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Abstract

Consistent image mosaicking is a potentially use-

ful tool for robot navigation and map construction.

This paper presents an automatic algorithm to gen-

erate consistent image mosaicking. During the robot

processing, local optimization based on the related

previous images is used for every newly added image

on the baseline approach view. As soon as a loop is

detected, a global optimization method is activated to

generate a globally consistent image mosaicking. This

method is very efficient in computation and storage

saving.
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1 Introduction

Image mosaicking started at the beginning of pho-
tography to obtain images with a larger field of view
by assembling two or more individual overlapping im-
ages. Recently, automatic image mosaicking has being
attracted many researchers in computer vision, image
processing, and computer graphics.

The construction of mosaics from images begins with
the alignment of successive overlapping images. Using
their relative positions, the images can be integrated in
a single large picture. Image alignment is not a difficult
problem in mosaic construction by appropriate model-
ing of projective transformation and lens distortion and
sufficient image overlap [15]. The biggest challenge is
to construct a consistent mosaic with long image se-
quences.

No matter how accurate image alignment can be
achieved, there is always an alignment error. So with
long image sequence alignment, the accumulated errors
will be very significant. This kind of mis-alignment is

obvious when we take the images in a cycle. The first
image and the last image will not match perfectly, and
a gap may exist after the pairwise alignment.

In this paper, we develop two step processes, local
optimization and global optimization, to ensure the con-
sistent image mosaic. Local optimization uses the adja-
cent overlapping images to get locally optimal registra-
tion; global optimization uses all the images in a loop
to get a globally consistent image mosaic. Our goal is
to construct a consistent mosaic in the ocean floor envi-
ronment which will be used for the AUV’s navigation.

2 Related Work

There are many papers in image mosaic which have
dealt with the problem of alignment images [3, 7, 15, 16].
Gonzalez [3] introduced a network to represent the im-
ages in a loop, and then distributed the accumulated
error to all the connections by minimizing the sum of
absolute error and minimizing the biggest error of all
connections.

In order to eliminate accumulated error during the
processing of frame-to-frame concatenation between the
adjacent frames, Hsu [7] carried out local alignment by
using the feature-based technique between the frame
and the partial image mosaic after the first step align-
ment.

In the paper [15], Shum proposed a method to con-
struct the image mosaic with global and local alignment.
In the global alignment step, he used block adjustment
to modify the difference between ray directions going
through corresponding points. The global alignment
preserves the mosaic’s consistency and the local align-
ment preserves the detail of the images.

Unnikrishan [16] proposed a distortion-free approach
for image mosaicking in a local and global sense based
on feature correspondence. Common features between
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images are used as constraints in a global optimization,
plus the additional constraints that come with cycles.

Unlike early methods that dealt with alignment of
images, consistent image mosaicking is closely related to
consistent map establishment of the autonomous robot.
Lu and Milios [10, 11] studied consistent global esti-
mation of a metric map constructed using laser range
data. Their method maintained a history of all the lo-
cal frames of sensor data used to construct the map and
the network of spatial relations between the frames. A
maximum likelihood algorithm was used to get a posi-
tion estimate for each of the frames by minimizing the
Mahalanobis distance between the actual and estimated
relations over the whole network of frames. Gutmann
and Konolige [4] extended this method to build maps
on the environment with large cycles in a more compu-
tationally efficiency.

Data registration in three-dimensional space is very
difficult because it depends on six degrees of freedom.
Sharp et al [14] considered the problem of multi-view
registration from range data. He firstly used the idea
of decoupling the analysis of the rotation and transla-
tion, which can be analyzed separately. Then consistent
rotation estimation is achieved by distributing the accu-
mulated angular error among all the links in the cycle.
The translational estimation between consecutive views
involves minimizing the sum of translation around each
cycle.

Madjidi and Negahdaripour [12] dealt with the 3D
registration problem, but used a totally different way.
They applied the mixed-model least squares estimation
paradigm to develop recursive estimation algorithms for
scene images. Position estimation is implemented with
different noise levels in observation.

Our method also addresses the local and global align-
ment problem for image mosaicking. We follow the Lu
& Milios’ philosophy and use the idea by Sharp [14] and
Duckett [1] to separate rotation and translation. Dur-
ing the locally consistent alignment step, we will use the
redundant information to get the optimized solution in
the maximum likelihood sense for the newly added im-
age; when a cycle is detected, the globally consistent
alignment step is activated. Unlike Sharp’s approach,
we establish an objective function by using maximum
likelihood subject to the rotational constraints for the
rotation. The solution for the rotation is used to con-
struct the constraints for the translational optimization.

