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Abstract

A robot exploring an unknown environment may need to build a world model from sensor
measurements. In order to integrate all the frames of sensor data, it is essential to align the
data properly. An incremental approach has been typically used in the past, in which each
local frame of data is aligned to a cumulative global model, and then merged to the model.
Because di�erent parts of the model are updated independently while there are errors in the
registration, such an approach may result in an inconsistent model.

In this paper, we study the problem of consistent registration of multiple frames of mea-
surements (range scans), together with the related issues of representation and manipulation
of spatial uncertainties. Our approach is to maintain all the local frames of data as well as the
relative spatial relationships between local frames. These spatial relationships are modeled as
random variables and are derived from matching pairwise scans or from odometry. Then we
formulate a procedure based on the maximum likelihood criterion to optimally combine all
the spatial relations. Consistency is achieved by using all the spatial relations as constraints
to solve for the data frame poses simultaneously. Experiments with both simulated and real
data will be presented.

�Currently with PCI Enterprises Inc., Richmond Hill, Ontario, Canada. A major part of this work was carried

out when the author was at University of Toronto.
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1 Introduction

1.1 Problem De�nition

The general problem we want to solve is to let a mobile robot explore an unknown environment

using range sensing and build a map of the environment from sensor data. In this paper, we

address the issue of consistent alignment of data frames so that they can be integrated to form

a world model. However, the issue of building a high-level model from registered sensor data is

beyond the scope of this paper.

A horizontal range scan is a collection of range measurements taken from a single robot position.

In previous robot navigation systems, range scans have often been used for robot self-localization

in known environments [3]. Using range measurements (sonar or laser) for modeling an unknown

environment has also been studied in the past [11, 4, 8]. A range scan represents a partial view of

the world. By merging many such scans taken at di�erent locations, a more complete description

of the world can be obtained. Figure 1 gives an example of a single range scan and a world model

consisting of many scans.

a b

Figure 1: Building world model from range scans. (a) One range scan in a simulated world; (b)
model consisting of many scans. The small circles show the poses at which the scans are taken.

The essential issue here is to align the scans properly so that they can be merged. But the

di�culty is that odometry information alone is usually inadequate for determining the relative

scan poses (because of odometry errors that accumulate). On the other hand, we are unable to

use pre-mapped external landmarks to correct pose errors because the environment is unknown.
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A generally employed approach of building a world model is to incrementally integrate new data

to the model. When each frame of sensor data is obtained, it is aligned to a previous frame or to

a cumulative global model. Then the new frame of data is integrated into the global model by

averaging the data or using a Kalman �lter [1, 10, 11, 4, 8]. A major problem with this approach

is that the resulting world model may eventually become inconsistent as di�erent parts of the

model are updated independently. Moreover, it may be di�cult to resolve such inconsistency if

the data frames have already been permanently integrated.

To be able to resolve inconsistency once it is detected at a later stage, we need to maintain

the local frames of data together with their estimated poses. In addition, we need a systematic

method to propagate pose corrections to all related frames.

Consider an example as shown in Fig. 2(a). The robot starts at P1 and returns to a nearby

location Pn after visiting P2; : : : ; Pn�1 along the way. By registering the scan taken at Pn against

scan Pn�1, the pose of Pn can be estimated. However since Pn is close to P1, it is also possible to

derive pose Pn based on P1 by matching these two scans. Because of errors, the two estimates of

Pn could be conicting. If a weighted average of the two is used as the estimate of Pn, the pose

of Pn�1 should also be updated as otherwise the relation Pn�1Pn will be inconsistent with its

previous estimate. This inconsistency could be signi�cant if the looped path is long. Similarly,

other poses along the path should also be updated. In general, the result of matching pairwise

scans is a complex, and possibly conicting, network of pose relations. We need a uniform

framework to integrate all these relations and resolve the conicts.

In this paper, we present such a framework for consistently registering multiple range scans. The

idea of our approach is to maintain all the local frames of data as well as a network of spatial

relations among the local frames. Here each local frame is de�ned as the collection of sensor data

measured from a single robot pose. The robot pose, in some global reference frame, is also used

to de�ne the local coordinate system of the data frame. Spatial relations between local frames are

derived from matching pairs of scans or from odometry measurements. We treat the history of

robot poses in a global coordinate system (which de�ne all the local frame positions) as variables.

Our goal is to estimate all these pose variables using the network of constraints, and register the

scans based on the solved poses. Consistency among the local frames is ensured as all the spatial

relations are taken into account simultaneously.

Figure 2 shows an example of consistently aligning a set of simulated scans. Part (a) shows the

original scans badly misaligned due to accumulated pose errors. Part (b) shows the result of

aligning these scans based on a network of relative pose constraints (with edges indicated by line

segments).
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Figure 2: An example of consistently aligning a set of simulated scans. (a) Original scans badly
misaligned due to accumulated pose errors; (b) the result of aligning these scans based on a
network of relative pose constraints. The constraints are indicated by line segments connecting
pairs of poses. Two types of constraints are used: those derived from aligning a pair of scans
(marked by both solid and dotted lines), and those from odometry measurements (marked by
solid lines).
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1.2 Related Work

The �rst project that systematically studied the consistency issue in dynamic world modeling

is the HILARE project [2]. In this system, range signals are segmented into objects which are

associated with local object frames. Each local frame is referenced in an absolute global frame

along with the uncertainty on the robot's pose at which the object frame is constructed. New

sensor data are matched to the current model of individual object frames. If some object which

has been discovered earlier is observed again, its object frame pose is updated (by averaging).

In circumstances that the uncertainty of some object frame is less than the uncertainty of the

current robot pose, as it happens when the object frame is created earlier, and later the robot

sees the object again, the robot's pose may be corrected with respect to that object frame. After

correcting the current robot pose, the correction is propagated backwards with a \fading" e�ect

to correct the previous poses. Although the HILARE system addressed the issue of resolving

model inconsistency, its solution has the following potential problems. First of all, the system

associates local frames with \objects". But if the results of segmenting sensor data or matching the

data with model are imperfect, the \objects" and therefore the local frames may not be de�ned

or maintained consistently. When a previously recorded object is detected again, the system

only attempts to update the poses (and the associated frames) along the path between the two

instances of detecting this object, while the global consistency among all frames in the model

may not be maintained. HILARE uses a scalar random variable to represent the uncertainty of

a three-degree-of-freedom pose, therefore it can not model the con�dences in the individual pose

components.

