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Abstract

Although mobile robot navigation in unstructured environments is an open prob-
lem, robotic systems can be developed which operate in relatively unstructured but
known environments. The Autonomous Robot for a Known environment (ARK)
project has constructed an autonomous robot capable of navigating and carrying out
survey/inspection tasks in a complex industrial environment. The ARK environment
is an industrial factory 
oor, and therefore lacks the planar walls and well-de�ned
corridors of a typical o�ce environment, where the majority of laboratory mobile
robots operate. The ARK robot relies on naturally occurring objects localized with
Laser Eye, a novel active vision sensor, as visual landmarks for navigation. This
paper describes the overall structure of the ARK project, the technical results that
it achieved, and the robotic systems it produced.
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1 Introduction

There are many types of industrial operations and environments for which mobile robots
can be used to reduce human exposure hazards, or to increase productivity. Examples
include inspection for spills, leaks, or other unusual events in large industrial facilities, ma-
terials handling in computer integrated manufacturing environments, and the carrying out
of inspections, the cleaning up of spills, or the carrying out of repairs in the radioactive ar-
eas of nuclear plants - leading to increased safety by reducing the potential radioactive dose
to workers. It is this industrial survey and inspection task in that the ARK (Autonomous
Robot for a Known Environment) project addresses.

Many industrial environments are highly instrumented in order to diagnose anomalous
conditions and to allow for a rapid response to them. Unfortunately, the instrumentation
itself is fragile and a considerable amount of time and money must be expended in re-
sponding to failures of the instruments and their communication mechanisms. Thus one
potential application of mobile robotics in an industrial environment is to act as an inde-
pendent veri�cation of existing instrumentation. For this type of robotic application to be
e�ective, it must be possible to direct the robot to a speci�c location described in a global
metric coordinate system and to instruct the robot to verify the function of the suspect
sensor. In order to accomplish this task it is thus essential that the ARK robot know its
location at all times with respect to an a priori global map of the environment.

The industrial environment is signi�cantly di�erent from the o�ce environments in
which most mobile robots operate. The test environment for the ARK robot is the large
engineering laboratory at AECL CANDU in Mississauga, Ontario. This open area covers
approximately 50,000 sq. feet of space and accommodates one hundred and �fty employees.
Within the Laboratory, there are test rigs of various sizes, mockups of reactor components,
a machine shop, a fabrication facility, a metrology lab and assembly area. There are no
major barriers between these facilities and therefore at any one time there may be up to
�fty people working on the lab 
oor, three fork lift trucks and 
oor cleaning machines in
operation. Such an environment presents many di�culties for a mobile robot including:
the lack of vertical 
at walls; large open spaces (the main isle is 400' long) as well as
small cramped spaces; high ceilings (50'); large windows near the ceiling resulting in time
dependent and weather dependent lighting conditions, a large variation in light intensity,
also highlights and glare; many temporary and semi-permanent structures; many (some
very large) metallic structures; people and fork lifts moving about; oil and water spills
on the 
oor; 
oor drains (which are sometimes uncovered); hoses and piping on the 
oor;
chains hanging down from above, protruding structures, and other transient obstacles to
the safe motion of the robot[18]. Figure 1 shows the industrial prototype ARK-2 robot in
the AECL industrial bay.

Large distances, often encountered in an industrial environment, require sensors that
can operate at such ranges. The number of visual features (lines, corners and regions) is
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Figure 1: The ARK industrial prototype robot within it's operating environment.

very high and techniques for focusing attention on speci�c, task dependent, features are
required. Most mobile robotic projects assume the existence of a 
at ground plane over
which the robot is to navigate. In the industrial environment this ground plane is generally

at, but regions of the 
oor are marked with drainage ditches, pipes and other unexpected
low lying obstacles to movement. To operate in an industrial environment, a robot requires
sensors that can reliably detect such obstacles, algorithms to move the robot and maintain
its position within the environment, and control algorithms that allow the robot to operate
safely in spite of the existence of other moving entities within the environment.

The ARK robot must navigate through its environment autonomously and cannot rely
on modi�cations to its environment such as the addition of beacons[22], magnetic strips
beneath the 
oors[13], or the use of visual symbols added to the existing environment.
The ARK robot must rely on objects which occur naturally within its environment as
landmarks. As many of these existing landmarks are visual in nature, the robot relies on
vision as its main sensor for global navigation, using a map of permanent structures in the
environment to plan its path.

In addition to a set of technical goals, the ARK project was required to meet a set of
industrial goals. In order to meet ongoing performance reviews it was essential that the
project develop a prototype system in stages. In addition to allowing the project to develop
the robotic system in an incremental fashion, the early deployment of a prototype allowed
researchers a realistic hardware environment within which more advanced code could be
developed.
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(a) ARK-1 (b) ARK-2 (c) ARK-lite

Figure 2: The ARK robots. The ARK-1 robot is based on the Cybermotion Navmaster
platform and is shown here with a commercial pan and tilt unit upon which is mounted the
active vision sensor Laser-Eye described in the text. The ARK-2 Cybermotion platform has
been heavily modi�ed through the addition of on-board processing and additional sensors
and power. ARK-lite is based on the Nomad 200 platform modi�ed through the addition
of a computer controlled pan and tilt unit.

2 The ARK robots

The ARK project constructed three robotic prototypes (see Figure 2). At the University
of Toronto, ARK-1 was used as an initial testbed on which the ideas, sensors and algorithms
were tested that were ultimately included in ARK-2, the industrial prototype. For ARK-1,
computation was primarily performed o�-board using standard workstations, while ARK-2
utilizes special purpose real-time computers and most of the computation is performed on-
board. A second research machine, ARK-lite, was installed at York University. All three
robots use visual data obtained through active vision processes as the primary source of
sensing for the robot. They also use non-visual sensors such as infrared, sonar and laser
range-�nders. ARK-1 and ARK-2 are based on the Cybermotion Navmaster platform,
while ARK-lite is based on the Nomad 200.

