COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 47, 203-226 (1989)

Shape Matching Using Curvature Processes

EvANGELOS E. MILIOS
Department of Computer Science, University of Toronto, Toronto, Canada M5S 144
Received April 27, 1988; accepted December 13, 1988

Shape matching is a fundamental problem of vision in general and interpretation of
deforming shapes in particular. The objective of matching in this instance is to recover the
deformation and therefore generalizes the notion of correlation, which aims to only produce a
numerical measure of the similarity between two shapes. To address shape matching, we
introduce a new representation of a closed 2D shape as a cyclic sequence of the extended
circular images of the convex and concave segments of its contour. This representation is then
used to establish correspondences between segments of the two contours using dynamic
programming. Finally, we compute a recovery of the differences between two similar contours
in terms of the action of curvature process. Computation of convex and concave segments of
the contours, given in piecewise linear form, is accomplished using the analytic representation
of a local B-spline fit. We show the result of our deformation recovery scheme appliedto
dynamic cloud sithouette analysis using hand-traced input from real satellite images. © 1989
Academic Press, Inc.

1 INTRODUCTION

Planar shape matching is an important problem in computer vision, with broad
applications to signal understanding tasks such as character and schematics recogni-
. tion, as an approach to solving the correspondence problem in sequences of
intensity images and in the interpretation of time varying signals, such as X-ray
cardioangiograms [21] and dynamic analysis of clouds in satellite images [23, 3].
Pavlidis [14] gave an overview of planar shape analysis until 1980. He classifies
relevant work in two broad categories, those operating in a transform domain and
those operating in the space domain. The latter are subdivided into external, which
follow the contour, and internal or global, which transform pictures into relational
graphs or skeletons. Since 1980, both external and internal methods have been
pursued. External methods have primarily relied on the concept of scale-space
filtering [24, 14], while internal methods have refined the concept of local symmetry
axis transforms [4].

Different shape techniques have different shape matching methods naturally
associated with them. Shape represented as a relational graph calls for graph
matching [19]. Explicit representation of relations between shape features, such as
angles, implies matching by relaxation methods [5]. Shape represented by a se-
quence of features along its contour suggests string matching [14]. Viewing the
shape as a function in %2 or R leads to the notion of search for a deformation
function that will map the two shapes to be matched onto each other. Searching for
a deformation function has been formulated as a variational constraint optimization
problem, that may incorporate both similarity and smoothness constraints [24]. An
early approach to dynamic shape matching used a piecewise linear approximation to
the angle that the tangent forms with a reference direction as a function of arc
length {27]. The slope of this function represents curvature, and the matching
algorithm in [27] uses the slope and length of the line segments of the approxima-
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tion, and the order, in which they appear. A multiscale shape representation was
used in [28], and the associated matching method relied on explicit matching of zero
crossing contours in scale space.

Our approach to shape matching follows the contours of planar shapes, therefore
it is external, according to the classification of [14]. Our work combines the
following aspects: (a) the well-recognized importance of curvature variation along
the contour [2, 14], (b) recent work on curvature-based primitives [7], (c) the view of
curvature variation as a result of processes acting on the shape [10], (d) the notion
of Gaussian image in computer vision as an orientation-preserving representation of
convex parts (Ch. 16 of [8]), and (e) the use of higher-order shape models, which
allow more reliable estimates of curvature than polygonal approximations [14].

More specifically, we address the problem of matching two smooth closed
contours, which are related by deformations that alter their curvature structure.
Deformations typically include protrusions, a result of internal resistance, and
indentations, a result of squashing. Our approach is to first establish correspon-
dences between segments that have not drastically deformed (in the sense of
introducing or eliminating protrusions and indentations) and then to explain how
the remaining segments have deformed in terms of productions of a process
grammar [10].

A natural question associated with our approach is that of uniqueness of the
resulting interpretation, because the process grammar is ambiguous, leading to
multiple solutions. Therefore criteria are required for selecting a preferred interpre-
tation. Such criteria must be both computationally feasible and perceptually rele-
vant. The criterion we propose involves metric information extracted from the
extended circular images of the segments that take part in a hypothesized produc-
tion of the process grammar.

The first step in our method is to model shape in terms of the appropriate shape
primitives. We use contour segments bounded by perceptually relevant inflection
points as our shape primitives. A closed contour is thus described as a circular
sequence of alternating convex and concave segments. We assume that such analysis
takes place at the proper scale, which is known a priori and has been used to smooth
both contours.

The second step is to establish a direct correspondence between segments that
have not deformed drastically; i.e., they have preserved their approximate absolute
normal or tangent orientation. We use a standard dynamic programming approach
to establish non-crossing correspondences. Our distance function depends on the
similarity of the extended circular images of two segments. The outcome of this
direct correspondence is pairs of associated segments in the two contours and
unassociated segments.

The third step is to account for the unassociated segments by viewing them as a
result of processes that have acted upon the shapes. The account we are looking for
is in the form of productions of a process grammar that explain unassociated
segments as results of squashing or internal resistance. To discover such processes
we use a greedy algorithm, that alternates between dynamic programming for
establishing direct correspondences, and discovery of processes, that alter the two
shapes. At each iteration of the algorithm, a direct correspondence is established
between the current two shapes, and a single process, selected among all possible
processes, is effected, that modifies one of the two shapes. The algorithm stops when
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no more processes can be found, i.e., when all unassociated segments have been
accounted for, or when none of the possible processes is acceptable.