This paper is organized as following. In section 3,
image transformation parameters are estimated based
on the feature correspondence between images. Section
4 establishes the approach to achieve globally consis-
tent image mosaic while a loop is detected. Section 5
presents a method to deal with local alignment based
on the baseline method. In section 6 simulation results

and experiment results are displayed.

3 Image Transformation Estimation

During the image mosaic construction, two of the ad-
jacent and partially overlapping images, will be aligned
by coordinate transformation. A common assumption
is that the coordinate transformations between images
are semi-rigid planar models, which is expressed by the
following equation.(

xj

yj

)
= sijRij

(
xi

yi

)
+

(
txij

tyij

)
(1)

This equation indicates that the pixel (xi yi)T of im-
age Ii is mapped to the pixel (xj yj)T of another image
Ij by the scaling sij , rotation Rij (Rij = R(θij)), and
translation (txij tyij)T .

This model is sufficient to match two images of a
scene taken from the same viewing angle but from dif-
ferent positions [6]. From equation (1), we know that
the most important step for the image transformation
is to establish the point correspondence.

3.1 Evenly Spaced Features

Many features can be extracted from the image, such
as corner, line, edge, color, illumination, texture, his-
togram, and SIFT feature [9]. In this paper, we use the
Harris method to find corners in the image. Then the
image feature correspondences can be obtained by us-
ing a SSD (Sum of Squared Differences) method. From
these feature correspondences, the image transforma-
tion parameters in equation (1) can be obtained by using
Least Squares method. Both of the steps are fast and
stable, but the transformation parameters may not be
good enough if the features are not distributed on most
of the images. So an evenly spaced feature is introduced
in this paper to refine the transformation parameters es-
timation.

Figure 1 Feature correspondences on images. Right images

display the corner features with red cross, and left are the

evenly distributed features.



From the image Ii, we generate an evenly spaced grid
point set P k

i , (k = 1, · · · , N), and all the grid points
can be transformed to image Ij by the previous trans-
formation, and we obtained P k

j , (k = 1, · · · ,Mi) with
(Mi ≤ N). Since the unevenly distributed corner fea-
tures in the previous steps, the point P k

j may not the
right correspondence. So we use a SSD again to search
on the small range and then find the best matched fea-
ture points P k

j . Now the evenly distributed feature
points P k

i and P k
j can be used to estimate the trans-

formation again, and the result is much better than the
previous result.

The mismatching happens in some case, which will
cause the transformation estimation far away from the
right value. These outliers can be eliminated by per-
forming RANSAC algorithm [2, 5]. So in every step
of estimation the transformation parameters, we used
RANSAC to eliminate the outliers.

3.2 Uncertainty modeling

In the feature point correspondence of the previous
section, residual errors of the estimation arise due to im-
age noise. If the image measurements are uncorrelated,
the error can be modelled as a diagonal covariance ma-
trix with entries σ2. From the equation (1),if we take
the txij ,tyij , sij , and θij as independent variable, then
we can get the Jacobian of the correspondence as fol-
lowing.

Jij =

(
1 0 (−sijxicθij − sijyisθij) (xijcθij − yijsθij)
0 1 (sijxicθij − sijyisθij) (xisθij + yicθij)

)
(2)

where cθij = cosθij and sθij = sinθij . Then the uncer-
tainty of estimation of the transformation parameters
can be obtained by [8] as following.

Pij = σ2(JT
ijJij)−1 (3)

4 Globally Consistent Image Mosaic

Figure 2 A cyclic graph for image mosaicking. Vi is the

upper right corner of the image Ii and Sij , Ri, tij are the

transformation parameters (actually, the transformation

center is at the image center).

Suppose that we have a cyclic graph G = (V, e),
which consists of vertices V1, V2, . . . , Vn, and correspon-
dent links shown in Figure 2. This is the very basic
model to simulate the image mosaic with a loop.

Due to the error in every alignment step, the accumu-
lated error will result in an inconsistent matching (gap)
in a loop. When in the long cycle case, the misalignm-
nent between the first image and the last image in the
circle may be very significant. So this gap must be dis-
tributed evenly to ensure the consistency of the image
mosaicking.

This is the same problem as in 2D mapping with loop
for an autonomous robot using laser range data [10]. An
effective algorithm to construct a 2D map using com-
pass to measure orientation was proposed by Duckett
[1]. This gave us the idea to decouple the rotation and
translation. Sharp [14] used this idea for 3D image reg-
istration. In this paper, we will follow [14] to estimate
the optimal rotation and translation, respectively.