Moutarlier and Chatila presented a theoretical framework for fusing uncertain measurements for

environment modeling [14]. They �rst discussed two types of representations: relation-based

and location-based. In relation-based representation, an object is related to another by the

uncertain transform between their reference frames. A network of relationships is maintained as

the world model. When new observations are made, all the relationships need to be updated

to preserve consistency. In location-based representation, the global references of individual

object frames are maintained together with their uncertainties. When objects are re-observed,

these object frames and other related frames are updated with respect to the global reference

frame. After comparing these two approaches, Moutarlier and Chatila choose to use the location-

based approach. They treat the object and robot locations as state variables and maintain all

the object variance/covariance matrices as state information. A stochastic-based formulation

for fusing new measurements and updating the state variables is introduced. In addition to a

global updating approach, they also introduced a relocation-fusion approach which �rst updates

the robot position based on the new observations and then updates the object frames. The

relocation-fusion approach reduces the inuence of sensor bias in the estimation, although the
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algorithm is suboptimal.

In a series of work by Durrant-Whyte [5, 6, 7], the problem of maintaining consistency in a

network of spatial relations was studied thoroughly. In their formulation, the environment model

is represented by a set of spatial relations between objects. A probabilistic fusion algorithm similar

to the Kalman �lter is employed to integrate new measurements to the a priori model. When

some relations are updated as a result of new observations, the consistency among all relations

are enforced by using explicit constraints on the loops of the network. The updating procedure is

formulated as constrained optimization and it allows new observations to be propagated through

the network while consistency between prior constraints and observed information is maintained.

In another similar approach, Tang and Lee [17] formulated a geometric feature relation graph for

consistent sensor data fusion. They proposed a two-step procedure for resolving inconsistency in

a network of measurements of relations. In the �rst step, a compromise between the conicting

measurements of relations is achieved by the fusion of these measurements. Then in the second

step, corrections are propagated to other relations in the network.

The di�culty in maintaining model consistency in a relation-based representation is that the

relations are not independent variables. Therefore additional constraints are needed in formulat-

ing an updating procedure. The constrained optimization approach seems very complicated and

di�cult to apply in practice.

In view of the previous methods, we present a new approach which has the following distinctive

characteristics:

1. We use an unambiguous de�nition of an object frame as the collection of sensor measurements

observed from a single robot position. Thus we avoid the di�cult task of segmenting and recog-

nizing objects (which the previous methods rely on in order to create and update object frames).

It is also important to note that we use a robot pose to de�ne the reference for an object frame.

In a local frame, the relative object positions with respect to the robot pose are �xed (whose

uncertainty is no more than bounded sensing errors). During the estimation process, when the

robot position in the global reference frame is updated, e�ectively the global coordinates of all

objects in the current frame are updated accordingly. Therefore by maintaining the history of

robot poses, we also maintain the spatial relationships among the object frames.

2. Our approach uses a combination of relation-based and location-based representations. We

treat relations as primitives, but treat locations as free variables. This is di�erent from the pure

relation-based approach in that we do not directly update the existing relations in the network

when new observations are made. We simply add new relations to the network. All the relations

are used as constraints to solve for the location variables which, in turn, de�ne a set of updated and

consistent relations. On the other hand, our approach is di�erent from the location-base approach
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by Moutarlier and Chatila [14] in that we do not assume the covariance matrices between the

object frames as known. Our state information is the entire set of raw relations. We derive the

covariance matrices at the same time as we solve for the position variables.

3. We obtain direct spatial relations between object frames. Because our object frames are tied to

robot poses, odometry measurements directly provide spatial relations between the frames. More

importantly, we may align two overlapping frames of data (in our case range scans) to derive more

accurate relations between frames. In previous approaches, the robot typically relies on odometry

to �rst determine its new pose. Then the detection of objects allows the robot pose as well as

the object locations to be updated. Since the relations between object frames are updated rather

indirectly through the robot pose, biases in odometry measurements may lead to divergence in the

estimation of object positions, as reported in [14]. Moutarlier and Chatila propose an algorithm

that is supposed to address the divergence problem at the expense of a sub-optimal solution.

Our formulation does not have this problem, as we obtain direct spatial relations between object

frames by aligning the data, and therefore we are less sensitive to odometry biases.

2 Overview of Approach

We formulate our approach to multiple scan registration as one of estimating the global poses

of the scans, by using all the pose relations as constraints. Here the scan poses are considered

as variables. A pose relation is an estimated spatial relation between the two poses which can

be derived from matching two range scans. We also obtain pose relations from odometry mea-

surements. Finally, we estimate all the poses by solving an optimization problem. The issues

involved in this approach are discussed in the following subsections.

2.1 Deriving Pose Relations

Since we use a robot pose to de�ne the local coordinate system of a scan, pose relations between

scans can be directly obtained from odometry which measures the relative movement of the robot.

In section 4.2, we will discuss the representation of odometry pose constraint and its uncertainty.

More accurate relations between scan poses are derived from aligning pairwise scans of points.

Here any pairwise scan matching algorithm can be used. One possible choice is the extension to

Cox's algorithm [3] where line segments are �rst �t to one scan and then points in another scan

are matched to the derived line segments. In our previous studies, we proposed another scan

matching algorithm which is based on direct point to point matching [12, 13]. In either case, the

scan matching algorithm takes two scans and a rough initial estimate of their relative pose (for
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example from odometry information) as input. The output is a much improved estimate of the

relative pose.

After aligning two scans, we can record a set of corresponding points on the two scans. This

correspondence set will form a constraint between the two poses. In section 4.3, we will formulate

this type of constraint and its uncertainty as used in the estimation algorithm.

