a user in

a social network. The active node checks the similarity of
neighbors (user’s friends) that are not members of its clus-
ter. A tournament selection scheme is used to pick a similar
user which defines the cluster individual that becomes the
second mate. Given the pair of parents, the crossover op-
erator is used to create the pair of children. The pair of
parents is replaced by the pair of children only if the their
fitness is higher than the fitness of parents. The comparison
of fitnesses of parents and children is legitimate as they both
represent identical subset of the graph. It is important to
notice that the definition of each clustering quality function
presented in Section 1.3 allows us to calculate a local fitness
value for any subset of clusters.

Involving nodes (users) in the selection process is not acci-
dental. The information at the node level is easy to retrieve
and process, which reduces the processing cost of the selec-
tion step. The proposed selection method makes the prob-
ability of choosing an individual proportional to the size of
the cluster it represents. This is sensible as large clusters
have more genetic material and are more likely to create
interesting new partitions. The method of the second indi-
vidual choice is meant to reduce the search space, ensuring
that two clusters are tightly connected by at least one pair
of users which are similar.

Crossover operator.
The variable length representation of individuals can be

mapped to a fixed-length representation by adding null genes
in place of genes present in the other parent. We make the
standard assumption that each item has a unique id which
defines the position of the gene representing it in a chromo-
some. The genes that are present in none of the parents can
be omitted as they have no impact on the result of crossover.
After that, standard crossover operators can be applied (e.g.,
one-point crossover or uniform crossover). The informative
genes taken from the base representation are, after the map-
ping, distributed uniformly in the chromosomes of parents.
This is the reason why one-point crossover tends to equalize
their number in children individuals (Fig. 2). We observe
a similar situation for uniform crossover operator. As the
decision about each gene is made independently, the distri-
bution of the number of informative genes in the two children
individuals after uniform crossover follows the binomial dis-
tribution (p = 0.5, n = |Ci + Cj |). Again uniform crossover
tends to produce chromosomes with similar numbers of in-
formative genes (i.e., clusters of similar sizes). When mixing
small and large clusters we should take their sizes into con-
sideration, otherwise we will result in two clusters of similar
size that is about half of the size of the large cluster. It makes
joining clusters (i.e., creating a pair of children in which one
has only null genes) less probable and blocks the agglomera-
tion process when the number of informative genes in parent
clusters increases. To represent the size imbalance between
two parent clusters we can utilize the flexibility of uniform
crossover. It can be biased by reducing the probability p
of applying crossover to the informative genes of individual
with the higher number of them. In experiments we use a
parametrized version of uniform crossover. The impact of
uniform distribution versus the biasing factor is defined by
parameter puni, Eq. 8. When puni = 0.5 there is no bias.

pSize = puni + (1− 2puni)
|Cj |

|Ci|+ |Cj |
, puni ∈ [0, 0.5] (8)



Figure 2: Three types of crossover on individuals mapped to fixed-length representation. Despite a different
number of informative genes in parents, one-point and unbiased uniform crossover tend to produce children
with equalized number of informative genes. Biased crossover makes informative genes from the “larger”
parent less likely (and the “smaller” parent more likely) to be crossed-over, which keeps the cluster imbalance.

Fitness function.
Each of the three clustering quality scores presented in

Section 1.3 were independently assessed as fitness functions.
Single fitness value is calculated for a pair of children. We
use the general formula for calculating the score for n clus-
ters, but a set of clusters is limited to a pair of children. Even
though fitness is calculated for the full graph of connections,
each objective function can be calculated based on the local
information only (i.e., friendship links of users gathered in
both clusters). The full graph association assoc(V, V ) that
appears in the formula of normalized cut and modularity is
constant and can be estimated beforehand. Normalized cut
and modularity are additive: by improving the score for a
subset of clusters we always improve the total score. This
is not true for silhouette width, as changing a cluster may
cause a change of the cluster with the maximal similarity
score in any of its neighbors.

4. EVALUATION
The standard method of clustering algorithm evaluation

is to perform a comparison with baseline algorithms using
datasets for which the expected clustering result is known.
Most of the datasets introduced in the literature contain la-
bels that partition the dataset into a small number of com-
munities. This makes them applicable to the coarse-grained
community detection algorithms. Labeling of fine-grained
communities is more complicated and appears to be an in-
terest of sociologists rather than computer scientists. The
datasets created in sociological studies (e.g., Zachary Karate
club proposed as a clustering dataset by Girvan and New-
man [5]) are too small to capture the properties of the clus-
tering algorithms. We therefore decided to process the eval-
uation based on synthetic data generated out of two social
network models.