A fundamental question about the matching algorithm is how many segments
need to be matched initially. The algorithm works by discovering processes which
replace existing associations with better associations, and thereby improve the
quality of matching (defined in terms of the similarity of the extended circular
images of pairs of segments). Therefore, the two contours being matched should
have a sufficient number of associated segments to allow discovery of processes that
improve such associations. Otherwise, the matching algorithm will be unable to find
processes that improve associations, and the result will be that most segments will
remain unassociated. In this paper, we assume that deformations are local in
character, and therefore similarity of absolute orientations of segments is one of the
criteria for judging segment similarity. Absolute orientation is conveniently ex-
pressed by the domain of definition of the extended circular image.

The paper is structured as follows: Section 2 summarizes the concept of extended
circular image of a smooth planar shape, closed or open, and discusses possible
discrete approximations. Section 3 relates curvature processes with the extended
circular images of the participating segments. Section 4 describes the matching
algorithm, which is based on an “associate-hypothesize-test” loop.

2. EXTENDED CIRCULAR IMAGE OF A PLANE CONTOUR

Circular images are the 2-dimensional analog of Gaussian images for 3-dimen-
sional surfaces [8]. Given a plane curve, we map each point of the curve onto a point
on the unit circle that has the same normal (or tangent) as the point on the original
curve. In the case of a closed convex curve with continuous tangent everywhere and
no zero-curvature segments there is a one-to-one mapping between points on the
curve and points on the unit circle. Zero curvature or straight line segments map to
a single point on the unit circle. A useful property of the circular image is that it
rotates with the curve by exactly the same amount. Therefore, the circular image of
a convex segment encodes information about the absolute orientation of the
segment. The same properties hold if the circular image is defined as a mapping of
each point of the curve onto a point on the unit circle, the normal of which is the
same as the tangent of the point of the original curve. The latter definition, defined
as the tangent circular image in [13), yields a circular image that is rotated by 7/2
with respect to the former definition.

Proceeding in a fashion analogous to that for extended Gaussian images of
3-dimensional surfaces, we can give formal definitions for the extended circular
image of a plane contour [8]. The extended circular image (ECI) of a segment of
constant curvature sign is defined to be the radius of curvature as a function of
tangent orientation, encoded as an arc length on the unit circle. Equivalently, the
extended circular image can be defined by assigning a mass to the image of a curve
point on the unit circle equal to its radius of curvature, i.e., the inverse of curvature.
Thus we have the following definition:

DEerINITION 1. The extended circular image of a curve segment of constant
curvature sign is defined as the function that maps the tangent orientation of the
curve at point S, 8(S), to the radius of curvature of the curve at the same point S,



206 EVANGELOS E. MILIOS

p(S). Therefore, the following equation holds:

o(6(s)) = 715 1)

The mapping of 8(S) to k(S) is the inverse extended circular image.

Fundamental properties of the extended circular image can be obtained by
integrating over curve length or angle. The curvature « of a plane curve is defined as
the limit of the ratio of the change in tangent orientation to the length of the
segment, as the length of the segment approaches zero:

lim80 do 5
K—ss—>08s_ds ()

80 is equal to the length of the circular image of the infinitesimal segment. If we
integrate the above differential relationship over a finite segment S of the curve, we
obtain

fsxds=fed0=®, (3)

where @ is the length of the circular image of the curve segment.
If we integrate over the inverse of curvature 1/, we obtain

feld0=fsds=S (4)

K

i.e., the length of the finite curve segment.

Plane curves are commonly parameterized by curve length, and they are repre-
sented as curvature versus curve length [1]. The fact that points of segments of
constant curvature sign can be mapped one-to-one into the unit circle suggests an
alternative parameterization of such segments, namely in terms of arc length on the
unit circle. The potential advantages of such a parameterization are that it is
insensitive to scale changes in the image, or non-uniform stretching or shrinking of
the curve, and that it encodes absolute orientation information. Therefore, it may be
more suitable for matching deforming shapes than the curve length parameteriza-
tion most commonly used. The disadvantage is that the mapping into the unit circle
is one-to-one only for segments of constant curvature sign.

It can be argued [11] that an extended circular image uniquely specifies a closed
convex curve, and computational schemes can be devised for recovering the curve
from its extended circular image. As mentioned in [8], the extended circular image
of a closed convex figure has some interesting properties. The first is that the center
of mass of the extended circular image of a closed figure is at the center of the unit
circle. The second is that the total mass of the extended circular image is equal to
the total length of the curve (a corollary to a previous derivation). The third is that
convolution of the extended circular image of a closed figure with an arbitrary
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positive function defined on the unit circle produces a new extended circular image
that corresponds to a smoothed version of the original curve.

In this paper we are primarily concerned with extended circular images of curve
segments of constant curvature sign. The extended circular image of an open convex
curve (defined as a curve, the tangent of which rotates always in the same direction
as we move from one endpoint to the other) is defined only on a connected
subinterval of the unit circle. In the case of a spiralling convex open curve, the
above subinterval may be wider than 2. Since we are dealing with open curves, it is
useful to generalize the concept of rotation index to non-integer values. Before we
can do so, we must deal with the problem that the angle 6(S) between the tangent
of a curve at S and the horizontal is not necessarily a continuous function of the
position of S, due to a possible phase wrapping by a multiple of 2. In [13], it is
argued that 6(S) can be adjusted (unwrapped) so that it becomes a continuous
function of the curve’s independent parameter, such as curve length. The continuous
version of tangent orientation 6(S) is used to define the rotation index of a curve
segment.