4.1 Consistent Rotation Estimation
In the case of loop, if all the measurements and cal-

culations are perfect (see Fig. 2), then it should have
the following expression:

R12R23 · · ·Rij · · ·Rn1 = I (4)

where I is the identity matrix. Since there always ex-
ist measurement error and calculation error, equation
(4) will not hold exactly. According to Lu and Milios’
strategy [10], the accumulated rotation error must be
distributed to all the links of the cycle by the following
optimization function

Ω =
1

2

n∑
i=1

(Rij − R̂ij)
T C−1

ij (Rij − R̂ij) + λ(R̂12 . . . R̂n1 − I)

(5)
where j = i + 1 (if j > n, then j = 1), Rij is the esti-

mated value of the rotation, R̂ij is the optimized value
of the rotation, Cij is the variance of the Rij , which
is equal to Pij(3, 3) in equation (3), and λ is Lagrange
Multiplier. In 2D planar rotation case, the rotation ma-
trix Rij can be expressed by rotation angle θij . So the
equation (5) can be transformed to

Ω =
1

2

n∑
i=1

(θij − θ̂ij)
T C−1

ij (θij − θ̂ij)+λ(θ̂12 + . . .+ θ̂n1−2π)

(6)

If we express θ = (θ12 θ23 · · · θn1)T , θ̂ =
(θ̂12 θ̂23 · · · θ̂n1)T , A = (1 1 · · · 1)T and C =
diag(C12 C23 · · · Cn1), the equation (6) becomes

Ω =
1
2
(θ − θ̂)T C−1(θ − θ̂) + λ(AT θ̂ − 2π) (7)



The Ω of equation (7)can be minimized by taking the
derivative with θ̂ and λ and letting them equal to zero,
respectively, to obtain(

C−1 A
AT 0

)(
θ̂
λ

)
=

(
C−1θ
2π

)
(8)

Since the left matrix is symmetric and C is diagonal,
it is possible to solve it with recursive partitioning of
Gaussian elimination [13].

θ̂ = θ − CA(AT CA)−1(AT θ − 2π) (9)

If the number of images in the sequence is n, the
computation of θ is O(n). Another benefit of the algo-
rithm is memory saving. We do not use all the images in
the loop directly for the global consistent optimization,
while we only use the graph’s link information.

4.2 Consistent Translation Estimation
After the consistent rotation estimation as in the pre-

vious section, we can establish the objective function to
minimize the following Mahalanobis distance [10] for the
consistent translation estimation.

W =
1

2

n∑
i=1

(tij − t̂ij)
T C−1

ij (tij − t̂ij)+

+
1

2

n∑
i=1

Mi∑
k=1

(P k
i − R̂ijP

k
j − t̂ij)

T (P k
i − R̂ijP

k
j − t̂ij) (10)

where Cij is related to the correspond entries in error
model in equation (3), and P k

i is a feature point in im-
age Ii and k = 1, · · · ,Mi. This objective function must
be subjected to the constraint that the estimated rota-
tion t̂ij will transform the vertex Vj back into Vj in the
cycle [14]. This means

(
a12 a23 · · · 1

)


t12
t23
...

tn1

 = 0 (11)

where a12 = sn1Rn1 · · · s23R23 and a23 =
sn1Rn1 · · · s34R34. The optimal translation can be
obtained by Lagrange multipliers with the following
objective function

Ω =
1
2
(t− t̂)T C(t− t̂)+

1
2

M∑
k=1

(P k − t̂)T (P k − t̂)+λ(At̂)

(12)
where t = (t12 t23 · · · tn1)T , t̂ = (t̂12 t̂23 · · · t̂n1)T , C
is the covariance matrix for t, P k = (P k

1 · · · P k
n )T , and

A = (sn1Rn1 · · · s23R23 sn1Rn1 · · · s34R34 · · · 1)T .
We use the same method of the previous section to

get the solution of t̂. The computational complexity
is O(nM) for consistent translation estimation. M is
constant and M ≤ N , so it is very efficient.

5 Locally Consistent Image Mosaic

In the previous section, we have got the globally con-
sistent for image mosaic when there is a loop. If there is
no loop, we still need to improve its accuracy by using
the redundant information available.