4.1 Social network models
The plain model is an adaptation of a widely-used model

proposed by Girvan and Newman [5]. Given N instances
we distribute them uniformly to k clusters. For each pair
of users we randomly decide if they should be connected.
The probability of establishing a friendship link P (link) is
higher if two users are members of the same community
(P (linkin) > P (linkout)). The model was proposed for bi-
nary graphs. To add similarity weights we uniformly dis-
tribute the centroids of clusters in d dimensional, normalized
space. Points pi, which represent instances (users), are dis-
tributed around centroids using the Gaussian distribution.

The similarity value is calculated based on Euclidean dis-
tance, Eq. 9. We set the parameters of the model to keep
the average number zin of the inner links of an instance lower
than the number of outer links if k > 2 (Table 1(a)). As the
outer links are distributed over k − 1 clusters, the correct
partition can be determined. In addition, to make the hard-
ness of clustering less dependent on increasing number of
clusters the similarity factor is used. Similarity has impact
on link generation, making similar instances more likely to
be connected, Eq. 10.

sim(i, j) = 1− |pi, pj |√
d

(9)

P (link) = P (linkin|out)βP
1−sim(i,j) (10)

The hierarchical model is a modification of commu-
nity guided attachment (CGA) model proposed by Leskovec
et al. [11]. To model some characteristics observed in real
social networks the authors built a recursive model creating
a hierarchy of communities. To introduce the rationale be-
hind the model we will use an example of a community tree
found in large companies or institutions. The root of the tree
is occupied by a large community of executives, going down
through levels of departments we finally reach small task-
oriented communities of workers. We can expect that most
of the social connections take place between members of the
same community. The inter-community connections are less
likely if the distance in the community hierarchy is large. As
the transport of resources and information in large institu-
tions is vertical, two communities in different departments
can work on similar problems not knowing about each other.
The input to the CGA model is a balanced tree of commu-
nities with height H and number of branches b. We decided
to use the version of the CGA model in which communities
are present at each level of the tree. The probability of es-
tablishing a friendship link between two users decreases ex-
ponentially with the distance between their communities in
the hierarchy, Eq. 11. The similarity weights are calculated
as in the plain model, but here they do not influence the
probability of creating links. The centroids of clusters are
generated within a limited range of their parents (rangemin,
rangemax). Finally the number of instances in a cluster and
their variance grows with the level of the cluster l (for leaves
lleaf = 0). Example parameters are shown in Table 1(b).

P (link) = PbaseβH
treeDist(i,j) (11)



(a) Plain model. (b) Hierarchical model
(with hierarchy levels).

Figure 3: Datasets generated by models (friendship
links within the same community colored).

Table 1: Values of parameters of the two social net-
work models for two example test datasets each.
The parameters are introduced in Section 4.1

(a) plain model

parameter P2x500 P100x10

N 1000 1000
k 2 100

P (linkin) 0.3 0.3
P (linkout) 0.15 0.15

βP 0.01 0.01
d 10 10

space Std 0.1 0.018
derived parameters

(experimental)
avg zin 80 3.6
avg zout 19 27.5

(b) hierarchical model

parameter Hb3H5 Hb10H3

H 5 3
b 3 10

Pbase 0.4 0.3
βH 0.31 0.33
g 1.5 2.0

|Ck| 16 ∗ gl 15 ∗ gl

rangemin 0.1 ∗ gl 0.1 ∗ gl

rangemax 0.2 ∗ gl 0.3 ∗ gl

d 10 10

space Std 0.1 ∗ gl 0.1 ∗ gl

derived parameters
(experimental)

N 2511 1860
k 121 111

avg zin 9 5.3
avg zout 14 23.9

4.2 Baseline algorithms
The results of ACGA were compared to an agglomera-

tive clustering algorithm which in each step merges the two
closest clusters based on average distance. This approach,
named Unweighted Pair-Group Method (UPGMA), is widely
used in bioinformatics [1]. The stopping criterion can be the
number of true clusters or the maximal value of a cluster-
ing score. In the latter approach, instead of stopping the
agglomeration process when it reaches the correct number
of clusters, we let it complete and then pick the agglom-
eration step that has the best value for one of the scores.
This approach was used to gain more information about the
three fitness functions used in experiments. In addition, we
present the results of a normalized cut optimization algo-
rithm based on recursive bisection. This divisive clustering
approach was proposed by Shi and Malik [16].

4.3 Methodology
The algorithms were evaluated based on labels created by

the data generation process. The clustering results and true
clusters were presented in a confusion matrix, which was

used to calculate the adjusted Rand Index [10]. This met-
ric examines all pairs of instances. It calculates the total
number of pairs that belong to the same cluster, or to dif-
ferent clusters, at the same time both in true clusters and
clustering results. The score is adjusted so that the value
for perfectly clustered data is one.