DEFINITION 2. The rotation index of an open curve segment with starting point
S and end point E is the number (8(E) — 0(S))/27.

The rotation of a closed plane curve is an integer, and according to the rotation
index theorem [13], the rotation index of a simple closed plane curve has absolute
value equal to 1 (informally, a simple closed plane curve is a non-self-intersecting
curve). The domain of definition of the extended circular image of a convex curve
segment has length equal to the rotation index of the segment multiplied by 2.

Based on the previous discussion, we define the following representation for
simple closed plane curves.

DEFINITION 3. The extended circular image representation of a simple closed
plane curve is defined as a cyclic sequence of the extended circular images of its
convex and concave segments, obtained by segmenting the curve at its inflection
points.

If we are to compute with extended circular images of contour segments, we need
to approximate them by discrete functions. This requires sampling of the indepen-
dent variable of an ECI, namely arc length on the unit circle. As its continuous
counterpart, a discrete ECI approximation is required to have an integral
/®..0(8) d8 equal to the length of the curve, where p(#) is a sum of the discrete
values each represented as an impulse.

One possible sampling strategy is obtained by fixing Af. This approximation is
obtained by following the continuous contour and checking off the points at which
the tangent has changed direction by A6 with respect to the previous point. Each
contour segment thus obtained is mapped onto an impulse on the unit circle. The
discrete ECI that results consists of uniformly spaced impulses (one impulse every
A#), with each impulse having strength equal to the length A/ of the segment of the
curve. Highly curved portions of the contour will have low strength impulses,
whereas almost straight segments will have high strength impulses.

Another sampling strategy is obtained by fixing Al. This time we traverse the
contour and we check off points at which we have covered contour length equal to
Al with respect to the previous point. The resulting discrete ECI consists of
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Fi. 1. Convex and concave segments of a closed contour, and the corresponding discrete approxi-
mations to their extended circular images. Dots represent inflection points, whereas x’s denote knot
points. Extended circular images are defined between — 540 and 540 degrees. Curvature is measured in
radians per unit length, where unit length is the horizontal distance between neighboring pixels.

non-uniformly spaced impulses, all of the same height, equal to A/l. The location of
each impulse on the unit circle is the average tangent direction of the corresponding
segment. Therefore highly curved portions of the contour give rise to sparsely
spaced impulses, whereas in parts of low curvature the impulses are densely spaced.

Both sampling strategies preserve the fundamental property of the ECI of
integrating into the length of the original contour. In both cases, the integral is
replaced by a summation, since the integrand is a sum of impulses. In the first
sampling strategy, we obtain a uniformly sampled digital signal, whereas in the
second, the signal is non-uniformly sampled. In the computational implementation
of our matching algorithm, we use an approximation to the uniformly sampled ECI.
To compute such an approximation, we start with dense, but non-uniform, samples
of the ECI obtained from the analytic form of the B-spline representation described
in the Appendix. We then compute uniform samples through linear interpolation.
Figure 1 shows the segments of a closed piecewise B-spline curve and the associated
inverse extended circular images.
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3. CURVATURE PROCESSES AND INDUCED EXTENDED CIRCULAR
IMAGE OPERATIONS

Leyton [10] introduced the notion of shape as the outcome of processes that
formed it and argued that the process history of a shape can be recovered from its
curvature extrema. He proposed a process grammar, which describes the effect of
processes as modifying the type and/or number of curvature extrema of the shape.
The productions of the process grammar are expressed in terms of the following
four possible types of curvature extrema, shown together with their semantic
interpretation:

e M™: positive maximum, protrusion.
e m™: positive minimum.
e m™: negative minimum, indentation.
e m™: negative maximum.

Using the above four types of curvature extrema, an elegant process grammar is
proposed. Each production of the grammar corresponds to a curvature process. The
productions are:

e Cm*:m*— 0m~0, squashing continues till it indents.

e CM™:M~— OM™0, internal resistance continues until it protrudes.
e BM*:M*—> M*m*M™, a protrusion bifurcates.

e Bm~:m~— m~ M "m~, an indentation bifurcates.

e Bm*:m*> m*M*m*, a protrusion is introduced.

e BM~:M~— M m~M™, an indentation is introduced.

Our approach in using the concept of shape curvature processes in matching is to
devise algorithms that map one shape onto another by applying productions in both
directions. It is necessary to consider productions as acting in both directions, since
in general there is no guarantee that one of the two shapes being matched is going to
correspond to an earlier stage of the evolution of the other shape.

Leyton’s process grammar suggests one way of accomplishing this task, namely
computing the curvature extrema of the two shapes and then establishing correspon-
dences between them either directly or via productions. On the other hand, Richards
et al. [17,7] rely on segments bounded by minima of negative curvature. To describe
such segments, they introduce the concept of codons, which are curve segments
lying between minima of curvature (not necessarily negative). Codons have zero, one
or two curvature zero crossings (inflections) and they yield a total of five codon
types, plus the degenerate case of a straight line.

Matching based on curvature extrema is highly sensitive to noise, as it is
demonstrated by Fig. 2. In this figure we show two piecewise B-spline curves and
the corresponding curvature extrema. We see that very small variations in the curve
can result in a different number of curvature extrema and in different positions. Any
shape matching method that relies on matching of curvature extrema would have a
lot of difficulty accounting for such random perturbations. We would like our
primitives to reflect perception in a more robust way, and therefore we opt for
segments as our primitives. Further arguments against the use of curvature extrema
as contour descriptors are provided in [22].
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F16. 2. (a) Two perceptually similar piecewise polynomial contours and (b) their curvature extrema.
Both contours consist of local B-splines. Knot points are shown by x’s. Note that in spite of the apparent
similarity of the two contours, curvature extrema are not necessarily similar in number or location in the
two contours.