When we match two scans, we �rst project one scan to the local coordinate of the other scan,

and discard the points which are likely not visible from the second pose. The amount of overlap

between two scans is estimated empirically from the spatial extent of the matching parts between

the two scans. A pose relation is only derived when the overlap is signi�cant enough (larger than

a given threshold).

2.2 Constructing a Network of Pose Relations

Given the pairwise pose relations, we can form a network. Formally, the network of constraints

is de�ned as a set of nodes and a set of links between pairs of nodes. A node of the network is

a pose of the robot on its trajectory at which a range scan is taken. Here a pose is de�ned as

a three dimensional vector (x; y; �)t consisting of a 2D robot position and the home orientation

of the rotating range sensor. We then de�ne two types of links between a pair of nodes. First,

if two poses are adjacent along the robot path, we say that there is a weak link between the two

nodes which is the odometry measurement of the relative pose. Second, if the range scans taken

at two poses have a su�cient overlap, we say that there is a strong link between the two nodes.

To decide whether there is su�cient overlap between scans, we use an empirical measure. The

spatial extent in the overlapping part of two scans should be larger than a �xed percentage of

the spatial extent covered by both scans.

For each strong link, a constraint on the relative pose is determined by the set of corresponding

points on the two scans given by the matching algorithm. It is possible to have multiple links

between two nodes. Figure 3 shows an environment and the constructed network of pose relations.

2.3 Combining Pose Relations in a Network

The pose relations in a network can be potentially inconsistent because they are not independent

variables (the number of relations may be more than the degrees of freedom in the network),

while the individually estimated relations are prone to errors. Our task is to combine all the

pose relations and resolve any inconsistency. This problem is formulated as one of optimally
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Figure 3: Example of constructing a network of pose relations from matching pairwise scans. (a)
A simulated environment where the scan poses are labeled by circles; (b) the network of pose
relations constructed from matching overlapping scans.

estimating the global poses of nodes in the network. We do not deal with the relations directly.

Rather, we �rst solve for the nodes which constitute a set of free variables. Then a consistent set

of relations which represents a compromise of all a priori relations is de�ned by the poses on the

nodes.

An optimization problem is de�ned as follows. We construct an objective function from the

network with all the pose coordinates as variables (except one pose which de�nes our reference

coordinate system). Every link in the network is translated into a term in the objective function

which can be conceived as a spring connecting two nodes. The spring achieves minimum energy

when the relative pose between the two nodes equals the measured value (either from matching

two scans or from odometry). Then the objective function represents the total energy in the

network. We �nally solve for all the pose variables at once by minimizing this total energy

function.

2.4 The Three-Node Example

Using the 3-node example, we illustrate the di�erence of our formulation from previous ap-

proaches.

Assume that the network consists of three nodes: P1, P2, P3, and three relations T1 = P1P2,

T2 = P2P3, T3 = P3P1. When there is new measurement �T1 for relation T1, the algorithm by

Durrant-Whyte [6] updates the three relations to T 0
1, T

0
2, T

0
3 based on an optimization criterion

which is subject to the constraint T 0
1T

0
2T

0
3 = I.

In our approach, we pool together all the relations T1, T2, T3, as well �T1 to form an optimization
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problem and solve for a new estimate for the nodes: P 0
1, P

0
2, P

0
3. These node positions de�ne a

consistent set of relations: T 0
1 = P 0

1P
0
2, T

0
2 = P 0

2P
0
3, T

0
3 = P 0

3P
0
1. Note that the node positions are

free variables so we do not need to solve a complex constrained system.

Moutarlier and Chatila [14] also treat the node positions as variables when updating the network

with new measurements. But they assume the knowledge of covariance matrices among the a

priori estimates of P1, P2, P3. However, we only require the variances of individual measurement

errors on the relations T1, T2, T3, �T1, which are directly available from sensor models.

The rest of the paper is organized as follows. In section 3, we present the optimization criterion

by considering a generic optimal estimation problem. We derive a closed-form solution in a linear

special case. In section 4, we formulate the pose relations as well as the objective function in

the context of range scan registration. The closed-form solution derived in section 3 is applied to

solve for the scan poses. In section 5, we present experimental results.

3 Optimal Estimation from a Network of Relations

In this section, we formulate a generic optimal estimation algorithm which combines a set of

relations in a network. This algorithm will later be applied in section 4 in the context of robot

pose estimation and scan data registration.

3.1 De�nition of the Estimation Problem

We consider the following generic optimal estimation problem. Assume that we are given a net-

work of uncertain measurements about n+1 nodes X0; X1; : : : ;Xn. Here each node Xi represents

a d-dimensional position vector. A link Dij between two nodes Xi and Xj represents a measur-

able di�erence of the two positions. Generally, Dij is a (possibly nonlinear) function of Xi and

Xj and we refer to this function as the measurement equation. Especially interesting to us is the

simple linear case where the measurement equation is Dij = Xi �Xj .

We model an observation of Dij as �Dij = Dij + �Dij where �Dij is a random Gaussian error

with zero mean and known covariance matrix Cij . Given a set of measurements �Dij between

pairs of nodes and the covariance Cij , our goal is to derive the optimal estimate of the position

Xi's by combining all the measurements. Moreover, we want to derive the covariance matrices of

the estimated Xi's based on the covariance matrices of the measurements.

Our criterion of optimal estimation is based on the maximum likelihood or minimum variance
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concept. The node position Xi's (and hence the position di�erence Dij 's) are determined in

such a way that the conditional joint probability of the derived Dij's, given their observations
�Dij 's, is maximized. If we assume that all the observation errors are Gaussian and mutually

independent, the criterion is equivalent to minimizing the following Mahalanobis distance (where

the summation is over all the given measurements):

W =
X
(i;j)

(Dij � �Dij)
tC�1

ij (Dij � �Dij): (1)

Even if the observation errors are not independent, a similar distance function can still be formed.

However, it will involve the correlation matrices of the measurements. The assumption of inde-

pendence is actually not necessary in our formulation. The assumption makes practical sense as

the covariances of errors are di�cult to estimate.

