
Information Retrieval in Network Administration

Ashley George, Adetokunbo Makanju
A. Nur Zincir-Heywood, Evangelos E. Milios

Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

B3H 1W5
Canada

{ageorge,makanju,zincir,eem}@cs.dal.ca

Abstract

Network administration is a task that requires expe-
rience in relating symptoms of network problems with
possible causes and corrective actions. We describe the
design of a system and more specifically its informa-
tion retrieval component, which aims to retrieve articles
relevant to a given problem case from a collection of
articles describing previously solved problems and their
associated solutions. An article is described by a term
vector. We present a methodology for defining the vo-
cabulary and preliminary results for assessing the quality
of expert-proposed modifications to the vocabulary. We
obtain vocabulary-derived document classes from a self-
organising map and assess vocabulary quality using the
quality of classification into these classes.

1. Introduction

The web hosting and off-site data storage market is
one that is fast growing and highly competitive. As the
web hosting market has grown, so has the complexity
of the systems which hosting providers build and main-
tain. When downtime occurs, failures must be promptly
corrected to preserve high quality service. It is also ob-
served that hosting provider trouble cases tend to recur
and follow a typical sequence of process steps. The fol-
lowing list outlines the typical steps in problem resolu-
tion.

1. Downtime Occurs

2. Service Alerts Observed

3. Trouble Ticket Raised

4. Ticket Assigned

5. Root Cause of Downtime is Identified

6. Resolution is Planned

7. Resolution is Implemented

8. Notification/Clean Up

Steps 5 and 6 account for the majority of the
troubleshooting effort. This results from the time-
consuming and knowledge-intensive process of identify-
ing the root cause of a failure. If these two steps could
be made faster and easier to perform, there would be
a large savings in time and effort for system adminis-
trators. The system we describe in this paper is part
of an effort to address these steps in the resolution cy-
cle. We further describe specific results pertaining to
quantifying proposed expansions to the vocabulary of a
taxonomy which is used internally by our system.

We discuss this in the following sections. Section 2
gives an overview of techniques and technology related
to web service provision, experience management and
information retrieval. Section 3 describes our method-
ology for evaluating our system taxonomy and recate-
gorising a document collection. Section 4 outlines the
experiments in greater detail and describes the results.
Section 5 presents discussion and conclusions are given
in Section 6.

2. Managing System
Administrative Experience

System administrators draw on a variety of resources
to acquire information regarding a downtime issue.
These resources may include co-workers, trouble tickets,
log entries or offsite information sources. For the sys-
tem administrator, this acquired information can be said

1

to accumulate as experience knowledge [1]. Given the
typically recurrent nature of downtime issues, this ex-
perience knowledge, gained over time by system admin-
istrators, becomes critical in saving the effort required
to execute steps 5 and 6 in the described problem res-
olution process. Achieving this savings would require
a system which associates system events with informa-
tion relating to the system failure, including corrective
administrator actions and internal or off-site informa-
tion sources. This stored entity would be described as a
problem case. New problem cases would either be trig-
gered automatically by system events or manually by an
administrator. In the event of a new case, the system
would retrieve similar cases in the knowledge base, aim-
ing to present potential corrective actions to the system
administrator for reuse or inspiration to improve trou-
bleshooting and decrease downtime costs. The problem
in part reduces to an information retrieval (IR) task
in which, given a document vector, one must retrieve
’similar’ documents from a database. However, this re-
trieval task presents numerous challenges in the form
of indexing, retrieving and ranking heterogeneous data
structures.