The problem of using codons as primitives is that codons are too complex to be
easy to directly match, because they do not necessarily have constant curvature sign,
and therefore the theory of extended circular images is not directly applicable. To
combine the simplicity of Leyton’s process grammar with the potential stability that
segments offer, compared to point primitives, we choose to segment the curve at
inflection points, thereby obtaining segments of constant curvature sign. We then
compute the extended circular image of each segmerit and use it for matching.

By adopting a segment-centered viewpoint towards curvature processes, we can
give an alternative interpretation of the two types of productions of [10]. Leyton
calls the Cm* and CM~ productions continuations, and the rest bifurcations.
Continuations are processes that continue till they introduce two new inflection -
points, while bifurcations replace a single curvature extremum by two of the same
type. In the context of segments of uniform curvature sign, continuations introduce
the splitting of a single segment into two of the same curvature sign separated by a
third segment of the opposite curvature sign, as shown in Fig. 3. If we use the
symbols C and ¥ to denote convex (positive curvature) and concave (negative
curvature), respectively, then we can rewrite the continuation productions of the
process grammar as:

C - CVC (5)
V - VCV. (6)

Bifurcations, shown in Fig. 3, on the other hand, do not introduce new inflection
points, and therefore they correspond to identity productions in terms of segments,
i.e., C = C or V — V. Therefore, the continuation productions stated in terms of
segments subsume the corresponding ones in Leyton’s process grammar, because
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Fig. 3. Examples of curvature processes: (a) continuation, (b),(c) bifurcations. The associated
point-based and segment-based productions are shown. Filled dots indicate inflection points. Bifurca-
tions correspond to identity segment-based productions. However, the extended circular images of the
two sides of the production have a different number of maxima and minima.

they can also account for an arbitrary number of bifurcations. Viewed this way,
continuations and bifurcations belong to two distinct levels of abstraction, suggest-
ing that matching be performed at the continuation level first, and then at the
bifurcation level.

Furthermore, we classify bifurcations into two classes. The first class includes
BM* and Bm~ and corresponds to processes that, if allowed to fully develop, will
eventually lead to the introduction of new inflection points. The second class
includes Bm™ and BM~ and it includes processes that will not necessarily lead to
new inflection points, if allowed to continue.

Therefore a C - CVC production in general includes the effect of one or more
BM™* or Bm™ productions applied at an early stage of development, followed by a
Cm™ production. Similar observations hold for a ¥ — VCV production.

Induced Operations on the Extended Circular Images of the Segments
Participating in a Curvature Process

Before we can use the concept of curvature processes for matching shapes, we
need a measure of goodness of a production, given the participating segments. A
complete physical model accounting for shape deformations should include a model
of the material and models for the acceptable forces that induce the deformation.
Measuring the goodness of production could then be reduced to comparison of
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quantities with physical meaning, such as the energy associated with the deforma-
tion. Physical models are available [9], but in their current form the user is required
to provide the constraint forces. There is a trade-off between the sophistication of a
shape model and the ease of modelling. In this paper, we opt for a simple shape
model, B-splines, and a crude physical model for the deformation, corresponding to
preservation of contour length; i.e., we assume a fixed-length string model for our
contours. The fixed-length string model for the deformation allows the definition of
a goodness measure, which can be computed using the extended circular images of
the participating segments.

In the sequel, we provide a precise definition of the goodness measure of a
production. Then we enumerate desired properties of a concrete realization of a
curvature process. Finally, we present a simple operation on the ECIs of the
participating segments and we discuss the degree to which it satisfies the desired
properties.

To place the concept of goodness measure in the proper context, let us assume
that we want to assess the goodness of the production C\V,C, — C;, where C,, V,, C,
are consecutive segments of the first contour, and C; is a segment of the second
contour. The production can be thought of as mapping the extended circular images
of C, ¥}, C, onto the extended circular image of C,. The goodness measure is then
defined as the distance between the ECI of C; and an “ideal” ECI derived by
combining the ECIs of C,, ¥}, C, in an appropriate way that reflects the action of
the curvature process. The distance between two ECIs will be defined in the next
section as a function of their correlation coefficient and the length of the corre-
sponding segments. What remains to be decided is how to obtain an ECI corre-
sponding to an “ideal” derived segment that results from C,, ¥}, C, due to the
production.

If we view the contour segments as fixed-length strings, a curvature process
should preserve length and continuity of the curve and its first and second
derivative. Therefore, the ideal derived segment should have the same length as the
sum of the lengths of Cy, V), C,. Let S¢, and E., denote the start and end points of
the segments C, and C,, respectively. Continuity of the curve requires that the
vector defined by the end points of the ideal segment be equal to the vector from
point S, to point E. . Continuity of the first and second derivative requires that
the tangent and curvature of the ideal segment at its endpoints coincide with the
tangent and curvature at the points S, and E,. The sum of the absolute values of
EClIs, suggested in a different context in [8], results in a segment that satisfies most
of the above desired properties, as stated in the theorem below.