We experimented with two other standard metrics used
to evaluate the quality of clustering results: entropy and
purity [8]. We found them not reliable when the number of
result clusters is different from the number of true clusters.

5. EXPERIMENTAL RESULTS
Among a large number of features and parameters of ge-

netic algorithms we decided to focus on fitness function and
crossover operator. The fitness function, which tries to de-
fine the quality of a clustering result, plays the most im-
portant role in any evolutionary based clustering algorithm.
The crossover operator is especially important in the Ag-
glomerative Clustering Genetic Algorithm as other operators
are limited by the specific representation of individuals and
local character of processing. We tested three fitness func-
tions and various settings of the biased uniform crossover
operator. We measured the quality of clustering according
to the adjusted Rand Index, and the number of result clus-
ters with respect to that of real clusters in two experiments.
The first experiment was a sequence of runs on datasets gen-
erated by the plain model. Each dataset consisted of 1000
nodes. Starting with two clusters (P2x500) we gradually
increased the number of clusters and decreased the stan-
dard deviation of the distribution of points to observe how
the number of clusters and their size influence the perfor-
mance of ACGA. The plots in Fig. 4 show the results for
datasets with 2, 4, 8, 10, 15, 20, 33, 50, 66 and 100 clusters.
In the second experiment we ran the algorithm on datasets
generated by the hierarchical model with various settings.
The aim of this experiment was to confirm the quality of
the results obtained for the plain model on more complex
data. Because of space limitations we present only two ex-
ample results for a deep hierarchy of five levels with three
branches (Hb3H5) and a broad hierarchy of three levels with
ten branches (Hb10H3) (Table 2). The specific parameters
for the datasets are presented in Table 1.

The presented results are an average over runs on 10
datasets generated from a model based on the same param-
eters. ACGA was run for 500 epochs.

5.1 Fitness functions
The results of ACGA based on three different fitness func-

tions are very consistent over different datasets generated
by the plain model. The strong relation between normalized
cut and modularity revealed in Section 1.3 was confirmed in
the experiments. For any combination of crossover operator
bias and plain model dataset, ACGA based on normalized
cut and modularity give nearly identical results. For this
reason results for the plain dataset are presented for only
one of them (modularity) (Fig. 4). The tests on the hier-
archical model datasets showed, however, a slight difference
between behavior of ACGA that optimizes normalized cut
or modularity. Modularity is more likely to join two clus-
ters that are close in the hierarchy tree which leads to over-
agglomeration. Possibly, as only a small part of graph is
processed, cut factor, which should balance the clusters in
modularity score, does not work properly.



In all tests we could observe that, when optimizing sil-
houette width the algorithm is not able to pass the early
stage of evolution in which small clusters (usually four or
five densely connected nodes) are formed. Both for for plain
and hierarchical model datasets, the value of the silhouette
width for such arrangement is often higher than the value
of the correct solution. Although silhouette width cannot be
used to drive an agglomeration process, it can be used to
estimate the correct number of clusters when the agglomer-
ation process is done by an external algorithm like UPGMA
(see results of UPGMA S).

5.2 Crossover operator
As expected, the results indicate that ACGA with a uni-

form crossover operator is not able to create large clusters.
At some point, in order to extend clusters to a larger size,
the algorithm must merge small groups into their larger-
sized neighbors. Biasing the crossover operator allows the
agglomeration process to continue. Removing the random
factor (puni = 0) makes small clusters very likely to be
merged into large neighbors. It allows the algorithm to find
high quality partitions consisting of a small number of large
clusters. As the number of clusters grows, the tendency of
biasing approaches to over-agglomerate becomes more visi-
ble. This is caused by the characteristics of fitness functions
(normalized cut and modularity scores) which prefer small
number of large clusters. Using UPGMA as an optimization
algorithm for these clustering quality scores reveals that nor-
malized cut (UPGMA N) and modularity (UPGMA Q) underesti-
mate the number of clusters if the true number of clusters
is high. This is probably the reason why strongly biased
crossover causes ACGA to over-agglomerate.

The results of ACGA for plain model datasets indicate
that finding a good solution requires the impact of bias and
random factor in the uniform crossover to be balanced in
order to match the expected granularity of clusters. The
choice of bias parameter is dataset dependent, which is an
expected disadvantage of any parametrized algorithm. For
datasets used in the experiments ACGA was able to reach
best results when the impact of both factors was similar
(e.g., puni = 0.2, puni = 0.3). For these settings the algo-
rithm showed the best flexibility in finding clusters of dif-
ferent size. It was especially important while tested on hi-
erarchical model datasets, where the algorithm was able to
detect clusters on each level of the hierarchy (e.g., cluster
size varied from 16 to 81 for Hb3H5 dataset).