2.1. Web Hosting Control Panel
Applications (WHCPA)

Web hosting requires management of interactions be-
tween a variety of actors. This includes system adminis-
trators, managers, resellers and customers, resulting in a
complex business process. To deal with this complexity,
some companies use Web Hosting Control Panel Appli-
cations to mediate the business process. A Web Host-
ing Control Panel Application (WHCPA) is a web-based
server administration and management tool designed
specifically for the web-hosting environment. The con-
trol panel can typically be configured to provide differ-
ing levels of access privileges for system administrators,
managers and users. The web control panel serves as a
unified solution for web service management. From the
point of view of a system administrator, a WHCPAmust
not only assist her with her routine tasks in maintain-
ing her hosting environment and web pages, it should
also enable her to resolve downtime incidents within the
shortest possible time. Several commercial open source
and commercial WHCPA are in use today. In devel-
oping the interface for our system, we considered a va-
riety of WHCPAs with regard to the features they of-
fer system administrators for maintenance and recovery
tasks. The WHCPAs we considered include cPanel, En-
sim, HSphere, Plesk, VHCS and ZPanel [2, 3, 4, 5, 6, 7].
Apart from Plesk, cPanel and ZPanel, none of the WHC-
PAs provide any features for acquisition, transfer and re-

trieval of knowledge about the problem cases over time,
their causes and their possible solutions. Moreover, the
solutions provided by Plesk, cPanel and ZPanel are spe-
cific to their applications and not intended for organ-
isational knowledge acquisition. Thus we attempt to
fill this gap with a combination of techniques, some of
which are described in the following section.

2.2. System Framework

Our solution is intended not to perform automatic
diagnosis and correction but to assist the administra-
tor in identifying similar faults that have previously
occurred and to retrieve information about the steps
previously taken to correct the problem. The system’s
main components include the fault diagnosis engine, the
case knowledge base, the problem/solution matching en-
gine, the presentation module, the feedback module and
knowledge base editor. The first three components form
the core of the system and require information retrieval
techniques. All six components are explained in greater
detail below.

• Fault diagnosis engine Transforms the system alerts
generated by the fault detection systems into a for-
mat which can be used to represent a new case
and retrieve from the knowledge base similar cases
which have been resolved in the past.

• Case knowledge base At the core of our proposed
system is the case knowledge base which repre-
sents stored experience derived from previously re-
solved cases. A case is a heterogeneous structure
composed of its problem definition, relevant sys-
tem alerts, administrative actions taken to resolve
the issue, and offsite resources which describe the
problem in more detail.

• Problem/solution matching engine The prob-
lem/solution matching engine retrieves past cases
using the new case description provided by the fault
diagnosis engine. We generate separate indices for
text-based and time-based querying. The similar-
ity of two cases is a composite score based on the
distance between their shared subcomponents.

• Presentation module The interface through which
the administrator can interact with the system.

• Feedback module The feedback module helps in ac-
quiring knowledge relevant to the new case from
the administrator. The administrator can enter any
relevant notes or information for the case which are
not directly captured by the system in the course
of normal operation.

2

• Knowledge base editor This module can be used by
the administrator or knowledge engineer for manual
maintenance of the case knowledge base.

2.3. Information Retrieval

Information Retrieval (IR) is typically framed as
searching for documents containing desired information
within a body of documents. It is also concerned with
the representation, storage and organisation of infor-
mation items [8]. Owing to the enormous volumes of
documents and media available online, today IR tech-
niques have become central in finding relevant informa-
tion quickly and effectively.

The information retrieval process begins when a user
formulates a query. In web-based practice the canon-
ical full-text query is approximated by a set of query
terms capturing the user’s search intuition. The IR
system compares the terms in the user query with the
terms characteristic of each document in the knowl-
edge base. Documents whose characteristic terms match
most nearly to the user’s query are selected and ranked
according to their relevancy for the query. The most
relevant documents are then presented to the user in
an accessible fashion, normally a ranked list sometimes
with a relevance indicator.