THEOREM 1. If p(9), pyi(8), pco(8) are the extended circular images of three
successive segments of a curve C,, V;, C,, respectively, with C,, C, being convex and V,
being a concave segment, then their sum,

pC1VlC2(0) = Pc1(0) - PV1(0) + Pcz(a), (7)

corresponds to a derived convex segment, denoted by C\V,C,, that always preserves
length and curve continuity, and it preserves continuity of the first and second
derivatives of the curve provided that the extended circular image of V, is narrower
than that of both C, and C,.
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Proof. To show preservation of length, we note that the integral of an ECI is
equal to the length of the associated curve segment, therefore,

J” panci®)de= [~ pci(0)db ~ [” pa(8) d6 + [ oca(0) a8

or

[o o]
f pcl,,lcz(l)) d=Lc + Ly + L,
— 00

where L. denotes the total length of segment C.
Continuity of the curve itself can be shown by focusing on the following integral
over a curve segment C,

J” p(o)(e) a6, (®)

where t(#) is the tangent unit vector with orientation 6. Since p(8) = di/ df, the
integrand can be rewritten as #(68) dl or dl, where dl is the infinitesimal segment of
the curve with orientation @ in vector form. Therefore the above integral is equal to
the vector from the start to the end point of the curve segment C. Furthermore, the
vector from the start to the end point of the ideal segment derived as the result of
the production is equal to

S penc @8y at = [~ o (0)0(0) d0 ~ [ oy (8)t(6) a8
+ [ e (0)4(0) a8 )

or

[ penc(0)M(8) d8 = SGE, + S,E, + SE,, = Sk, (10)
— 00

where Sc E is the vector from the start of C; to the end of C,. Continuity of
tangent and curvature is preserved when the domain of p, () is narrower than the
domain of both p.(8) and p.(8). Under this condition, pc ., (6) = pc(0) in a
right neighborhood of the point S¢; ., and pcy,c,(8) = pc,(0) in a left neighbor-
hood of the point Eg,. .. Therefore, the local structure of the original curve is
preserved at the endpoints of C;V;C, and thus continuity of first and second
derivative is preserved, as well. O

The previous theorem suggests that a plausible way to measure the validity of a
hypothesized production C;V,C, = C,, where C\V,C, are consecutive segments of
one of the two curves being matched, and C; is a segment of the other curve, is to
assess the similarity between C; and the convex segment derived from C;, ¥}, C, by
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adding the absolute values of their ECIs. The following definition formalizes this
observation.

DEFINITION 4. Given a distance measure between two extended circular images,
the goodness measure of a production C\V,C, — C;, where C,, V,, C, are consecutive
segments of one of the two curves being matched, and C; is a segment of the other
curve, is defined as the inverse of the distance between the sum of the absolute
values of the ECIs of C;, ¥}, and C,, and the ECI of C,.

In the next section we will define a particular distance measure between two
extended circular images.

4. THE SHAPE MATCHING ALGORITHM

The intuition behind our matching scheme is that if two closed plane curves
correspond to two successive stages of the evolution of shape, then there exist
segments that have not deformed to the extent of introducing or eliminating
inflection points. The extended circular images of such segments in the two curves
have overlapping domains and similar forms. This property can be exploited for
establishing correspondences between segments in the two curves. In case inflection
points have been introduced or eliminated as a result of the deformation, some
segments will remain unassociated. Productions can then be hypothesized to de-
scribe the deformation.

Based on the above intuition, our shape matching algorithm relies on an “associ-
ate—hypothesize—test” loop. The algorithm first concentrates on the undeformed
segments and establishes associations using dynamic programming, while leaving
some of the deformed segments unassociated. Already associated segments are then
viewed as anchor segments, and they are used to hypothesize productions, which
have the potential, if carried out, of making the two curves being matched more
similar in shape. Finally, hypothesized productions are tested by computing their
goodness measure, and the production with the highest goodness measure is selected
and applied.

Application of a production can take place in both directions and results in the
replacement in one of the two closed curves of three segments by a single derived
segment, whose ECI is the sum of the absolute values of the ECls of the previous
three segments. Application of a producting thus modifies one of the two closed
curves being matched, and in fact reduces its number of segments by two. The
modified curve hopefully matches the other curve better, since we applied the “best”
possible production. At each iteration, the problem becomes progressively simpler,
since it involves two fewer segments. The algorithm terminates when there are no
unassociated segments, and therefore no productions can be applied.

The matching algorithm does not explicitly compute the derived segments, but
represents and uses them in matching via their extended circular images. This is
sufficient, since the goodness measure defined previously only depends on the ECIs
of the participating segments.

Establishing Associations Using Dynamic Programming

Dynamic programming is an appropriate method for establishing associations
between undeformed segments because it can take into account the similarity and
overlap of the extended circular images of the segments by using a suitable distance
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measure. At the same time it preserves the order of segments along the two
contours. The first step in applying a dynamic programming algorithm is to turn the
two cyclic sequences of segments into open ones. We perform this step by finding
the best matching pair of segments and making these segments the starting segments
of the open sequences derived from the cyclic ones. A standard dynamic program-
ming algorithm can then be applied [12] as follows.

Assume that x = a,a, --- a, and y = bjb, --- b, are the two curves to be
matched, represented as two sequences of segments. We are looking for the
minimum cost mapping between x and y that preserves order of segments. The cost
of associating a, with b; is denoted by y(a,, b;) and it is a function of the ECIs of
a; and b,. We also havc to assign a cost to the unassociated segments v(a;, nil) and

(ml ), which we take to be a constant.