A typical application of the optimal estimation problem is in mobile robot navigation, where we

want to estimate the robot pose and its uncertainty in three degrees of freedom (x; y; �). The

observations are the relative robot poses from odometry, and also possible from matching sensor

measurements. We want to utilize all the available measurements to derive the optimal estimate

of the robot poses. Note that in this application, the measurement equation is non-linear because

of the � component in the robot pose.

Our approach above di�ers from the one typically used within a Kalman �lter formulation, in

which only the current pose is estimated, while the history of previous poses and associated

measurements is collapsed into the current state of the Kalman �lter. Our objective, however, is

not simply getting from A to B safely and accurately, but also building a map of the environment.

It is, therefore, meaningful to use all the measurements obtained so far in the mapping process.

The old poses themselves are not particularly useful. But we are using the poses to de�ne local

object frames. Thus maintaining the history of robot poses is equivalent to maintaining the

structure of the environment model. The advantage of using a pose to de�ne a data frame is

that it is unambiguous and it avoids the di�cult segmentation and object identi�cation problem

present in other work.

Next, we study the case when the measurement equation is linear and we derive closed-form

solutions for the optimal estimates of the nodes and their covariances. Later, we will solve the non-

linear robot pose estimation problem by approximately forming linear measurement equations.
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3.2 Solution of Optimal Linear Estimation

We consider the special case where the measurement equation has the simple linear form: Dij =

Xi �Xj . Here Xi; i = 0; 1; : : : ; n are the nodes in the network which are d-dimensional vectors

and the Dij 's are the links of the network. Without loss of generality, we assume that there is a

link Dij between every pair of nodes Xi;Xj . For each Dij , we have an observation �Dij which is

assumed to have Gaussian distribution with mean value Dij and known covariance Cij . In case

the actual link Dij is missing, we can simply let the corresponding C�1
ij be 0. Then the criterion

for the optimal estimation is to minimize the following Mahalanobis distance:

W =
X

0�i<j�n

(Xi �Xj � �Dij)
tC�1

ij (Xi �Xj � �Dij): (2)

Note that W is a function of all the position Xi's. Since we can only solve for relative positions

given the relative measurements, we choose one node X0 as a reference and consider its coordinate

as constant. Without loss of generality, we let X0 = 0 and then X1;X2; : : : ; Xn will represent the

relative positions from X0.

We can express the measurement equations in a matrix form as

D = HX (3)

where X is the nd-dimensional vector which is the concatenation of X1; X2; : : : ;Xn; D is the

concatenation of all the position di�erences of the form Dij = Xi �Xj; and H is the incidence

matrix with all entries being 1, �1, or 0. Then the functionW can be represented in matrix form

as:

W = (�D�HX)tC�1(�D�HX) (4)

where �D is the concatenation of all the observations �Dij for the corresponding Dij and C is the

covariance of �D which is a square matrix consists of Cij 's as sub-matrices.

Then the solution for X which minimizes W is given by

X = (Ht
C
�1
H)�1

H
t
C
�1 �D: (5)

The covariance of X is

CX = (Ht
C
�1
H)�1: (6)

If the measurement errors are independent, C will be block-diagonal and the solution can be

simpli�ed. Denote the nd � nd matrix Ht
C
�1
H by G and expand the matrix multiplications.
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We can obtain the d� d sub-matrices of G as

Gii =
nX
j=0

C�1
ij (7)

Gij = �C�1
ij : (i 6= j)

Denote the nd-dimensional vector Ht
C
�1 �D by B. Its d-dimensional sub-vectors are the following

(let �Dij = � �Dji):

Bi =
nX

j=0; j 6=i

C�1
ij

�Dij : (8)

Then the position estimates and covariance can be written as

X = G�1
B; CX = G�1: (9)

The above algorithm requires G = Ht
C
�1
H to be invertible. If the network is fully connected

and the individual error covariances are normally behaved, we believe it is possible to prove that

G is invertible. Note the dimension of G (number of free nodes) is less than or equal to the

dimension of C (number of edges) in a fully connected graph.

3.3 Special Networks

X1X0
X2X1X0

D00

(b)

D0

D12D01

(a)

Figure 4: (a) Serial connection; (b) parallel connection.

We will apply the formula in Eq. 9 to two interesting special cases as in Figure 4. First, if the

network consists of two serially connected links, D01 and D12, the derived estimate of X2 and its

covariance matrix are

X2 = D01 +D12 (10)

C2 = C01 + C12 (11)

Another case to consider is the network which consists of two parallel links D0 and D00 between

two nodes X0 and X1. If the covariance of the two links are C 0 and C 00, the estimate of X1 and
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its covariance are given by

X1 = (C 0�1 + C 00�1)�1(C 0�1D0 + C 00�1D00) (12)

C = (C 0�1 + C 00�1)�1 (13)

The solution is equivalent to the Kalman �lter formulation. The above two cases correspond to

the compounding and merging operations given by Smith and Cheeseman [16], which are used to

reduce a complex network to a single relation. Smith and Cheeseman's algorithm has a limitation

that it only applies to networks formed by serial and parallel connections.

X3

X2

X0

X1

D12

D02

D01 D13

D23

Figure 5: A Wheatstone bridge network.

Consider the network in the form of a Wheatstone bridge (Fig. 5). The estimate of X3 can not

be obtained through compounding and merging operations. Therefore, the method by Smith

and Cheeseman can not be directly applied to simplify this network1, while in our method, the

variables X1, X2, X3 can be solved from the linear system GX = B where

G =

0
B@ C�1

01 + C�1
12 + C�1

13 �C�1
12 �C�1

13

�C�1
12 C�1

02 + C�1
12 + C�1

23 �C�1
23

�C�1
13 �C�1

23 C�1
13 + C�1

23

1
CA (14)

B =

0
B@ C�1

01
�D01 + C�1

12
�D12 + C�1

13
�D13

C�1
02

�D02 � C
�1
12

�D12 + C�1
23

�D23

�C�1
13

�D13 � C
�1
23

�D23

1
CA : (15)

The covariance matrix for the estimated position X3 has a nice symmetric form (derived by

expanding G�1):

C�1
3 =

�
C�1
01 C�1

02

� C�1
01 + C�1

12 + C�1
13 �C�1

12

�C�1
12 C�1

02 + C�1
12 +C�1

23

!�1  
C�1
13

C�1
23

!
(16)

1It is possible to �rst convert a triangle in the network to an equivalent Y-shaped connection and then the

network becomes one with serial and parallel links. However, this Delta-to-Y conversion still can not turn every

network into a combination of serial and parallel connections.
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4 Derivation of Pose Relations

In this section, we will apply the optimal estimation algorithm, as derived in section 3, to the

robot pose estimation and scan data registration problem. To do this, we need to derive linearized

measurement equations for the pose relations. In the following subsections, we study a constraint

on pose di�erence given by matched scans or odometry measurements. For each constraint, we

formulate a term in the form of Mahalanobis distance. For convenience in discussions of pose

measurements, we will �rst de�ne a pose compounding operation.