2.3.1. Term Frequency and Inverse
Document Frequency (TFIDF)

The Term Frequency-Inverse Document Frequency
(tf-idf) metric [8] is one of the key metrics used to deter-
mine the relevance of a word for a given document. We
are interested in a metric for relevance so that we can
define a distance between a user query and any docu-
ment in our database. Let T be the set of all terms
occurring in the documents in a database. The term
frequency (tfij) records nij , the number of times a term
ti appears in a document j, normalised by the number
of terms in the document, |Dj |, as in Equation (1). As
document lengths may vary considerably, it is important
to capture the relative frequency of the term within its
document. The second component of tf-idf is the inverse
document frequency (idf), as in Equation (2), where dj

is the j’th document, ti the i’th term in T , and |D|
is the total number of documents. The inverse docu-
ment frequency characterises the frequency of the term
within the entire document set and decreases rapidly
for terms which appear in many documents. (idf tends
to zero as the ratio in Equation (2) approaches one.)
The tf-idf metric is obtained via the product of term
frequency and inverse document frequency, as in Equa-
tion (3). The captured intuition is that terms which

appear in all or most documents do not serve to distin-
guish among those documents - therefore, their tf score
is reduced proportionately.

tfij =
nij

|Dj |
(1)

idfi = log
(

|D|
|{dj : ti ∈ dj}|

)
(2)

tfidfij = tfij · idfi (3)

3. Evaluating Taxonomic
Coverage for a Case Base

In our system, the elements of a newly constructed
case, which originate from system events and user in-
put, tend to have limited keywords. To mitigate this,
we decided to use a taxonomy to define a document
representation space. When cases are automatically (or
user-) generated from system alerts, the taxonomy pro-
vides a source of keywords for the initial case descrip-
tion. Consequently, we are interested in a method for
assessing the quality of candidate terms for inclusion in
said taxonomy, in conjunction with a corpus of case de-
scriptions. Such a method should support the expert
in his or her taxonomy design. The taxonomy itself is a
collection of trees representing different conceptual rela-
tions within the problem domain of web hosting. Nearer
to the root, we have generic concepts; near the leaves,
we have specific software or hardware components. The
taxonomy helps to relate concepts, products, files and
log data sources in our network.

To construct the initial case base with which to ex-
ercise our system, we relied on bootstrapping from a
repository (kb.swsoft.com) of collected problems and so-
lutions for the Plesk web hosting control panel applica-
tion contributed for our use by SWSoft.com. As initial
cases, they are useful in that they contain a number of
keywords which can serve as a basis for information re-
trieval and are related to the problem domain which we
are currently exploring.

3.1. Initialisation and the SWSoft
Knowledge Base

We retrieved a total of 1380 articles in HTML format
from the SWSoft knowledge base. In the construction of
our case base we needed to consider how to perform case
matching. Previous cases which in some sense match
with the active case must be retrieved and presented
to the administrator. We tackle the text aspect of this
problem by indexing the keywords from all case fields
to the greatest extent possible and comparing the cases

3

using a vector space model. We constructed an inverted
keyword index using tf-idf scores to support keyword-
based retrieval and ranking of cases from the knowledge
base.

The SWSoft Knowledge Base articles have been man-
ually filed into categories. The categories available from
the KB website are mainly conceived as a product tree.
The original knowledge base categories are titled to re-
flect the products offered by the company. These in-
clude “Virtuozzo”, “Plesk”, “SiteBuilder”, “Confixx”, “En-
sim Pro”, “H-Sphere” and “SiteStudio”. For each of these
top-level categories there are a number of sub-categories
which are distinguished by product version and operat-
ing system. The articles themselves deal with system
administration and web hosting topics harvested from
the company’s online forum.

3.2. Populating and Assessing
the Taxonomy

Our taxonomy is manually organised into a hierar-
chy of concepts and terms relating to our problem do-
main: web hosting administration. Initially, we manu-
ally constructed a taxonomy consisting of 62 terms relat-
ing to web hosting and system administration. We sub-
sequently expanded this taxonomy to 678 terms through
a combination of automatic selection and manual re-
finement. To gain an idea of the representation of our
documents in the space of taxonomy terms, we plot-
ted histograms depicting how many articles contain a
given number of terms from each taxonomy. The term-
document distribution for the small taxonomy can be
seen in Figure 1 while the distribution for the large tax-
onomy is shown in Figure 2. We observe that the small
hand-selected taxonomy provides a weak representation
of our documents - the majority of documents contain
less than 5 terms from the taxonomy. The larger tax-
onomy provides increased coverage. As the taxonomy
grows and as we add new sets of candidate terms, a
measure of performance is desired to compare different
versions of the taxonomy.