According to the Wagner and Fischer algorithm [12], we scan x and y from left
to right and we build a cost array D(i, j). The (i, j)th element of the array is equal
to the optimal cost of matching x(i) = a,a, --- a,, the first i segments of x with
y(j) = byb, -+ b;, the first j elements of y. Therefore, D(i, j) can be defined
recursively as follows:

D(i-1,j—-1)+7v(ayb)
D(i,j)=rnin D(i_l»j)+y(ai’ml) (11)
D(i, j — 1) + y(nil, b,).

Finally, we search through the cost array for an optimal path from D(0,0) to
D(n, m), which yields the segment associations we are looking for. The complexity
of the algorithm is O(nm).

We still have to define y(a,, b;), ¥(a;, nil), and y(nil, b;). We want y(a,, b)) to be
a function of the following characteristics: overlap and similarity of the ECIs of
segments a, and b;, and closeness of the lengths of 4, and b;. Overlap and similarity
of the ECIs is captured by the distance metric 4, where

® «, (8)x, (8) d6
- f‘°° S (12)

o \/ fj:oni(O) a8 fj:ox,";j (6) do

where k(8) = 1/p(8) is the inverse ECI. It can be easily seen that d, is equal to 1 if
x,(0) = Ax,,(o) If «,(8) does not overlap with «, (8), then d, is equal to oo,
because the numerator is equal to zero for all 8. This distance metric is insensitive to
absolute values of curvature, therefore it is size independent. Finally, it takes into
account the exact shapes of the two ECIs, and produces the shortest distance in the
case of both maximum overlap of the two ECIs and greatest similarity in shape. The
integrals are approximated by summations in the case of a discrete implementation
of ECls.

The above distance metric alone fails to capture directly the difference between
the lengths of the two segments. Therefore it may result in a small distance if the
domain of one ECI is much shorter and completely contained in the other. To take
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into account length differences, we introduce an additional distance factor d,,

1 [la;] — |bjl|
-—=1-— 13
d, la;| + |bj| (13)

where |a,|, |b;| denote the lengths of the corresponding segments. d, is 1 if the two
arcs are identical in length and very large if one is much longer than the other.

Finally, we define:

v(a,, b;) = d, d,. (14)
Thus the final distance measure weighs equally the overlap and similarity of the two
ECIs and similarity of the two segments in terms of length. y(a »b;) is between 1
and co. The cost of a non-match should be set to a value low enough to make
unassociation preferable to association of the wrong segments but not too low so
that right associations are missed.

A final issue to resolve regarding EClISs is the periodic nature of the unit circle and
its interaction with rotation indices absolutely greater than 1. If a curve spirals by
more than a full circle, then the mapping from tangent direction to the unit circle is
not one-to-one any more. In the implementation of our matching algorithm, we deal
with this problem by treating ECIs as non-periodic functions, extending from — co
to oo, with an ambiguity of 2k in their argument. In computing the distance d,, we
select k, so as to maximize the overlap between nbj(ﬂ + 2kw) and «,(8), and we
correlate the latter two inverse extended circular images.

Process Recovery

The previous section showed how to establish associations between similar
segments of the two shapes. In this section, we concentrate on the unassociated
segments and we attempt to recover the productions related to them.

The two classes of productions in the process grammar naturally introduce two
levels of abstraction in process recovery. The first deals with segments of constant
curvature sign and recovers segment-based continuation processes of the CVC — C
or VCV - V type, as discussed earlier. The second level deals with curvature
extrema within pairs of segments and recovers bifurcation processes by concentrat-
ing on the extrema of the extended circular images of associated segments. In this
paper we only address recovery of segment-based continuation processes, bifurca-
tion processes being dependent on point primitives and therefore highly unstable, as
shown in Fig. 3.

The algorithm for recovering segment-based continuation processes takes as input
an ordered list of pairs of the form (a,, b;) or (a;,nil) or (nil, b)), i.e., the output of
the dynamic programming algorithm. It then generates all possible productions in
both directions of the form C\V'C, » C; or V,C¥, — V, for which the following
conditions are satisfied:

* one of the three segments of the left-hand side of the production is associated
with the right-hand side.

* the two other segments of the left-hand side of the production are unassoci-
ated.
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The first condition ensures that we hypothesize productions that may improve
existing associations. The second condition ensures that productions only absorb
unassociated segments.

All productions thus obtained are ordered according to a goodness measure,
equal, for a production C,V¥'C, = C; with prior association of C; with C;, to the
ratio,

distance(C,V'G,, C;) (15
distance(C;, G;) )

where C,VC, denotes the segment whose ECI is equal to the sum of the absolute
values of the ECIs of C,, V, and C,. The “best” production is selected (regardless of
direction) and it is effected, i.e., the three segments C), ¥, and C, are replaced by
their combination C,V’C,, described by its extended circular image and the sign of
its curvature, in this case positive. Thus the closed curve containing C,, V, and C,
gets modified, and the modified curve has two segments less than the original. The
modified curve is again described by its extended circular image. As mentioned
above, new correspondences are established between the modified curve and the
closed curve containing C,, and the new cost is compared with the cost of the
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FiG. 4. Cloud silhouettes hand-traced from real infrared satellite images. A leaf-shaped cloud evolves
into a comma-shaped cloud during cyclogenesis.
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original associations. If the new cost is lower than the original cost, the iteration is
repeated by selecting a new “best” production. If the new cost is higher than the
original cost, then the iteration terminates by returning a match that includes one or
more unassociated segments.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results from the application of shape
matching to the analysis of sequences of cloud silhouettes, such as those appearing
in visible or infrared satellite imagery. Such sequences contain a lot of information
about evolving weather patterns, and therefore they are very useful in weather
forecasting. In this domain, it is important to describe evolving cloud silhouettes,
and eventually match such descriptions against knowledge bases of various meteor-
logical phenomena. Another major issue that we do not address her is the extraction
of cloud silhouettes from real satellite imagery. Recent progress in curve detection
{30] and perceptual grouping [26, 29] is very promising in regard to curve extraction
problems from real images.