4.1 Pose Compounding Operation

Assume that the robot starts at a pose Vb = (xb; yb; �b)
t and it then changes its pose by D =

(x; y; �)t relative to Vb, ending up at a new pose Va = (xa; ya; �a)
t. Then we say that pose Va is

the compounding of Vb and D. We denote it as:

Va = Vb �D: (17)

The coordinates of the poses are related by:

xa = xb + x cos �b � y sin �b (18)

ya = yb + x sin �b + y cos �b (19)

�a = �b + �: (20)

This is the same compounding operation as de�ned by Smith and Cheeseman [16]. If we consider

that an absolute pose de�nes a coordinate system (the xy coordinates of the origin and the

direction of one axis), and a relative pose de�nes a change of coordinate system (a translation

followed by a rotation), then the compounding operation gives the pose which de�nes the new

coordinate system after the transformation. The compounding operation is not commutative,

but it is associative. We can thus de�ne the compounding of a series of poses.

It is also useful to de�ne the inverse of compounding which takes two poses and gives the relative

pose:

D = Va 	 Vb: (21)

The coordinates are related by the following equations:

x = (xa � xb) cos �b + (ya � yb) sin �b (22)

y = �(xa � xb) sin �b + (ya � yb) cos �b (23)

� = �a � �b: (24)
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If Dab is the relative pose Va	Vb, the reversed relative pose Dba = Vb	 Va can be obtained from

Dab by a unary operation:

Dba = 	Dab = (0; 0; 0)t 	Dab: (25)

We can verify that (	D)� V = V 	D.

We also want to de�ne a compounding operation between a full 3D pose Vb = (xb; yb; �b) and a

2D position vector u = (x; y)t. The result is another 2D vector u0 = (x0; y0)t. We still denote the

operation as

u0 = Vb � u: (26)

The coordinates for u0 are given by the �rst two equations of the full 3D pose compounding

(Eq. 18,19). This 2D compounding operation is useful for transforming an non-oriented point

(typically from a range sensor) from its local sensor coordinate system to the global coordinate

system.

4.2 Pose Relations from Matched Scans

Let Va and Vb be two nodes in the network and assume there is a strong link connecting the

two poses. From the pairwise scan matching algorithm, we get a set of pairs of corresponding

points: uak; u
b
k; k = 1; : : : ;m, where the 2D non-oriented points uak; u

b
k are from scan Sa and Sb,

respectively. Each pair (uak; u
b
k) corresponds to the same physical point in the robot's environment

while they are represented in di�erent local coordinate systems. If we ignore any sensing or

matching errors, two corresponding points are related by:

�Zk = Va � u
a
k � Vb � u

b
k = 0: (27)

If we take the random observation errors into account, we can regard �Zk as a random variable

with zero mean and some unknown covariance CZ
k . From the correspondence pairs, we can form

a constraint on the pose di�erence by minimizing the following distance function:

Fab(Va; Vb) =
mX
k=1

k(Va � u
a
k)� (Vb � u

b
k)k

2: (28)

If we notice that a pose change is a rigid transformation under which the squared Euclidean

distance k � k2 is invariant, we can rewrite the function in an equivalent form:

Fab(Va; Vb) =
mX
k=1

k((Va 	 Vb)� u
a
k)� u

b
kk

2: (29)

Thus Fab is a function of D0 = Va 	 Vb. The solution of D0 which minimizes Fab can be derived

in closed-form (see [12]). The relation D0 = Va 	 Vb is the measurement equation.
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In order to reduce Fab into the Mahalanobis distance form, we linearize each term �Zk. Let
�Va = (�xa; �ya; ��a)

t, �Vb = (�xb; �yb; ��b)
t be some close estimates of Va and Vb. Denote �Va = �Va � Va

and �Vb = �Vb � Vb. Let uk = (xk; yk)
t = Va � u

a
k � Vb � u

b
k (the global coordinates of a pair of

matching points). Then for small �Va and �Vb, we can derive from Taylor expansion:

�Zk = Va � u
a
k � Vb � u

b
k = (�Va ��Va)� u

a
k � ( �Vb ��Vb)� u

b
k

� ( �Va � u
a
k �

�Vb � u
b
k)�

  
1 0 �ya � yk
0 1 ��xa + xk

!
�Va �

 
1 0 �yb � yk
0 1 ��xb + xk

!
�Vb

!

= (�Va � u
a
k �

�Vb � u
b
k)�

 
1 0 �yk
0 1 xk

!
( �Ha�Va � �Hb�Vb) (30)

where

�Ha =

0
B@ 1 0 �ya

0 1 ��xa
0 0 1

1
CA ; �Hb =

0
B@ 1 0 �yb

0 1 ��xb
0 0 1

1
CA : (31)

We can rewrite Eq. 30 as

�Zk � �Zk �MkD (32)

where

�Zk = �Va � u
a
k �

�Vb � u
b
k (33)

Mk =

 
1 0 �yk
0 1 xk

!
(34)

D = ( �Ha�Va � �Hb�Vb): (35)

Thus we can now regard D in Eq. 35 as the pose di�erence measurement equation to replace

D0 = Va 	 Vb. For the m correspondence pairs, we can form m equations as in Eq. 32. If we

concatenate the �Zk's to form a 2m� 1 vector Z, and stack the Mk's to form a 2m� 3 matrixM,

then Fab can be rewritten as a quadratic function of D:

Fab(D) =
mX
k=1

(�Zk)
t(�Zk) (36)

� (Z�MD)t(Z�MD): (37)

We can then solve for the D = �D which minimizes Fab as

�D = (Mt
M)�1

M
t
Z: (38)

The criterion of minimizing Fab(D) constitutes a least-squares linear regression. In Eq. 32, Mk is

known and �Zk is observed with an error �Zk having zero mean and unknown covariance CZ
k . If
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we assume that all the errors are independent variables having the same Gaussian distribution,

and further assume that the error covariance matrices have the form:

CZ
k =

 
�2 0
0 �2

!
; (39)

then the least squares solution �D has the Gaussian distribution whose mean value is the true

underlying value and whose estimated covariance matrix is given by CD = s2(Mt
M)�1, where s2

is the unbiased estimate of �2:

s2 = (Z�M �D)t(Z�M �D)=(2m � 3) =
Fab( �D)

2m� 3
: (40)

Moreover, we notice that Eq. 37 can be rewritten as

Fab(D) � ( �D �D)t(Mt
M)( �D �D) + Fab( �D): (41)

We can de�ne the energy term Wab corresponding to the pose relation which is equivalent to a

Mahalanobis distance:

Wab = (Fab(D)� Fab( �D))=s2 (42)

� ( �D �D)tC�1
D ( �D �D) (43)

where

CD = s2(Mt
M)�1 (44)

is the estimated covariance of �D. Note that D (as given in Eq. 35) is the linearized pose di�erence

measurement equation.

In deriving the covariance matrix CD, we made assumptions that the matrix is diagonal and

the individual components of errors are zero mean Gaussian. It is probably di�cult to justify

these assumption. However, we believe that they are reasonable ones in practice. If any other

estimates of the covariance matrices are available, they can certainly also be incorporated in our

global estimation formulation.

4.3 Pose Relations from Odometry

We also form an energy term in the objective function for each weak link. Suppose odometry

gives a measurement �D0 of the relative pose D0 as the robot travels from pose Vb to pose Va. The

measurement equation is:

D0 = Va 	 Vb: (45)
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We de�ne the energy term in the objective function as follows:

Wab = ( �D0 �D0)tC 0�1( �D0 �D0) (46)

where C 0 is the covariance of the odometry error in the measurement �D0.

The covariance of measurement error is estimated as follows. Consider that a cycle of pose change

consists of: (1) the robot platform rotation by an angle � to face towards the new target position;

(2) the robot translation by a distance L to arrive at the new position; (3) the sensor rotation

by a total cumulative angle � (usually 360�) to take a scan of measurements while the platform

is stationary. We model the deviations ��, �L, �� , of the errors in the variables �, L, and � as

proportional to their corresponding values, while the constant ratios are determined empirically.

The 3D pose change D0 = (x; y; �)t is derived as:

x = L cos�; y = L sin�; � = �+ �: (47)

Then the covariance C 0 of the pose change D0 can be approximated as:

C 0 = J

0
B@ �2� 0 0

0 �2L 0
0 0 �2�

1
CAJ t (48)

where J is the Jacobian matrix consisting of the partial derivatives of (x; y; �)t with respect to

(�;L; �)t:

J =

0
B@ �L sin� cos� 0

L cos� sin� 0
1 0 1

1
CA : (49)

We would also like to linearize and transform the measurement equation of D0 to make the pose

di�erence representation for odometry measurements consistent with that for matched sensing

data. Consider the observation error �D0 = �D0 � D0 of odometry. Let �Va = (�xa; �ya; ��a)
t,

�Vb = (�xb; �yb; ��b)
t be some close estimates of Va and Vb. Denote �Va = �Va�Va and �Vb = �Vb�Vb.

Then through Taylor expansion, the observation error �D0 becomes:

�D0 = �D0 �D0 = �D0 � (Va 	 Vb) (50)

= �D0 � (( �Va ��Va)	 ( �Vb ��Vb)) (51)

� �D0 � ( �Va 	 �Vb) + �K�1
b (�Va � �Hab�Vb) (52)

where

�K�1
b =

0
B@ cos ��b sin ��b 0
� sin ��b cos ��b 0

0 0 1

1
CA ; �Hab =

0
B@ 1 0 ��ya + �yb

0 1 �xa � �xb
0 0 1

1
CA : (53)
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Notice that �Hab = �H�1
a

�Hb where �Ha and �Hb are de�ned in Eq. 31. If we de�ne a new observation

error �D = � �Ha
�Kb�D

0, then we can rewrite Eq. 52 as

�D = �D � ( �Ha�Va � �Hb�Vb) = �D �D (54)

where we denote

�D = �Ha
�Kb(( �Va 	 �Vb)� �D0) (55)

D = �Ha�Va � �Hb�Vb: (56)

Notice that now we are dealing with the measurement equation for D which is consistent with

that for matched sensing data. �D can be considered as an observation of D. The covariance C

of �D can be computed from the covariance C 0 of �D0 as:

C = �Ha
�KbC

0 �Kt
b
�Ht
a: (57)

The energy term in the objective function now becomes:

Wab � ( �D �D)tC�1( �D �D): (58)

4.4 Optimal Pose Estimation

Once we have uniformly formulated the two types of measurements, we can apply the estimate

algorithm in section 3 to solve for the pose variables. Denote the robot poses as Vi; i = 0; 1; : : : ; n.

The total energy function from all the measurements is :

W =
X
(i;j)

( �Dij �Dij)
tC�1

ij ( �Dij �Dij) (59)

where Dij is the linearized pose di�erence between Vj and Vi:

Dij = �Hi�Vi � �Hj�Vj (60)

and �Dij is an observation of Dij ( �Dij is derived from the true observations, either range data or

odometry measurements). The covariance Cij is also known.