3.3. Classification as a Measure of
Taxonomic Quality

As such a system develops, its taxonomy will need
to be expanded and updated. Given a candidate set
of terms, we would like to be able to automatically as-
sess whether these terms are a useful representation of
the documents in our database. We propose using clas-
sification performance as an indirect assessment of the
quality of the underlying taxonomy as a document rep-
resentation.

Figure 1: Histogram showing the number of articles
containing a given number of terms from the small
taxonomy. Most articles only contain a few terms
from the small taxonomy.

Figure 2: Histogram showing the number of articles
containing a given number of terms from the large
taxonomy. The larger taxonomy offers a stronger
cross-section of the term space.

4

In our experiment, we use the J48 Java implemen-
tation of C4.5 from the WEKA machine learning algo-
rithm collection [9] with a pruning threshold of 0.25.
We tried several pruning thresholds (0.25, 0.05, 0.005)
across the various datasets we produced but found the
difference in performance to be negligible. We char-
acterise our results in the next section using precision,
recall and the F-measure, as described in [10]. Let C be
the set of unique category labels in our document set.
We build a confusion matrix, A, with dimension |C|
where Aij records the number of documents in category
Ci which were classified into category Cj . Precision,
recall and the F-measure for a particular Ci are then
defined in terms of A.

precision(Ci) =
Aii∑

j

Aij

(4)

recall(Ci) =
Aii∑

j

Aji

(5)

F (Ci) =
2 · precision(Ci) · recall(Ci)
precision(Ci) + recall(Ci)

(6)

The document categories assigned to the SWSoft
knowledge base articles largely serve as product and ver-
sion filters and provide little insight regarding document
topics. In our work, we are interested in a categorisation
which relates more closely to the categories of problems
discussed in the document set. To achieve this, we use
self-organising maps for labeling the document set in
order to investigate our approach’s performance.

3.4. Self-Organising Maps for
Analysing our Corpus

The self-organising map (SOM) [11] is a method for
producing a low-dimensional mapping of distance re-
lationships among data points originating in a high-
dimensional space. The SOM algorithm is a vector
quantization algorithm. Its efficient update scheme and
the ability to express topological relationships makes
it very convenient for expressing relationships between
different groups of documents. In this work, we used
a combination of the SOM_PAK package and the
SOM Toolbox to perform our SOM-based experiments
[12, 13].

Here we intend to use the SOM to analyse our doc-
ument set. In this work, we select the documents that
relate to the Plesk product and search for a plausible
clustering based on our knowledge of the domain and
visual inspection and grouping of the nodes represented
by the most prominent terms in their vectors.

4. Experimental Results

4.1. SOM Clustering

Performing clustering using a self-organising map re-
quires exploration of parameters. The primary param-
eters include the map dimensions, the number of itera-
tions, the learning rate and the neighbourhood function.
Additionally, we require a metric for selecting the vocab-
ulary we would use to represent documents in the SOM.
We decided to compute the term frequency variance (as
in [14]) across the entire document set. We define V (ti)
using the quantities in Section 2.3. Thus, |D| is the
number of documents, and nij is the frequency of term
ti in document dj . When we have calculated the vari-
ance for each term, we sort the terms by their variance
and take a threshold capturing the upper quartile of the
terms.