The main hardware components of the ARK-1 robot are a Navmaster mobile platform
from Cybermotion, and a robotic head with sensors and a remote link to a host computer
network. The platform consists of a base with three synchronous drive wheels and a
rotating turret. The Navmaster comes equipped with a contact sensitive bumper and six
sonars, two of them facing forward, two backward and two sideways. Additional sonar
sensors are mounted on the turret or the bumper to enhance the interpretation of the
sonar data (see [29]). The ARK-1 robot communicates with a network of host computers
via an 8-channel remote serial link. The communication between the robot and the host
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is on the level of processed signals from sensors and commands sent to the robot. The
on-board computers collect the data from various sensors, pre-process it and send it via a
radio link to the host computer network. The computers in the network analyze this data,
and generate commands for individual units of the robot (platform, head, sonar controllers,
range-�nder). The on-board computers perform time critical functions such as emergency
stop, positioning the head and moving the platform. The host network of computers is
based on standard Unix workstations. This arrangement is particularly convenient for
software development but it does make it di�cult to experiment with real-time responses
to external events. The non-real-time nature of the Unix operating system combined with
unpredictable delays in the serial modem conspire against real-time control on ARK-1.

In ARK-2, the vast bulk of the computation, such as processing and interpretation of
data from various sensors and generation of control commands, is performed on-board. The
communication link in ARK-2 is based upon a wireless Ethernet link which has a much
higher bandwidth than is available with the serial link on ARK-1. In addition, ARK-2
is equipped with a wireless video link which runs independently of the wireless Ethernet.
The wireless link on ARK-2 is used primarily for exchanging messages between the robot
and an operator. The on board computer operates under control of a real-time operating
system (VXWorks).

ARK-lite provides a small amount of on-board computation, with more complex com-
putation being processed o�-board via general purpose workstations. O� board communi-
cation is provided via a spread-spectrum Ethernet link, while a video camera mounted on
a pan and tilt unit, and bumper, infrared, and sonar sensors are also available on-board
the robot.

3 Project Overview

The primary operational task of the ARK robots is to perform sensing/survey operations
within an industrial environment with respect to a global metric map. The application
task and operating environment de�ne the envelope within which the ARK robots were
developed. An analysis of the requirements of the �nal system identi�ed a number of key
constraints;

1. It is not acceptable to modify the robot's operating environment. From an industrial
point of view, �xed beacons or markers to assist in the navigation of the mobile robot
make the navigation system fragile, since its ability to perform will require regular
maintenance of the markers. This consideration eliminates solutions which rely on
the addition of markers, beacons, or guide-paths to the environment.

2. At all times the robot must be able to determine its position with respect to a global
metric map of its environment. This requirement arises from the system's need to
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be able to direct the robot to particular locations de�ned within a global coordinate
system.

Given the constraint that the environment cannot be modi�ed, the ARK robot relies
on the use of existing pre-mapped visual landmarks to correct errors in odometry and
hence to provide global navigation with respect to a metric map. Subsequent sur-
veys and preliminary testing within the test environment for the robot yielded many
potential candidates for visual landmarks. Typical landmarks within the AECL lab-
oratory consist of alpha-numeric location signs, �re extinguisher markers, doorways,
overhead lights, and pillars. The only criteria used for selecting landmarks is that
they are distinguishable from the background scene by colour or contrast. These
criteria allow the use of both grey level and colour image processing algorithms for
landmark identi�cation.

3. The robot must operate in a safe manner. It must be able to react in an intelligent
manner to unexpected and unmodelled obstacles and events within its environment.

It is thus essential for the robot to have e�ective sensor coverage of the environment
and to be able to react to external events in an e�cient and e�ective way.

4 Sensing for pose maintenance

Given the incremental errors associated with odometry, mobile robots require references
to external objects in order to accurately maintain their position with respect to a global
map. We have experimented with di�erent techniques to use the visual measurements to
correct the robot's global position including, as well as more ad hoc pose update algorithms.
Vision alone is a poor mechanism for constraining the pose of the robot based on sightings
of distant landmarks. Although the azimuth and elevation of a landmark can be used
to determine distance to a landmark, the computation is not always robust especially
for targets near the altitude of the sensor. Thus in order to improve the performance of
the pose maintenance process, a special-purpose combined vision and distance sensor was
constructed for the ARK robots.

4.1 Combined Vision / Range Sensor

Given the constraints within which the ARK robot must operate and the need to have
an accurate estimate of the robot's position at all times, a special-purpose sensor was
constructed to acquire the visual landmarks upon which pose estimation would be based.
A novel laser/vision sensor Laser Eye[4] was designed as the main navigation sensor for
the ARK-1 and ARK-2 robots. This sensor provides colour images and a single range
measurement to distances up to 100m which are typical for the industrial environment.
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(a) University
prototype (b) Industrial Unit

Figure 3: Laser-Eye - The robot head with a combined vision and range sensor. Three
di�erent versions of Laser-Eye were eventually constructed. Version 1 was based on a
commercial pan and tilt unit and did not organize the laser and camera so that the axes
were coincident. Figure 2(a) shows this sensor mounted on ARK-1. (a) above shows
the �rst university prototype with coincident axes. (b) above shows the production unit
mounted on ARK-2.

Laser Eye is a combined range / video sensor consisting of a camera and a laser range-
�nder[8]. The range-�nder uses the time-of-
ight principle and provides a single depth
measurement for each orientation of the sensor. Measuring distances to objects in the scene
requires pointing the sensor at each in turn and reading their depth. The range-�nder uses
an infra-red laser diode to generate a sequence of optical pulses that are re
ected from a
target. The time required to travel to and from the target is measured to estimate the
distance.