By regarding Xi = �Hi�Vi as the state vector corresponding to a node of the network as in

Section 3.2, we can directly apply the closed-form linear solution to solve for the Xi's as well as

their covariance CX
i . The formulas are in Eq. 5 to Eq. 9. Then the pose Vi and its covariance Ci

can be updated as:

Vi = �Vi � �H�1
i Xi; Ci = ( �H�1

i )CX
i ( �H�1

i )t: (61)

20



Note that the pose estimate Vi and the covariance Ci is given based on the assumption that the

reference pose V0 = 0. If, in fact, V0 = (x0; y0; �0)
t is non-zero, the solution should be transformed

to

V 0
i = V0 � Vi; C 0

i = K0CiK
t
0 (62)

where

K0 =

0
B@ cos �0 � sin �0 0

sin �0 cos �0 0
0 0 1

1
CA : (63)

4.5 Sequential Estimation

The estimation algorithm we previously discussed is a one-step procedure which solves for all

the pose variables at the same time. The algorithm is to be applied only after collecting all the

measurements. Yet it will be more practically useful if we have a sequential algorithm which

continuously provides estimates about the current or past pose variables after getting each new

measurement. Here we will describe such a sequential procedure.

Our sequential algorithm maintains the current best estimate about the poses of previously visited

places. At each step, a new location is visited and measurements about the new location as well

as the previous locations are gathered. By using these new measurements, the current pose can

be estimated while the previous poses can be updated.

Let X1; : : : ; Xn�1 be the pose vectors which we have previously estimated and let Xn be the cur-

rent new pose which we are about to measure. LetX represent the concatenation ofX1; : : : ;Xn�1,

Xn. Assume that we currently have an estimate X0 of X whose inverse covariance matrix is C�1
X0
.

Because we have no knowledge about Xn yet, the Xn component in X0 contains an arbitrary

value and the matrix C�1
X0

has all zeros in the last d rows and d columns, where d = 3. Now

consider the addition of a set of new measurements relating Xn to some of the past pose vari-

ables. Let the measurement equation, in matrix form, be D = HX (H is a constant matrix).

Assume that the set of measurements is �D which is an unbiased observation of D whose error

has Gaussian distribution with covariance matrix CD. The updated estimate of X after using

the new measurements is the one which minimizes the following function, using the maximum

likelihood criterion, and assuming independent errors:

W = (X�X0)
t
C
�1
X0
(X�X0) + (�D�HX)tCD

�1(�D�HX): (64)

The solution can be derived as

X = (C�1
X0

+Ht
CD

�1
H)�1(C�1

X0
X0 +H

t
CD

�1 �D) (65)
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and the new covariance of X is

CX = (C�1
X0

+Ht
CD

�1
H)�1: (66)

A convenient way of updating X and CX is to maintain a matrix G =
P
H
t
CD

�1
H and a vector

B =
P
H
t
CD

�1 �D (the summation is over di�erent sets of measurements). Then at each step,

the updating algorithm is the following: First increase the dimensions of G and B to include the

new pose Xn. Update G and B as

G  G+Ht
CD

�1
H (67)

B  B+Ht
CD

�1 �D: (68)

Then the new X and CX are given by

X = G�1
B; CX = G�1: (69)

One potential problem with the above sequential updating procedure is that the state variable

X keeps expanding as it is augmented by a new state at each step. In case the robot path is

very long, the variable size may become too large, causing storage or performance problems. A

possible solution is to delete some of the old variables while adding the new ones.

We propose a strategy of reducing the number of state variables as follows. In order to choose

a pose to be deleted, we check all pairs of poses and �nd a pair (Xi;Xj) where the correlation

between the two poses is the strongest. We then force the relative pose between Xi and Xj to be

�xed as a constant. Then Xi can be deleted from the state variables as it can be obtained from

Xj . When deleting the node Xi from the network, we transform any link (Xi;Xk) into a link

from Xj to Xk. Note that the covariance matrix CX contains all the pairwise covariance between

any two poses. A correlation ratio between two poses can be computed from the covariance and

variance.

By only �xing some relative poses, the basic structure in the network is still maintained. Thus

we are still able to consistently update all the pose variables once given new measurements. This

strategy is more exible than the simple strategy of �xing selected absolute poses as constants.

Another approach to reducing the size of the system is to decompose the large network into smaller

components. The estimation algorithm is to be applied to each sub-network. The relative pose

between two nodes in di�erent sub-networks can be obtained through pose compounding. If

there is a single link connecting two parts of a network, the poses in two parts can be estimated

separately and then combined with compounding, without loss of information. If, however, the

network is strongly connected that there are two or more links between any two nodes, then a

decomposition could give a sub-optimal estimation.
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5 Implementation and Experiments

5.1 Implementation of Estimation Procedure

The implementation of the estimation algorithm is as follows. After building the network, we

obtain the initial pose estimates �V1; : : : ; �Vn by compounding the odometry measurements. Then

for each link, we compute a measurement vector �Dij and a covariance matrix Cij according

to Eq. 38, 44 or Eq. 55, 57. Finally, we form a large linear system GX = B as explained in

Section 3.2 and solve for the pose variables X.

The components needed to build G and B are C�1
ij and C�1

ij
�Dij . In the case of a strong link

(from matching a pair of scans), these components can be readily computed as C�1
ij = (Mt

M)=s2;

C�1
ij

�Dij = (Mt
Z)=s2 which can be expanded into simple summations by noting the regularity in

the matrixM. In the case of a weak link (from odometry), these components can be computed by

multiplications of small matrices (3�3). The most expensive operation in the estimation process

is to compute the inverse of a 3n� 3n matrix G which gives the covariance of X.

The network is stored as a list of links and a list of nodes. Each link contains the following

information: type of link, labels of the two nodes, the computed measurement (relative pose),

and the covariance matrix of the measurement. Each node contains a range scan.

Note that we made linear approximations in the measurement equations in formulating the opti-

mization criterion. The �rst order approximation error is proportional to the error in the initial

pose estimate. Clearly, if we employ the newly derived pose estimate to formulate the linear

algorithm again, a even more accurate pose estimate can be obtained.

The iterative strategy based on this observation converges very fast. Typically, the �rst iteration

corrects over 90% of the total pose error correctable by iterating the process. It usually takes

four or �ve iterations to converge to the limit of machine accuracy.