V (ti) = Σ|D|
j=1n

2
ij −

1
|D|

(
Σ|D|

j=1nij

)2

(7)

For our experiments, we varied the map dimensions as
well as the number of iterations to find a simple solution
with a modest error rate. In our initial tests, we var-
ied the map size while holding the number of iterations
fixed. We tried maps of sizes 12 by 8, 18 by 12 and 24
by 16. We iterated each for 2.2 million iterations. With
random initialisation, the run time varies from tens of
minutes (for the 12 by 8 map) to over an hour (for the
24 by 16 map). Visual inspection suggested that from
9 to 12 clusters persisted across runs. The configura-
tion of the map was reproduced at each run, with an
occasional inversion or flipping of the mapping due to
symmetry. Additionally, it was observed that the map
structure tended to stabilise between 500k and 1M iter-
ations. To narrow this value down, we ran further trials
at all map sizes for 500k, 1M, 2M and 5M iterations.
The results are summarised in Table 1. The underlined
entries indicate our choice of the best compromise be-
tween map size, overall error and required number of
iterations. At 500k iterations, the run time for this map
is on the order of minutes.

Once we selected a set of map dimensions and itera-
tions that we considered optimal for our problem and re-
sources, we used the mapping to produce a clustering for
the SOM output nodes through a combination of visual-
ising the term feature distribution over the SOM nodes,
k-means partitioning and human expert intuition. Fig-
ure 3 depicts the similarity map and the per-node top
terms which we used to find the strongest clusters as
well as the k-means partitioning of the SOM nodes.

Finally, having selected clusters from the SOM map-
ping, we employed these clusters in labelling our data

5

(a) U-matrix

(b) k-means over BMUs

Figure 3: a) The U-matrix produced for the 18x12 SOM after 500k iterations presenting all the documents of the
Plesk category. Several distinct clusters present along the edges of the map. b) A k-means clustering of the
same SOM nodes, used as a baseline for cluster selection. The top 5 terms are printed at each map node.

6

Table 1: SOM runs and error for all map sizes and number of iterations. The red entries (18x12 for 500k) are not
strictly the lowest error values but the 18x12 map has the potential to be much less resource-intensive than its
24x16 counterpart

RunLength 500k 1M 2M 5M 500k 1M 2M 5M 500k 1M 2M 5M

Dimensions 12x8 18x12 24x16

Quantisation Error 0.2185 0.2184 0.2180 0.2182 0.2122 0.2110 0.2099 0.2092 0.2088 0.2061 0.2043 0.2022

Topological Error 0.0100 0.0112 0.0125 0.0175 0.0075 0.0075 0.0112 0.0138 0.0112 0.0063 0.0088 0.0088

set. We took the k-means clustering as a baseline. Then,
based on our visual inspection of the top terms at each
SOM node, we adjusted the borders for some clusters.
Finally, we labelled each data vector according to the
class label for its best matching unit (BMU) in the map.

4.2. Classification

Having labelled our dataset using the results of the
SOM clustering, we evaluated the performance of the
taxonomic term space using our proposed classification
method on the new categories.

We produced three datasets of TF-IDF vectors from
the original document data. In order of decreasing num-
ber of terms, they are the ’full term space’, ’taxonomy’
and ’infogain’ dataset representations. The ’full term
space’ representation represents all the documents using
those terms which we obtained using the term variance
procedure. The ’taxonomy’ representation represents
all the documents using only those terms which occur in
the taxonomy. Finally, the ’infogain’ representation was
produced by using information gain to rank the feature
set with respect to the document categories. We use the
top 118 terms (based on a threshold of the ranked terms)
to build the document representation. In each represen-
tation, the j’th document dj is represented as a vector of
TF-IDF scores, dj = {tfidf1, tfidf2, tfidf3, . . . , tfidfn},
where n is the number of terms used in that represen-
tation.

We finally classify each dataset in a tenfold cross-
validation with the “J48” implementation of the C4.5
algorithm from the Java-based WEKA machine learning
library. The classification results, as well as the dataset
parameters, are shown in Table 2.

5. Discussion

Ideally we would prefer the taxonomic performance
on the classification to be as close to the full term space
performance as possible. Yet, we observe some degra-
dation in classification power as the term space is re-
duced to the size of the taxonomy. This implies that
the taxonomy may not yet contain the terms it needs

to be a truly discriminative structure for this dataset.
But, thanks to the upper limit in performance repre-
sented by the vocabulary selected by information gain,
we know the taxonomy can become more representative
as additional judiciously chosen terms are incorporated
into it.