Figure 4 shows cloud silhouettes from the evolution of a storm over North
America, that were hand-traced from real satellite images. The storm pattern starts
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F16. 5. Segments computed for the cloud data of the previous figure. Segments are bounded by
inflection points shown as dots. For easy reference, convex or concave segments are denoted by C(a) or
V(a), respectively, where a is the length of the segment, measured in units equal to the horizontal
distance between neighboring pixels.
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as a leaf shape and gradually turns into a comma shape, with corresponds to a
mature storm. The sampling period of our example is 3 h whereas in reality a new
satellite image is available every 30 min.

Figure 5 also shows the significant inflection points detected by the preprocessing
step of our algorithm. Each of the segments is named by its length for reference
purposes. Figure 6 shows the productions recovered by the matching step of the

Matching of Cloud 1 to Cloud 2
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F1G. 6. The trace of the matching algorithm is shown on the successive pairs of the cloud sequence.
Dotted arrows associate table entries with the corresponding cloud segments. Successive iterations are
ordered top—down. In iterations other than the first (the top one), only the derived segment is associated
with its table entry with a dotted arrow. Note that the “associate” step of the algorithm correctly
associated the derived segment with the single segment occupying the other side of the selected
production of the previous cycle. The figure continues on the next page.
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Matching of Cloud 8 to Cloud 4
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algorithm for successive pairs of clouds. Matching Cloud 1 with Cloud 2 did not
require any productions, since segments matched each other exactly. Cloud 2 and
Cloud 3 both have the same number of segments. However, two productions are
required (in opposite directions) to account for their differences. Matching of Cloud
3 and Cloud 4 requires one production to account for an extra protrusion present in
Cloud 4. Finally, matching of Cloud 4 with Cloud 5 requires two productions, both
in the same direction, to account for the fact that Cloud 4 has four more segments
than Cloud 5. It is worth noting that the segment C*(369) derived from the first
production takes part in the second production, as well. This underscores the notion
that derived segments are treated like original segments by the matching algorithm.
Finally note that in all examples, the dynamic programming algorithm, when run on
the segments resulting from a production application, always matches the newly
derived segment with the segment on the other side of the production.

The productions recovered by the matching algorithm can then form the basis for
an interpretation of this cloud sequence. In meteorology, the absolute orientation of
individual segments matters, and this information is captured by extended circular
images. For example, the leaf-shaped pattern usually has an east—west orientation,
with the tail of the leaf facing west. This is a result of the wind direction in the
northern hemisphere.

If N is the number of points used to represent the input shapes, and M is the
number of segments found in the two input shapes, then the computational
complexity of the matching algorithm is:

= Preprocessing step (spline modelling and extraction of significant inflection
points) is O(N).

o Each iteration of the algorithm includes a dynamic programming step, which
is O(M?), and a production recovery step, which is O(M). The maximum total
number of iterations is O(M), therefore the complexity of the iterations is O(M?3).

e The cost of the correlation of extended circular images is linear with the
number of sampling points we use. This is constant with respect to the complexity
of the input shapes.

6. CONCLUSIONS

In this paper we presented a new segmented representation for closed planar
curves based on the concept of the extended circular image (the 2-dimensional
analog of the extended Gaussian image). A closed curve is represented as a cyclic
sequence of the extended circular images of its segments delimited by inflection
points. The extended circular image is parameterized by the angle & formed by the
tangent (or the normal) of the contour and the x axis, in contrast to the commonly
used arc length parameterization. The most important property of a parameteriza-
tion based on tangent orientation is that it encodes information about absolute
orientation of the segment, which can then be exploited directly in matching. Length
is implicitly encoded in the extended circular image as its integral over 8. Another
advantage of using tangent orientation instead of arc length is that two curves with
the same shape but different size result in representations that are identical within a
scale factor. Representation based on arc length have different domains, requiring
adjustment of the scale of their independent variable. As a result, extended circular
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images of two segments pointing to approximately the same direction can be
directly correlated, whereas the same is not true in an arc length parameterization.

Absolute orientation of convex and concave segments is one major characteristic
we use in matching. The other is the order in which the segments appear along the
contour. To produce non-crossing associations that preserve the order of segments
we use dynamic programming. The overall matching algorithm iterates between
establishing segment associations using a dynamic programming algorithm and
effecting the most plausible production that involves unassociated segments next to
two associated ones. This greedy algorithm converges when all segments have been
associated or when no production can be found that reduces the overall cost.

It is worth noting that our algorithm depends on a single threshold, the cost
assigned to unassociated segments in the dynamic programming matching algo-
rithm. Experiments show that the algorithm is robust with respect to this threshold,
in that it gives the same answer for a wide range of values, as long as the threshold
remains higher that the cost of association of perceptually similar segments and
lower than the cost of association of spuriously overlapping extended circular
images.

APPENDIX: COMPUTING CURVATURE OF POLYGONAL PLANE CURVES VIA
SMOOTH APPROXIMATIONS

Digitized curves are usually available in the form of discrete sample points.
Connecting such points by straight line segments leads to polygonal plane curves.
Polygonal plane curves have been used extensively in shape analysis as the basis for
syntactic pattern recognition approaches [14], and for curve encoding via split-and-
merge approximation to obtain other polygonal approximations with fewer line
segments that capture the general characteristics of the curve.