Laser Eye has four degrees of freedom: two extrinsic - head pan and tilt, and two
intrinsic - camera zoom and focus (see Figure 3). The head can tilt in any direction between
65o below and 95o degrees above the horizon and the panning range covers 360o. The head
can rotate with speeds exceeding 180o=sec. The initial prototype was used on ARK-1 and
in early experiments on ARK-2. A commercial version of the head was constructed at
AECL and appears on ARK-2 in Figure 3b.

The range-�nder within Laser-Eye measures distance to an object in the centre of the
camera �eld of view. In the university version of Laser-Eye the camera optical axis and
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Figure 4: Alignment of laser scans to obtain the initial robot pose. (a) shows the super-
position of two laser scans, one from a known position and a second from an unknown
position. (b) shows the superposition after application of the correction algorithm.

t of the range-�nder were made coincident using a hot mirror (one that re
ects infra-red
and transmits visible light) placed in front of the camera lens. The mirror transmits the
visible light from the observed scene to the camera with minimum attenuation. The hot
mirror re
ects the transmitted infra-red beam and sends it in the direction of the optical
axis of the camera. The returning pulse is re
ected by the hot mirror again and projected
on a detector in the range-�nder[8]. A single range measurement takes 0.12 - 0.5 seconds
depending on the selected accuracy. The time required to point the head in a new direction
depends on the required rotation. The laser beam divergence is less than 5 mrad. This
corresponds to a laser spot of 3 pixels in diameter for an image digitized in a 512x512 grid
and for the wide setting of the zoom lens (45o). For the narrow setting of the zoom lens
(4.5o) the spot is 30 pixels in diameter.

4.2 Pose maintenance with Laser-Eye

Di�erent techniques have been used by each of the ARK robots to exploit the features of
Laser-Eye for various pose maintenance tasks.

4.2.1 Initial pose estimation

Perhaps the most primitive pose maintenance task is that of obtaining an initial pose of
the robot when it is �rst powered on. As this process is only performed at the start of a
mission or when the normal pose maintenance process has failed, the on-line requirement of

8



the pose maintenance task is avoided and more time-intensive processes can be considered.
One technique that was found to be very e�ective in environments with signi�cant wall
structure is the use of the time of 
ight laser coupled with an a priori wall model or scan
from a known position.

Figure 4 shows the superposition of two laser scans obtained with Laser Eye in the
research labs at the University of Toronto. Given a scan from a known location, a second
scan from an unknown location and initial guess of the robot's \unknown" position, a
non-linear, robust statistical technique [14] is used to obtain a pose correction to minimize
the error between the recovered scan and known wall positions. This process is relatively
slow as each data point takes on the order of 0.5 seconds to obtain, but obtains very
accurate estimates of the robot's pose. This process is e�ective as the laser measurement
noise process is very well behaved as there are very few surfaces which are specular to the
laser in the environment. A novel method for optimally aligning not just two, but a larger
number of range scans obtained from di�erent robot positions is presented in [15].

4.2.2 Landmark recognition and tracking

In normal operation, landmark recognition and subsequent measurement of azimuth and
elevation towards detected landmarks is the main mechanism for maintaining the ARK
robots on their course. ARK-1 and ARK-2 explored di�erent approaches of solving the
landmark recognition problem. ARK-2 used a generalized template matching technique of
grey-scale images, while ARK-1 focused on colour classi�cation of visual landmarks and
on mechanisms to attend to di�erent candidate landmark locations in an image.

Detecting Landmarks and Objects Using Colour Visually searching for objects
requires scanning the environment or checking expected locations with a camera. When
searching for a landmark the robot can predict where to point the camera as it knows its
own approximate location on the map and the coordinates of the landmark. Uncertainty
in the robot's position requires selecting a wide �eld of view for the camera. An attention
mechanism that selects potentially \interesting" locations in an image or environment
signi�cantly speeds up and simpli�es the search. Features such as intensity, colour, high
contrast, motion and presence of signi�cant edges are often used to focus attention. Once
candidate locations have been selected, each of them is inspected closely to verify the
presence of the target object.

Colour can be used to identify possible candidates in an image. The ARK colour
classi�cation scheme consists of an o�-line training phase and an on-line classi�cation
of pixels on a real-time image processor[7]. Colour information is used for pixel wise
classi�cation of images and assigning pixels to possible target candidates or background
classes. Real-time performance is achieved by creating look up tables (LUTs) during the
training phase and using fast indexing during the on-line classi�cation.
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In the o�-line training phase, the training set consist of images with objects of interest
in their natural environment and under di�erent illuminations. Each of the pixels in the
training set is described by its hue, saturation and intensity. These are obtained from the
measured RGB values. The training data is �rst re-sampled to create reduced images by
factors of 16 and 4 respectively. Then the K-means clustering algorithm is applied to the
smallest image �rst and starts from random seed points. The cluster centers obtained from
the smallest images are used to seed the clusters at higher resolutions. The process lasts
several minutes, and achieves a good partitioning of the data. After clustering the user
assigns individual clusters to classes that correspond to objects of interest.

Given a test image, a classi�cation algorithm is used to process all the pixels in the test
image, �lling all the cells of the resulting LUT. This operation takes several minutes on a
standard workstation. A representation for each class is stored and used for classi�cation.
Assuming multivariate normal distributions of clusters in the colour space and equal a
priori probabilities for each cluster, the Bayes discriminant function can be used [7]:

g(k)(x) = (x�m(k))T cov�1
k
(x�m(k))� logjcovkj

Where m(k) is the centroid of the k-th cluster and covk is its covariance matrix. The classi-
�cation of the image is performed by calculating the discriminant function for every pixel
described by vector x and every cluster k. The class assigned to the pixel is the one that
minimizes the value of the discriminant function. The computational complexity of this
technique depends on the number of clusters and the resolution of the LUT. Classi�cation
of every pixel in the image is therefore a computationally expensive task. Modern image
processing systems are often equipped with large LUTs that allow for real-time processing
of every pixel. Combination of multiple data streams, for example RGB, into one channel
enables us to index into the LUT and achieve the real-time performance of an arbitrary
(non-linear) conversion. The nature of this conversion is determined by the contents of
the LUT. The problem is how to create a LUT that will e�ectively capture the important
variability of the data.