6. Conclusion and Future Work

In this paper, we propose the use of a taxonomy for re-
ducing the term space required to represent documents
in a collection and for populating the term vectors for
new cases. We show that the taxonomy can be com-
parable in informative coverage to the full set of terms,
particularly as the overlap between informative terms
(with respect to the categories) and taxonomic terms
increases. We also show that classification can play a
dual role as a means for assessing the relevance or the
term space coverage of a particular set of terms.

In future work, we will consider means for automati-
cally extending the taxonomy through a combination of
user feedback and query parsing. Additionally, we are
preparing to evaluate the system in a testbed scenario
with expert users in differing contexts, particularly sys-
tem administrators and help desk employees who hold
system administration responsibilities.

Acknowledgements

This research is funded by the PRECARN Small
Company Program fund. The authors would also like to
acknowledge the staff of Palomino System Innovations
Inc., based in Toronto, Ontario and Telecoms Applica-
tions Research Alliance (TARA), based in Halifax, Nova
Scotia for their support in completing this work.

This work is conducted as part of the Dalhousie NIMS
Lab at http://www.cs.dal.ca/projectx/.

References

[1] R. Bergmann, Experience Management: Foundations,
Development Methodology, and Internet-Based Applica-
tions. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2002.

7

Table 2: Classification results w.r.t. the categories generated from the SOM clustering. |D| is the size of the
document set; |F | is the number of features for that dataset.

Microaverages
|D| |F| Precision Recall F Measure

full term space 800 2242 59% 59% 59%

taxonomy 798 496 52.8% 52.8% 52.8%

infogain 765 118 59.8% 59.8% 59.8%

Macroaverages
|D| |F| Precision Recall F Measure

full term space 800 2242 59% 59% 59%

taxonomy 798 496 53.8% 53.7% 53.3%

infogain 765 118 59.7% 59.4% 58.8%

[2] cPanel Inc., “The leading control panel -
http://www.cpanel.net/.” Retrieved from the web.,
November 2007.

[3] E. Corporation, “Ensim - the leading management
software for unified communications infrastructure -
http://www.ensim.com/.” Retrieved from the web.,
November 2007.

[4] P. S. Corporation, “H-sphere - a multi-server
web hosting solution - http://www.psoft.net/hsphere-
overview.html.” Retrieved from the web., November
2007.

[5] SWSoft, “Plesk - control panel software for hosting
http://www.swsoft.com/plesk/.” Retrieved from the
web., November 2007.

[6] V. Team, “Virtual hosting control system -
http://www.vhcs.net/.” Retrieved from the web.,
November 2007.

[7] Z. Project, “Zpanel project -
http://www.thezpanel.com/.” Retrieved from the
web., November 2007.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Informa-
tion Retrieval. Addison Wesley Inc., 1999.

[9] I. H. Witten and E. Frank, Data Mining: Practical
machine learning tools and techniques. San Francisco:
Morgan Kaufmann, 2005.

[10] F. Sebastiani, “Machine learning in automated text cat-
egorization,” ACM Computing Surveys, vol. 34, no. 1,
pp. 1–47, 2002.

[11] T. Kohonen, Self-Organizing Maps, vol. 30 of Springer
Series in Information Sciences. Berlin, Heidelberg:
Springer, 1995. (Second Extended Edition 1997).

[12] Kohonen, Hynninen, Kangas, and Laaksonen,
“SOM_PAK The Self-Organizing Map Program
Package,” tech. rep., Helsinki University of Technology,
1995.

[13] J. Vesanto, J. Himberg, E. Alhoniemi, and
J. Parhankangas, “SOM Toolbox for Matlab,” tech.
rep., Helsinki University of Technology, 2000.

[14] J. Kogan, C. Nicholas, and V. Volkovich, “Text min-
ing with information-theoretic clustering,” Computing
in Science and Engg., vol. 5, no. 6, pp. 52–59, 2003.

8