Assuming that the robot navigates in an environ-
ment, it takes an image every time step. In order to
have a high quality image mosaic or map, the adjacent
image overlap must be at least 70% [12]. If we keep
the overlap at 80%, then every image will have partially
overlap with other four recent images (Figure 3 a). As-
suming the given images determine the most likely pose,
then append the pose to the map, and freeze it once for
forever.

Figure 3 a. Adjacent images overlapped; b. The connec-

tion of image Ii with previous images.

For the new added image Ii, if we can find at least
four feature point correspondences with any other previ-
ous images, we establish a link between them (Figure 3
b). If we can get m images having this kind of link, then
we can minimize the following function for the position
of image Ii.

Ω =

m∑
j=1

(Vi − Vj −Dij)
T P−1

ij (Vi − Vj −Dij) (13)

where Vi = (xi yi θi si)T indicates the position of cen-
ter of image Ii, Vj = (xj yj θj sj)T , (j = 1, · · · ,m), are
the center position of the images which overlap with
image Ii. Pij is the covariance for the link from Vi

to Vj , and Dij is the measurement of relative image
position from image Ii to image Ij , which is equal to
Dij = (txij tyij θij sij)T . By taking the derivative of
the equation (13) with respect to Vi and setting it to
zero, we obtain

Vi = (
m∑

j=1

P−1
ij )−1

m∑
j=1

(P−1
ij (Vj + Dij)) (14)

This is optimal solution for image Ii based on all the pre-
vious related images. The computational time is O(m).
Since m is usually much smaller than n, the local con-
sistent estimation is very fast.



6 Experiments

Two steps are carried out to test our algorithm. The
algorithm used in this paper is summarized in the fol-
lowing figure 4.

Input: a sequence of n images,
evenly distributed feature number N

Output: image mosaic of the sequence of images

1 for i=1 to n
2 get the image Ii

3 compute feature by using Harris method
4 find match features on previous images by SSD
5 implement RANSAC to delete outliers
6 find the evenly distributed feature points
7 if the number of matched points > N/2
8 calculate transformation between Ii and Ij

9 end if
10 calculate the position of image Ii by eq. (14)
11 loop check
12 if loop exist
13 global optimization by eq.(6, 7)
14 goto 18
15 else
16 goto 18
17 end if
18 image integration
19 next i

Figure 4 Procedure for the algorithm

Figure 5 Image mosaicking from simple alignment between

two adjacent images. The red arrow indicates the robot

path, and the yellow line indicates the inconsistent merged

place between the first image and the last in the loop

In order to evaluate the globally consistent algorithm,
we assume that a robot navigates in a area at a constant
speed counterclockwise along a rectangular trajectory,

and take an image at the same time interval. Each im-
age has 80% overlap with the previous image. Then we
can clip an image sequence from a bird-view image of a
factory according to the assumption. If we only use the
local optimization, the image mosaic will be not consis-
tent at the end of loop (see Fig. 5). When we use the
globally consistent algorithm by adding the constraints
of loop information, we get a consistent mosaic as show
in Fig. 6.

Figure 6 Image mosaic after local and global optimization

In another example, we use a hand-held camera to
take an image sequence at Halifax harbor which has 20
images. Since there is no cycle in this image sequence,
we only used the local optimization for the mosaicking.
The number of feature points N = 400 and search win-
dow is 15×15 pixels. The mosaic of the harbor is shown
in Fig. 7.

Figure 7 Image mosaicking for the Halifax harbor



7 Discussion

Automatic consistent image mosaicking with local
and global optimization has been addressed. The basic
requirement for the consistent image mosaicking con-
struction is the redundant information which is provided
in the sequence of images by image overlapping. This re-
dundant information makes it possible to establish con-
straints for the system optimization.

When the cycle is detected in the image sequence,
global consistent optimization is used, in which the ro-
tation and translation are decoupled. The worst com-
putation time is O(nN), here n is the number of images
in the loop and the N is the evenly distributed feature
number. while in Lu & Milios’ method, the compu-
tational complexity is O(n3). And we have the same
computational speed as Unnikrishan, but our method
decouples rotation and translation, which will greatly
reduce the computation for the 3D case.

When a new image is added, if there is no cycle de-
tected, the locally consistent alignment is used with all
the related abundant information. The computational
complexity of our approach is O(m), where m is the
number of images which have enough overlapping (the
matched feature points is bigger than the number of pa-
rameters in the image transformation model) with the
newly added image. It is much faster than previous
approaches.

The simulation results and real experiment results
indicate that the algorithm is practical. The framework
can be used for the 3D image registration and robot
navigation in 3D environment, and this is a topic of
future investigation.
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