Resolution of the feature space can reach 224 (3 x 8 bit colour bands) for standard colour
cameras. Often it is su�cient to operate on smaller arrays. There are hardware limitations
as well, for example, the Datacube MV20 advanced processor used in the project has an
LUT with a maximum of 64K entries. The contents of LUTs are often determined by
manual selection. A more systematic approach uses training by showing examples and
manually delineating the objects of interest. Cells in colour space, corresponding to the
feature combinations present in the training set, are assigned to appropriate classes. For
low resolution of the feature space (200 cells) such a technique is su�cient, as camera noise
and blur create dense clusters[21]. For high resolution LUTs containing, for example 64K
cells, this approach is not reliable as insu�cient training data creates \holes" in the feature
space. Such holes cause misclassi�cation of the data. Various heuristic techniques of �lling
the space have been used to bridge the gaps [17].
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(a) O�ce Scene (b) Detected objects

Figure 5: An o�ce scene with coloured objects (luminance is shown only).

The training phase (clustering and creation of the LUT) is implemented on a Unix host.
The real-time colour classi�cation is implemented on a MaxVideo 20 image processing
system. The classi�er is trained to detect red and green circular plates similar to the ones
displayed on the wall in the scene shown in Figure 5(a). Figure 5(b) shows the results
of pixelwise classi�cation, �ltering and reconstruction of large blobs representing red and
green classes. The results of this processing are not perfect - both red plates have been
detected but among the four green candidates only one corresponds to the target object.
Also, detection of individual plates is not perfect as regions in the shade or re
ecting
light are misclassi�ed. Di�erent techniques could be used to decide whether the detected
blobs correspond to valid objects or not. At this resolution, however, it might be di�cult to
decide if the shape deformations are caused by noise, particularly if the sensor is positioned
at a di�cult viewing angle. It is much better to simply point the robotic head at every
candidate in turn with a narrower setting of the zoom lens and then acquire and process
a new set of images.

Each detected candidate is described by a set of parameters that de�ne its position in
the image, size and location of its bounding window. The new orientation of the head is
calculated from a kinematic model of the head that includes the pan, tilt and the initial
size of the �eld of view. The new setting for zoom is selected so that the blob of interest
is not only fully included in the new view, but also dominates the �eld of view.

Correlation-based landmark detection The landmark-�nding module used in ARK-
2 is based on performing a multi-resolution normalized correlation between a query image
(from the robot's current position) and a reprojection of the stored \3D grey-level surface"
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Figure 6: Landmark reprojection geometry

representing the landmark. The grey-level surface is a resolution pyramid consisting of
registered grey-level images of the landmark at various resolutions, and the estimated
depth of each pixel in 3-D as seen from the training position. The idea is to use the
robot's estimate of where it is, plus knowledge of the viewpoint from which the landmark
was learned, to make an accurate enough prediction of the appearance of the landmark in
order to match it successfully in the query image.

Figure 6 illustrates the geometry used for the landmark reprojection. When a landmark
is learned, a coarse range scan is done of the area covered by the stored grey-level image.
The scan may be a simple grid of points, or an adaptive scan that focuses sampling on areas
of non-linear variation in depth with image position [28]. Depth values are interpolated
for each pixel in the image, so that each pixel may be assigned a position in 3-space. The
positions are stored in the coordinate system of the camera at the position at which the
landmark is learned.

When a landmark is to be found for a position correction, the approximate position of
the robot, as given by the dead-reckoning system, is used to determine the position of each
pixel in the current camera image coordinate system. These grey-level values at selected
image locations are used in an interpolation to compute the predicted appearance of the
landmark from the estimated robot position. The multi-resolution normalized correlation
between the central region of the reprojected landmark image and the query image works
extremely well, provided that the appearance of the landmark is unique, at all resolutions,
in the �eld of view.

The use of multi-resolution matching achieves two objectives: First, it reduces compu-
tation time dramatically by allowing operation on several small images in place of a single
large image. Second, it allows computation of a �gure of merit based on the fact that good
matches at the coarser level should result in a match at the centre of the �ner level, for
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each pair of levels.
This multi-resolution technique performs su�ciently well for the robot to navigate the

AECL test environment successfully. It still requires care, however, to choose landmarks
that will work consistently well. One of the key things to remember is that the landmark
must appear distinctive at not only the highest camera resolution, but also at lower res-
olutions. As well, the landmark should have simple structure in depth (smooth surfaces
are good) if reprojection from di�erent viewpoints is desired. This eliminates holes in the
data as occlusions of surfaces change.

5 Sensing for safety

In addition to dealing with pose estimation and correction, a mobile robot requires sensors
to deal with maintaining the safety of the robot. The various ARK robots have used
a number of visual and non-visual sensors; sonar, IR and bumpers to form an extended
virtual bumper around the robot.

5.1 Floor anomaly detection

The 
oor of an industrial environment can be very complex. The AECL bay, for example,
contains drainage ditches (which can be open), cables, ducts, etc., which are temporally
varying structures which can prevent the safe passage of the robot. Note that unlike wall
structure in a corridor environment which will typically be sensed by touch sensors if the
robot approaches the obstacle too closely, the drainage ditches in the AECL bay could
simply cause the robot to fall into them and tip over, resulting in serious damage to the
robot. Before moving the robot onto a particular piece of the 
oor it is important to insure
that the 
oor is traversable. Three di�erent approaches to 
oor anomaly detection were
considered in the ARK project.