5.2 Experiments with Simulated and Real Scan Data

We now present experiments of applying our algorithm to register simulated and real range scan

data. We �rst show an example using a simulated environment and measurements. This is useful

because ground truth is known. Then an example using real data is presented.

In the �rst example, we simulate a rectangular environment with a width of 10 units. The robot

travels around a central object and forms a loop in the path. There are 13 poses along the path at
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a

b

Figure 6: Global registration of multiple scans using simulated scan data. (a) scans recorded in
a global coordinate system where the pose of each scan is obtained from compounding odometry
measurements. The scans align poorly because of accumulation of odometry error. (b) the result
of correcting pose errors. Both the dashed lines and solid lines show the constraints from matching
scan pairs. The solid lines also give the robot path and odometry constraints.
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which simulated range scans are generated (with random measurement errors). We also simulate

a random odometry error (which is the di�erence between a pose change the robot thinks it made

and the actual pose change) at each leg of the trajectory. The magnitude of the accumulated

odometry error is typically in the range of 0.5 units.

We apply our iterative global pose estimation algorithm to correct the pose errors. In Fig. 6(a),

we show all the scans recorded in the initial coordinate system where the pose of each scan is

obtained by compounding odometry measurements. Due to the accumulation of odometry error

the scan data are aligned poorly. In Fig. 6(b), we show the result of correcting the pose errors

and realigning the scan data. Each line segment (either dashed or solid) in the �gure represents

a strong link obtained from matching two scans. In addition, the solid lines show the robot

path which corresponds to the weak links. A plot of orientational and positional errors of the

poses along the path, both before and after the correction, is given in Fig. 7. Pose errors are

accumulated along the path while the corrected pose errors are bounded. For comparison, we

also apply a local registration procedure which matches one scan only to the previous scan. The

pose errors along the path after this local correction are also shown in Fig. 7. Although pose

errors are also signi�cantly reduced after local corrections, they can still potentially grow without

bound. In this example, global registration produces more accurate results than local correction.
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Figure 7: Pose errors along the path, before correction, after local correction, and after global
correction. (a) Orientational errors; (b) positional errors.

Then we present the experiment using real range scans and odometry data. The testing envi-

ronment is the cafeteria and nearby corridor in FAW, Ulm, Germany. The robot travels through

the environment following a given path. A sequence of 30 scans which were taken by the robot

with an interval of about 2 meters between scan poses were obtained. The laser sensor is a Ladar

2D IBEO Lasertechnik which is mounted on the AMOS robot. This laser sensor has a maximum
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a

b

Figure 8: Consistent global registration of 30 real range scans which are collected by a robot at
FAW, Ulm, Germany. (a) unregistered scans whose poses are subject to large odometry errors.
(b) registered scans after correcting the pose errors. The robot path estimated from odometry is
shown in dashed lines. The corrected path is shown in solid lines.
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a

b

Figure 9: Mapping of a Hallway using the RWI Pioneer platform and a SICK laser range scanner
(a) Raw laser range scans (b) Aligned laser range scans.
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viewing angle of 220 degrees. Thus having only the 2D positions of two poses close together

does not necessarily ensure a su�cient overlap between the scans taken at the two poses; we also

need the sensor heading directions to be similar. Among the 30 scans, 84 links from matching

overlapping scan pairs are constructed. Some of these pairwise scan matching results have been

shown in [12]. In Fig. 8, we show (a) the unregistered scans and (b) the globally registered scans

in part (b).

Further experimental results with a variant of our algorithm are reported in [9]. Figure 9 contains

experimental results which are obtained using our global registration procedure together with a

modi�ed version of Cox's pairwise scan matching algorithm2. The laser data are collected on

the RWI Pioneer platform using the SICK laser ranging device [15]. The Pioneer is a low-cost

platform with odometry error signi�cantly higher than the much more expensive platforms used

in our other experiments. The hallway environment shown in Figure 9 is poor in features that

allow localization of the robot along the hallway. The data was collected by a robot that went

up and down the hallway several times. A large rotation error was introduced by the large turns

at the ends of the hallway.

6 Discussion

In this paper, we formulated the problem of consistent range data registration as one of optimal

pose estimation from a network of relations. The main ideas are as follows. We associate a robot

pose to a range scan to de�ne an unambiguous object frame. By consistently maintaining the

history of robot poses, we e�ectively allow all object frames to be consistently registered in the

global reference frame. We use a combination of relation-based and location-based approach to

represent the world model. It can be viewed as a two-step procedure. First, spatial relations

between object frames are directly derived from odometry measurements and matching pairwise

frames. These relations, along with their uncertainties, constitute all the information in the

model. In the second step, the relations are converted to object frame locations based on an

optimization criterion. This formulation avoids the use of complex constrained optimization.

Furthermore, it does not require the assumption of known a priori covariance between object

frames.

We also derived measurement equations compatible with the formulation. It allows practical

implementation of the algorithm. We have experimentally demonstrated the e�ectiveness of

our estimation procedure in maintaining consistency among multiple range scans. The most

2We are grateful to Ste�en Gutmann of the AI Laboratory at the Albert-Ludwigs-Universit�at Freiburg for

providing us with these experimental results.
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expensive operation, besides pairwise scan matching, is to compute the inverse of an 3n � 3n

matrix. Although the number of poses n may be large for a long robot path, there are ways

to limit this size to speed up the computation. The sequential procedure enables the robot to

continuously maintain the optimal registration result.

Our approach assumes that the robot stops to collect a complete range scan at its current position.

An alternative would be to perform continuous scanning as the robot moves. Continuous scanning

would generate large amounts of data that would have to be sampled. In addition, the problem

of associating measurements with the correct robot position arises, as di�erent parts of a scan

will have been obtained from di�erent robot positions. Solving this problem would require an

accurate model of the robots motion. A possible solution to the problem of excessive amounts of

data is to partition the continuous scan data and transform each part to one pose on the path,

based on the odometry model. These are both worthwhile problems, which we consider outside

the scope of this paper.

Although we develop our method for mapping a 2D environment using 2D range scans, our for-

mulation is general and it can be applied to the 3D case as well, by generalizing pose composition

and linearization [12].
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