Many earlier approaches to curvature computation used piecewise linear approxi-
mations [19, 6]). However, curvature is a function of the first and second derivatives
of a curve with respect to a curve parameter, and therefore using the angle between
successive line segments joining the sample points of the curve may result in
unreliable measures of curvature. Higher order approximations to the curve appear
to be preferable in that respect, and they can combine smoothing or regularizing
effects [18] with accurate derivative computations obtained analytically.

In this paper, the objective is not to study optimal curvature computation,
therefore we use a standard local B-spline approximation, that is widely used in
computer graphics [20]. B-splines are approximating splines, which means that they
do not pass through the input curve points (called knots), contrary to local
interpolating splines. This is the price to pay in B-splines for obtaining continuity of
the first and second derivatives of the spline approximation. Interpolating splines
are discontinuous in the second derivative and therefore discontinuous in curvature.
A property of B-splines is that they lie within the convex hull of their knots. This is
not true of interpolating splines, which can demonstrate kinks and wild fluctuations.
Another whole class of splines are global splines, which fit a single cubic polynomial
to all input points. The utility of such splines in practice is limited, because they
may display arbitrary kinks and twists. Local spline approximation fits a pair of
cubic polynomials to every successive four points of the curve. The resulting
piecewise polynomial curve is continuous in its first and second derivation every-
where.
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The classic local cubic B-spline is computed for four points at a time-and is a
cubic curve in a single parameter u. Assume four points A_,, 4y, 4,, A,, with
(x, y) coordinates equal to (x,, y,), for i = —1,0,1,2. The local cubic B-spline for
these four points is of the form

X(u) = A4+ Bu> + Cu+ D, = [u®,u?,u,1][4,, B,,C,, D,]” (16)
y(u) = 4,4* + Bu* + Cu + D, = [, 4% 4,1][4,, B,,C,, D,]T (17)

Y2 =y

where (X(u), Y(u)) are the coordinates of the spline points, for 0 < u < 1. The
coefficient vectors are computed from the coordinates of the four points in the
following manner:

[Ax’BmCx’Dx]T‘_‘B[x—l’xo’xvxz]T (18)
T
[Aya By, Cy, Dy] = B[y—la Yos Y1 YZ]T’ (19)

where B is a 4 X 4 matrix:

1—1 3 -3 1

M3 -6 3 0

B_6—3 0 3 of (20)
1 4 1 0

The matrix B has been computed so as to satisfy continuity of the spline and its
first and second derivative at the boundary points, namely for = 0 and u = 1 [20].
Figure 7 shows an example of a B-spline approximation to a small number of knot
points.

In contrast to computer graphics, where the resulting spline approximation is
sampled to generate an interpolated version of the original curve, we are interested
in using splines to perform computations of quantities such as curve length,
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FiG. 7. An example of a piecewise polynomial curve consisting of local B-splines. Spline endpoints
are shown as dots. Knot points are shown by “x* symbols. Knot points are numbered to indicate their
order.
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curvature extrema, and zero crossings and distance between a point and a spline.
Such computations in general do not have analytical solutions, therefore the most
convenient representation of the original piecewise linear curve is as a sequence of
cubic splines in their analytic form, or equivalently as a sequence of pairs of
4-vectors corresponding to the spline coefficients. We can thus carry out numerical
solutions to these problems on demand.

Curvature Computation
The curvature k for any curve which is continuous in its first and second
derivatives and parameterized by u is given by the formula
Xy — ypx w
Y~ (1)

"(“) = (22 +)>2)3/2 = 23720

where derivatives are with respect to u. Note that w is a second degree polynomial
in u (the third-order terms cancel out) and z is a fourth-degree polynomial.
Curvature extrema of a piecewise B-spline approximation to a curve can be
of two types: internal to a local spline or on the boundary between two local
splines. In the interior of a spline (0 < u < 1), the curve is infinitely continuous
and differentiable, therefore internal curvature extrema are characterized by
dx(u)/du = 0, or
wz — 3wz = 0. (22)
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F16. 8. Flat segments are characterized by narrow extended circular images: (a) a closed curve; (b) its
inflection points; (c) result of merging flat segments using productions. Note that the remaining two
segments cannot be reduced to one using productions.
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Solution of this fifth-degree polynomial equation can be performed numerically
(using, for example, the bisection or Newton—Raphson method [16]). On the
boundary between two splines, curvature is continuous but not its derivative with
respect to u. To check whether a boundary corresponds to a curvature extremum, it
is sufficient to check the sign of dk(u)/du at the two adjoining ends. Curvature zero
crossings or inflection points are computed by solving the equation k(#) = 0, which
is reduced to the quadratic equation w(u) = 0.

Treatment of Flat Segments

A flat segment is characterized by a narrow extended circular image and low
average curvature. A flat segment may arise if curvature remains low in absolute
value and crosses zero before a significant change in the orientation of the tangent
has occurred (Fig. 8). To prevent flat segments from complicating the matching task,
we replace triples of consecutive segments with a single segment by applying a
CVC - C or a VCV — V production, if the middle segment has a narrow extended
circular image. A closed convex curve cannot be obtained by this approach, since we
always start with an even number of segments, and each production reduces three
segments to one. Eventually, two segments will remain, which cannot be reduced to
one, unless we allow for C; = C; in a production CV,C, — C,.
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