5.1.1 Floor anomaly detection using combined vision-range measurements

One obvious technique for determining that the 
oor in front of the robot is passable would
be to probe the ground in front of the robot with the laser scanner. Given the relatively slow
speed of the laser scanner, this approach would seriously degrade the performance of the
robot if many laser probes are necessary. One approach to reducing the number of probes
necessary to survey the scene in front of the robot is to use the vision sensor to determine
an initial segmentation of the space in front of the robot and then to make selective
range measurement in each region to verify the 
oor in front of the robot. This assumes
that depth discontinuities coincide with boundaries of detected regions. To satisfy this
assumption, initial segmentation parameters are tuned so as to create an over- rather than
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under-segmented representation of the intensity image. Thus the need for region splitting
is avoided. The initial segmentation creates an image tessellated into primary regions of
homogeneous image properties (intensity, colour, etc.). The segmentation method adopted
for the project consists of smoothing, morphological edge detection and the watershed
transform [26]. The segmented image is represented as an adjacency graph that includes
region descriptors derived from the original image and their topology (adjacency of regions
and boundaries, connectivity of curves, etc.).

Five range measurements were chosen per region. For each measurement, the elevation,
azimuth and distance was recorded. After �nding the target positions in the World Coordi-
nate System (obtained by calibrating Laser Eye in advance), each region was approximated
as a plane using a least squared error criterion.

For 
oor anomaly detection, calibration consists of two steps. The �rst step involves the
measurement of the intrinsic and extrinsic camera and head parameters. The second step
involves the measurement of the reference 
oor plane. During normal operation, the robot
directs the camera in the direction of travel, acquires an image and creates a representation
of the scene. The head sweeps the scene in front of the robot by directing the Laser Eye
at selected regions. Each region is veri�ed whether it belongs to the 
oor or not. The
algorithm continues to build the maximum 
oor coverage. The veri�cation process uses
the distance from the reference 
oor plane to accept or reject the region.

5.1.2 Floor anomaly detection using stereo vision

Another approach is to use stereo vision to verify that the 
oor in front of the robot is
solid[10]. In a typical stereo vision application, objects in one camera are matched with
objects in the other and these correspondences coupled with the known geometry can be
used to identify the three dimensional location of structure in the environment. Perhaps
the most di�cult task in stereopsis is the determination of the correspondence of features
in one camera with features in the other. For a Floor Anomaly Detector (FAD), however,
it is not necessary to determine the correspondences for arbitrary scene structure. Rather
it is only necessary to determine correspondences for structure that lies near a particular
3D plane (the 
oor). If the cameras are modeled as pinhole cameras then it is possible to
warp one of the images so that the 
oor has zero disparity (see [5]) which simpli�es the
matching process considerably.

Figure 5.1.2a shows a sample stereo pair of the 
oor cluttered with obstacles. Fig-
ure 5.1.2b shows the recovered obstacles which have been classi�ed using a robust statisti-
cal technique based on mixture models[12] to group the raw disparity measurements into
three pools; pixels which are consistent with the 
oor plane model, pixels which are near
the 
oor plane (anomalies), and pixels which could not be classi�ed. The technique is
fairly straightforward, reasonably e�cient and quite robust provided that su�cient image
structure exists on the 
oor. Unfortunately many 
oor surfaces are reasonably featureless
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(a) Stereo pair of the 
oor

(b) Measurements consistent with obstacles (left), the 
oor (centre), and outliers (right).
Intensity encodes class probability with white representing high probability.
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Figure 7: BIRIS-based FAD

and do not provide a rich surface texture for stereo matching. One possible mechanism for
overcoming this problem is to project some random texture onto the 
oor to break up this
camou
age.

5.1.3 Floor anomaly detection using laser stripes

A third approach to FAD is based upon the use of a laser stripe device using the BIRIS
sensor developed by the National Research Council (NRC) in Ottawa [2]. The basic optical
principle of this method is a combination of optical triangulation and of the use of a video
camera with a double aperture mask in the iris plane of the camera lens (hence BI-IRIS).
A laser stripe is projected on the 
oor in front of the robot and a BIRIS sensor is used to
recover the position of the projection and hence the 
oor depth. If the 
oor is 
at, then
the 
oor depth should remain constant. Any variation in the 
oor plane can be detected in
a straightforward manner. A mobile robot equipped with FAD can avoid obstacles in real
time at speeds of up to 0.5 m/s. Figure 7 shows a mobile robot with the FAD mounted on
it.

This particular approach has two problems from an industrial standpoint. The �rst is
that the laser used is not eye-safe, and thus there are safety concerns, especially if there
are re
ective materials { such as pools of liquid { on the 
oor. The second is that this
technique relies on a line process which means that the safe 
oor region is that region that
has been swept out by the motion of the line, and the robot must be controlled to only
move through that region which has been \cleared".

5.2 Segmenting space

Although the most common use for Laser Eye is in performing measurements for odometry
correction, it may also be necessary to sense unknown or partially known areas in order to
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Figure 8: Segmentation of the AECL bay.

determine if they are passable. This would occur in the �eld when exploring the environ-
ment after some disaster had occurred. Thus one additional task to which the ARK active
vision sensor has been put is to segment the volume of space in front of the robot in order
to obtain a depth map which can be used to determine if the way in front of the robot is
possible.

One possible mechanism for determining this depth map would be to sample densely
the volume of interest. Given the relatively slow performance of the laser system, for
real-time operation of the robot it is important to minimize the number of measurements.
Fortunately, visual image data can be used to plan where to point the range-�nder [7, 8, 6].