6. CONCLUSIONS AND FUTURE WORK
Looking for communities in social networks we cannot as-

sume that the complete dataset can be processed at once.
This constraint makes most of the clustering algorithms, in-
cluding GA solutions, impractical for this task. The concept
of genetic algorithm can be, however, used to built an ag-
glomerative clustering algorithm. In the proposed Agglom-
erative Clustering Genetic Algorithm each individual repre-
sents one cluster, instead of the whole clustering solution.
This allows a pair of individuals to recombine or join the
genetic material that is a small subset of the network. The
evaluation of newly created individuals can be done based on
two clusters and their direct neighborhood. If ACGA is used
to look for clusters of limited size, for example fine-grained
communities in social networks, each of its steps requires
limited resources irrespective of the dataset size.
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Figure 4: Results of ACGA and UPGMA algorithms
for a sequence of plain model datasets with increas-
ing number of clusters k ∈ [2, 100]. As the results
for normalized cut and modularity were nearly iden-
tical, we decided to show only the latter for clarity.
The plots show the results of six crossover biases
for modularity score (ACGA Q ...), from the weakest

(puni = 0.5) to the strongest (puni = 0); example result for

silhouette width (ACGA S puni = 0); and results of UP-

GMA where the result was chosen by the true number

of clusters (UPGMA) or the maximal value of silhouette

width (UPGMA S) or modularity (UPGMA Q).

The evaluation on datasets generated by two social net-
work models demonstrated that ACGA was generally able to
match and often outperform the UPGMA algorithm. It was
possible even though there is no fair competition between
these two approaches. ACGA is based on stricter assump-
tions – unlike UPGMA, it must make decisions locally with-
out the full information about the dataset, including the true
number of clusters. Comparison of two baseline algorithms
UPGMA and normalized cut heuristic indicates that the ag-
glomerative approach is preferable for fine-grained commu-
nity detection. Conversely, the normalized cut heuristic is
able to find a perfect partition when the number of clusters
is low and at each step they can be divided into two parts.
Otherwise, errors made at the beginning of the recursion are
propagated and subdivisions lose sense. However, agglomer-
ation puts hard demands on an algorithm, which must pro-
cess beyond the early phase of agglomeration when items
are likely to form small cliques, and later it must prevent
the process from over-agglomeration. These expectations
seem to be too high for any fitness function. In ACGA the



Table 2: Results of ACGA, UPGMA and normalized
cut heuristic for two hierarchical model datasets.
The table shows the results of ACGA with six
crossover biases for normalized cut (ACGA N ...) and

modularity score (ACGA Q ...); two boundary crossover

biases for silhouette width (ACGA S ...); and results of

UPGMA algorithm where the result was chosen by the

true number of clusters (UPGMA) or the optimal value

of any of the three clustering quality scores (UPGMA N,

UPGMA Q, UPGMA S).

Hb3H5 Hb10H3
Algorithm adjRandInd k adjRandInd k

ACGA N puni = 0.5 0.77 302.4 0.62 226.0
ACGA N puni = 0.4 0.81 262.7 0.66 189.3
ACGA N puni = 0.3 0.86 175.3 0.69 140.9
ACGA N puni = 0.2 0.88 138.8 0.65 112.3
ACGA N puni = 0.1 0.82 106.2 0.34 70.7
ACGA N puni = 0.0 0.76 93.6 0.18 25.5
ACGA Q puni = 0.5 0.72 312.1 0.55 224.3
ACGA Q puni = 0.4 0.76 267.5 0.56 190.2
ACGA Q puni = 0.3 0.79 182.0 0.59 135.3
ACGA Q puni = 0.2 0.81 129.3 0.57 100.1
ACGA Q puni = 0.1 0.73 91.7 0.36 69.9
ACGA Q puni = 0.0 0.73 87.8 0.17 20.1
ACGA S puni = 0.5 0.28 539.7 0.23 500.9
ACGA S puni = 0.0 0.36 453.4 0.28 460.3
UPGMA 0.88 121.0 0.53 111.0
UPGMA N 0.01 2.0 0.00 2.0
UPGMA Q 0.13 9.0 0.14 10.0
UPGMA S 0.87 117.0 0.58 135.0
nCut heuristic 0.38 121.0 0.17 111.0

preferred granularity is indirectly chosen by crossover bias.
An important advantage of the local processing in ACGA

is the possibility of distribution of its computation. One of
our future work goals is the distribution of the algorithm
over the machines of users of a social network. This can
assure that the algorithm is not only able to process large
networks but it is also scalable as the processing power grows
linearly with the number of clustered items.

The code, datasets and Web version of the ACGA visual-
ization are available at www.cs.dal.ca/~lipczak/acga.html
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