Let us assume that nearly all signi�cant depth discontinuities in the scene coincide
with the boundaries of detected regions. As in 
oor anomaly detection using combined
vision-range measurements, this assumption requires that the initial segmentation creates
an over-segmented rather than under-segmented representation of the image. The under-
segmentation can cause potential problems as it requires additional depth measurements
to split the region along a depth discontinuity. The size of the regions should not be too
small as it is di�cult to obtain reliable distance measurements for small regions due to the
�nite size of the laser spot and accuracy of the robotic head.

The initial segmentation creates an image tessellated into primary regions of homoge-
neous image properties (intensity, colour, etc.). The segmentation method adopted for the
project consists of smoothing, morphological edge detection and the watershed transform
(see [7]). Large numbers of closed regions of similar image properties are created as a result
as shown in Figure 8.

For the scene shown in Figure 8 the initial segmentation created almost two hundred
primary regions. Assuming the simple model with one range measurement per region,
creation of the complete range map requires almost 200 range measurements. By applying
the above technique we have been able to reduce the number of range measurements
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Figure 9: Selection process for uniformly biased model

required to create the dense range map from 64 K samples (sampling every pixel in a
256x256 grid) to a much more manageable number of 200 to 1000 samples (200 regions
x 1...5 targets per region). This has been achieved if the initial over-segmentation of the
image identi�ed intensity discontinuities and that they account for nearly all the depth
discontinuities. For the mobile robot, operating in real-time, this may still be too slow. If
we look at the intensity image ourselves, it seems that a few range measurements, taken
in the \right" directions, could provide the essential information for a speci�c task. We
decided to look to models of human attention for inspiration.

The attention scheme used here depends on three components [19]: (i) a priori informa-
tion, (ii) selection of salient features, and (iii) a given task and previous results of attentive
processing. The a priori information is encoded as a function biased to look at speci�c
parts of the image. This function represents preferred behaviour (directional sensitivity)
of the system, for example, data in the centre or below the horizon might be more impor-
tant than at the periphery of the camera image. Representing the segmented image data
as a graph allows easy access to underlying regions and boundaries in the graph and for
access to adjacent ones. The regions are described by features such as intensity, colour,
texture descriptors, and their size and shape. The boundaries between adjacent regions
are described by their size, shape, orientation and contrast between regions on both sides.
Detection of winners, in the \Winner Take All" scheme [25], uses a combination of these
features and is biased by the speci�c task performed by the robot.

For example, looking for a passage might involve searching for a dark region in the
image. Depth discontinuities are likely to occur at boundaries between contrasting regions.
If the task is to provide a qualitative range map, then selecting large regions �rst will enable
faster coverage of the image by range data. Results of previous range measurements can
in
uence the selection of the next target. This selection is task dependent. For example,
when searching for an obstacle, if a depth discontinuity is detected, then the next ranging
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Figure 10: Reactive robot control. The robot moves from the upper left to lower right in
the �gure. The commanded path is given by a dotted line while the actual path followed
is drawn as a solid line. Modelled environmental obstacles are also shown.

operations should concentrate on recovering the full extent of the closer object and not
the distant one. If such a discontinuity is detected while searching for a passage then the
successive ranging operations should concentrate on objects further away - the opposite
strategy.

Figure 9 shows the attended receptive �elds and the path of 10 saccadic movements
between regions of high intensity. The initial bias is uniform and contributions from all re-
ceptive cells (pixels) are treated equally and, as the result, large bright regions are attended
�rst. Edges of high contrast are likely locations for depth discontinuities. Boundaries be-
tween regions now serve as salient features. Pointing the range-�nder at a boundary is not
practical so two regions on both sides are selected for attention.

6 Navigation and control

The ARK control system consists of two levels: a high level and a low level reactive system.
The high level is responsible for planning robot actions, global path planning, selecting
landmarks for sighting and interactions with the user. The low level, reactive component
of the control system, uses the on board obstacle avoidance system of the platform to
detect obstacles and to navigate around them (see Figure 10).

The path planner assumes that the low level reactive control structure will safely execute
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segments of the plan in the presence of unmodelled or unexpected obstacles. By breaking
the path planning process into a GOFAIR (Good Old Fashioned AI and Robotics) task
which can be processed using classical AI tools, and a real time reactive process which
can be processed using a real time safety critical system implemented as a subsumption
architecture, ARK takes advantage of the best of both paradigms.

Although this hierarchical control model is common over all three ARK robots, each
of the robots have di�erent levels of autonomy built into each of the layers. For example,
ARK-1's reactive layer is trivial in that it simply halts the robot should something enter
within a pre-de�ned safety radius. At the other extreme, while ARK-lite implemented
a sophisticated reactive control structure which is described below. ARK-2 relies on a
modi�ed version of the ARK-1 control architecture but includes a planning module to
allow the robot to navigate around small unexpected obstacles.

6.1 Map and Path Planning

At the high level, the ARK robots represent the world as a simple occupancy grid describing
each 10-centimeter square of the 
oor as either empty or occupied. Planning is done by
computing a \potential �eld" for each empty cell in the grid, whose value is a function of
the proximity of obstacle cells. The \optimal" path between two operator-speci�ed way
points is considered to be the path minimizing the path integral of the potential �eld. This
is a traditional approach to path planning.

The approach of minimizing the path integral of the potential is e�ective because it
balances length of path against the di�culty of the path, as expressed by the potential
�eld. Obviously, other terms could be included in the �eld to account for things such as
the visibility of landmarks, or other robot hazards. And paths could be computed which
take these events into account (see [9] for example).

Various classical path planning techniques have been used to plan paths through this
discretized representation of the robots workspace. ARK-1 and ARK-lite use a con�guration-
space representation in which the 10cm � 10cm cells are further divided into discretized
orientations, while ARK-2 only encodes the position. Classical path-planning using either
A� or uninformed graph search was found to be e�ective for ARK-1 and ARK-lite, while
ARK-2's path planning is computed using a modi�ed Dijkstra's algorithm on a discrete
mesh of possible robot positions. Partial paths in the mesh are only kept by the algorithm
if they have length less than a constant multiple of the straight-line distance from the start
to the end of the partial path. Although this may in theory cause the only possible path
between two points to be missed by the search, we have found that in practice, substantial
pruning of the space of paths examined in �nding the best path is possible without a�ect-
ing the result of the algorithm. We achieve O(n logn) complexity for the algorithm, for n
the number of mesh points, as follows. The set of nearest mesh points not yet expanded
by the algorithm is maintained in a heap ordered by distance from the starting point. The
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Figure 11: ARK-2 navigation geometry

position of each mesh point in the path search is maintained in a data structure, to allow
log(n) update of the heap position of each point as the length of the shortest path through
the point is updated as new paths are explored. A shortcoming of this approach is that the
number of mesh points for path planning grows as the square of the inverse of the desired
mesh point spacing. As a result, path planning can be slow for long paths. A simple
and attractive approach to reducing path planning time is to use precomputed \highways"
for the robot down main corridors, with path planning restricted to the portions of travel
leading to and away from the nearest highway.

6.2 Position Estimation and Navigation

The ARK robot maintains its estimate of where it is located and which way it is heading
in much the same way as a sailboat performs coastal navigation. Periodic position �xes
are done based on mapped landmarks in the local area, with dead-reckoning in between
position �xes to estimate the current position at all times.

As can be seen from Figure 11, the range to two known points in a plane and the
robot-relative pan angle to one of the points is su�cient to determine the position and
orientation of the robot on the same plane. There are in fact two solutions for position,
but no ambiguity as long as it is known which landmark is to the right from the robot's
viewpoint.

The range along the 
oor to each landmark may be obtained by one of two means.
Using the laser range �nder on the Pan-Tilt Unit, the range to the landmark may be
obtained directly. The elevation of the landmark may then be used to determine the
projection of its range onto the 
oor. If the landmark does not lie in the plane of the
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range �nder then an estimate of range is available from the elevation and a consistency
check can be performed. Since it is possible to predict the pan angle separating the two
landmarks as seen from the robot's corrected position, there is a consistency check on
the position correction available via the comparison of this expected separation with the
actual measured separation. Other over constrained sensor-based methods have also been
considered for the robots, see in particular Lu and Milios [14, 15].

6.3 Reactive Control

The high level planner communicates with the reactive subsystem through a very simple
set of operations that assumes the reactive phase of the planner will operate autonomously
and asynchronously attempting to achieve the current subgoal. ARK-1 and ARK-2 assume
a \stop and shoot" model of low-level control. When a local portion of the path cannot
be executed due to an unmodelled or unexpected obstacle, the robot stops and performs
various sensing tasks to determine a path around the obstacle. ARK-2 relies on a more
reactive low-level control mechanism [20] which is based on the subsumption approach
described by Brooks[3].

On ARK-lite, the robot is guided by a set of behaviours that operate in parallel. Each
behaviour maps a sensory reading from the robot's environment into an external action
of the robot. Con
icting behaviours are arbitrated based on an absolute prioritization of
behaviours. There are three basic behaviours that control the robot: move, avoid, and
escape. The Avoid behaviour watches for an obstacle detected by the front sensing sonar.
If an object appears the avoid behaviour stops the robot, and turns it to a new direction
so that the robot will not collide with the obstacle. The escape behaviour watches for an
obstacle directly in front of the robot, in which case, it causes the robot to back-up and
then to turn to a new direction. The escape behaviour helps to get out of certain deadlocks
that may occur with the avoid behaviour when the robot gets stuck in a corner. The move
behaviour steers the robot towards a precomputed goal position.

6.4 A 3D immersive display for robotic control

In an operational setting, the ARK robot requires an operator to provide high-level mission
commands. These high-level commands can be provided via a 21

2
Dmap-based user interface

as well as through an immersive 3D interface. The 3D interface provides the operator with
a virtual reality-like control interface. It allows the operator to move through a simulation
of the robot's environment, to examine the environment through an immersive display,
and provides access to high-level mission commands in a more informative and natural
way than is possible with the standard 21

2
D map-based user interface.

The standard user interface for the ARK robots is based on a 21
2
D map similar to the

ARK-lite user interface shown in Figure 12a. The map is primarily 2D but does contain
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(a) Operator (b) Operator's view

Figure 12: Immersive user interface

some height information. Through this 21
2
D interface an operator can command the robot

to plan a path from its current location to a speci�ed goal location, execute a pre-planned
path, and perform other high level tasks. The user indicates operations using a set of
buttons and indicates locations in the robot's environment by pointing with a mouse on
the displayed map. Although this user interface was found to be su�cient for a number
of tasks, it was found that the operator experienced di�culties when trying to make �ne
motions of the robot and had di�culty visualizing the robot's operating environment.

Driving a remote device with a joystick or some other similar input mechanism can be
very di�cult. Unless extensive sensor measurements of the environment are available and
presented to the operator in an e�ective and timely fashion, it can be very easy for the
operator to become disoriented with respect to the remote environment, which can lead to
operator error.

In order to construct an advanced teleoperational interface for a mobile robot, it is
necessary that the interface be consistent, integrated, and natural to use. Mechanisms
which rely on a large bank of monitors, with complex user interactions cannot be expected
to provide a natural input mechanism. One technology which can be exploited to provide
a more natural interaction mechanism is an immersive display or virtual reality technology
[1].

For an immersive display to provide an e�ective mechanism for control of a mobile
robot, the interface must do at least two things; it must provide the operator with a useful
representation of the robot's operational environment, and it must provide suitable inter-
action mechanisms for robotic or teleoperational control. For the immersive environment
to provide a useful representation of the robot's operational environment, the operator
should be able to view, and navigate through, the environment. For the entire interface
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to provide interaction, some mechanism for operator input beyond that required for the
immersive display must be provided.

The ARK-lite immersive interface is based around a head mounted display (HMD)
and a six degree of freedom joystick. Video is displayed on a Liquid Image HMD which
also provides stereo sound to the operator. Six degree of freedom (DOF) head tracking
is accomplished via a Flock of Birds head tracker. The operator is also equipped with a
six DOF Cyberman three button joystick to provide additional input control. Video is
generated by an SGI Indigo2 workstation with the Extreme graphics option.

A fundamental question in the design of an immersive interface for a mobile robot is
how to manage the display of both the immersive visual display as well as any visual tokens
which must be displayed as part of the interaction mechanism. The display portion of a
head mounted display can be considered as a simple 
at display surface, but interaction
mechanisms which are appropriate on \
at" monitors are unlikely to be well suited for
head mounted displays.

Although the display surface of the Liquid Image HMD does subtend a relatively large
visual angle, its actual display surface is quite small. With a visual �eld 640x480 pixels
in size, there is not much physical screen real estate to reserve for any graphics required
for interaction. In addition, due to the magni�cation optics built into the HMD, it is only
possible to read the center of the screen without strain.

Given the need for graphical displays not related to the immersive display, limited
screen real estate, and the fact that the best view is in the center of the screen, a user
interface is required that is in some sense foveal. Thus the ARK-lite immersive display
introduces a �sh bowl metaphor for the control and manipulation of graphical objects.

The �sh bowl metaphor is an extension of the desk-top metaphor common in 2D graph-
ical user interfaces. Imagine being a �sh in a �sh bowl. Looking out through the walls
of the �sh bowl you can view the environment within which your bowl sits. The external
world outside the �sh bowl projects onto the bowl's exterior surface. The interior surface
of the bowl completely surrounds the operator providing 360o of desk-top surface. Semi-
transparent and opaque 2D graphical objects can be placed on the surface of the bowl.
Interaction mechanisms are provided so that the operator can:

� Translate the operator and the bowl through the external environment.

� Rotate inside the bowl to view out through di�erent portions of the bowl. This is
known as the pan model of operation.

� Rotate with the bowl so that the objects on the surface of the bowl obscure di�erent
regions of the external environment. This is known as the �xed model of operation.

� Select objects on the surface of the bowl and
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{ Move them to other locations on the surface of the bowl, including placing them
on top of other objects on the surface of the bowl.

{ Dispose of them.

{ Resize them.

As the operator's �eld of view is limited, only a portion of the �sh bowl is visible at any
one time.

In order to select di�erent graphical objects on the �sh bowl for input focus, the operator
simply rotates until that object is in the center of view. i.e., the operator simply looks
straight at the object of interest. A cross-hair is always displayed in the center of the
display to aid the operator determine which interaction object is currently receiving input
focus.

7 Discussion

In order to e�ectively deploy a mobile robot in an industrial environment it must be safe,
reliable, and easy to use in addition to performing some task that is di�cult, disagreeable,
or expensive for a human to perform. Conducting survey/inspections within an industrial
environment such as a nuclear or chemical plant environment meets the task requirements.
The task is repetitive and when an anomalous situation is detected within the plant, the
task becomes disagreeable and can be highly dangerous. From an economic point of view
it is perhaps an idea task for a mobile robot.

The task introduces a number of technical problems which must be addressed if a
mobile robot can be applied to the task: The robot must be able to perform point to point
navigation with respect to a global environmental map. The robot must be safe in that
it can successfully detect and react to unexpected or unmodelled obstacles to its motion.
The robot must provide an e�ective mechanism for a trained operator to interact with the
robot. The ARK robots have developed e�ective solutions to these tasks.

Fundamentally, the ARK robots rely on Laser-Eye, a combined vision and range sensor,
to navigate through the industrial environment. Laser Eye is unique as it operates at
the large distances typical in industrial settings. This sensor allows the robot to detect
landmarks, search for objects and possible paths through its environments. Combined with
a set of pre-mapped visual landmarks, this sensor \solves" the problem of global navigation
within an industrial environment.

By endowing the robot with other sensor modalities including laser line stripers, stereo
cameras, sonar, IR and bumpers, the robot can obtain su�cient local environmental infor-
mation to deal with unmodelled and unexpcted obstacles to its motion including failures
in the underlying 
oor itself. A number of algorithms were also developed to explore
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the application of Laser-Eye to identifying passageways within the environment and to
determining the structure of objects in the environment.

The ARK robots rely on a layered control architecture in which lower levels essen-
tially transduce sensor measurements into motion commands in order to provide a fast
response to unexpected obstacles. Layered above this safety control system there exists a
navigational unit which provides reliable point-to-point navigation within the robot's envi-
ronment. Breaking the vehicle control into these two levels allows the continuous nature of
the time- and safety-critical system to operate in conjunction with the discrete higher-level
navigation functions.

Finally, the ARK project developed a novel immersive user interface system for mobile
robots to complement the classical \point and go" model of robot control.

As delivered, ARK-2 meets its task requirements within a modern industrial environ-
ment. It performs point-to-point motion within its environment while avoiding and dealing
with unexpected obstacles. It is also capable of performing related tasks such as measuring
iso-contours of events such as temperature and gas concentations. In addition to meeting
these technical goals, research undertaken as part of the project has lead to advances in
general mobile robot system (eg., [24]), image understanding (eg., [16, 27, 11]), system
control (eg., [23]), and immersive user interfaces (eg., [1]).
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