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Abstract—We address the problem of globally consistent their correspondences. Many methods have been proposed to
estimation of the trajectory of a robot arm moving in three solve the registration problem. Among these methods, the ICP
dimensional space based on a sequence of binocular Stereoalgorithm [18], [2] has attracted significant attention from

images from a stereo camera mounted on the tip of the arm. h chine vision community. The | of ICP is to find
Correspondence between 3D points from successive stereo cameré € ma e on co unity. goal o

positions is established through matching of 2D SIFT features in the rigid transformation T that best aligns a cloud of scene
the images. We compare three different methods for solving this points S with a model M. The alignment process works to
estimation problem, based on three distance measures betweenminimize the mean squared distance between scene points and
3D points, Euclidean distance, Mahalanobis distance and a yneir closest model points. ICP is efficient, and it converges

distance measure defined by a Maximum Likelihood formulation. notonically t | | minimum. There are two main st
Theoretical analysis and experimental results demonstrate that monotonically 10 a loca um. there are two main steps

the maximum likelihood formulation is the most accurate. If the ~at each iteration: (1) finding the correspondence points, and
measurement error is guaranteed to be small, then Euclidean dis- (2) minimizing the mean square error in position between the
tance is the fastest, without significantly compromising accuracy, correspondences [6]. This paper will focus on the second step
and therefore it is best for on-line robot navigation. in ICP.
Generally, there are three methods to define objective func-
tion for the data registration. The first method is to minimize
Vision based robot navigation needs to use relative aligthe sum of Euclidean distance between the correspondence
ment information from consecutive images to estimate ifpints [9], [11], [19]. The advantage of Euclidean distance
localization. Approaches can be classified as correspondergethat it is possible to obtain a closed-form solution. In
based and flow-based. In the correspondence-based methastdar to consider the influence of measurement error on the
set of 3D points is obtained from each robot position. Thebjective function, different weights for different 3D point
estimation of the localization requires the establishment phirs are used in the objective function based on Euclidean
correspondence and registration between sets of 3D poigfstance [5], [11]. How to set the weights remains as a
from consecutive robot positions. problem. Dorai [5] proposed a method to estimate the weight
3D data registration is still a challenge in computer visiogr the range image registration, but this method requires to
robot navigation, as well as in medical photogrammetry [18stablish an interpolation surface using all the range data,
Selecting or designing a reliable and reasonable objecti¥ich is computationally expensive. The second method is
function is the critical issue for this registration. We focushe maximum likelihood formulation which is based on the
to discuss this issue in the paper. Gaussian noise assumption [1], [16]. The third method is
the Mahalanobis distance which uses all the components’
variance in the data set. This idea is derived from the statistical
Approaches for extracting motion information from imagelistance [13]. The general Mahalanobis distance can not solve
sequences can be classifieccasrespondence-basamdflow- the problem in the case where the two sets of 3D points have
based Correspondence methods [15], [8], [17] track distinddifferent covariances. This is a frequently occurring scenario
features such as corner, line, high curvature point, SIAR, the vision-based self-localization estimation. The contribu-
etc., through the image sequence and compute 3D structtiom in this paper is the experimental analysis of alignment
by triangulation. Flow-based methods [14] treat the imagesidual errors and robot trajectory error for the three tested
sequence as functiofi(z, y,t), where(x,y) are image pixel distance functions: Euclidean distance, Mahalanobis distance,
coordinates and is time, restrict the motion between frameand a distance measure defined by a Maximum Likelihood
to be small, and compute shape and motion in terms fafrmulation.
differential changes in the functiop. The paper is organized in the following. In sectfor IIl, we
In the correspondence-based method, the most importanbpose the three objective functions for the data registration.
step is to register one set of data to another according Itosectiorf TV, we design an iterative approach to solve the non-
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linear objective function for the transformation parameters. lccording to the Gaussian assumption, the joint probability
sectionV, we compare the three methods by simulation adibtribution function (PDF) of the measurements=(1 - - - n)
field experiment. In the last section, we present a summaryisfdenoted as

our proposal and conclusions. n 1

(M) = ([@rS) ™ )ean(=5 Y- viS7 ) (6)

i=1 i=1

I11. OBJECTIVEFUNCTION FOR THEDATA REGISTRATION

With the stereo camera system, it is possible to get a %ere we assume that all the 3D point measurements are

Clt?u‘.j C; at tigga 4 fo:zv;“ .t' gurthermore, it és po;SD‘ible.toindependent. The maximum-likelihood estimate forand T’
‘]’W}a'”' 02"", - poInti; n b b %cprrzsp';n IngS. pﬁ'm is given by minimizing the exponent in the above equation
i, € Ri=1,...,n can be obtained iit;_,. Since the agd can be expressed by

two data sets are derived from different image frames, an
their covariance will change with the image’s depth. Thus the . 2
corresponding points will have different error covariance. We BT E(R,T) = Z’/ i Si Vi @)
assume that the error for every pointan be expressed as o =1
o+ The objective function for the registration problem is C. Mahalanobis Distance

n In the first method, all components of a measuremeiit
min  E(R,T) = Zd(M;" RM] | +T) (1) contribute equally to the Euclidean distancedoHowever in
RT i—1 statistics we prefer a distance such that each of the compo-

where R and T are the rotation and translation between thaents (the variables) takes the variability of that variable into
consecutive clouds of points at times- 1 andt, andd is the account. Components with high variability should receive less

generalized distance between corresponding 3D points. Th)ﬁ’r@ght thgn .comp'onents with low variapility. This idea 'ea‘?'s
are three ways to establish the objective function. to the statistical distance or Mahalanobis distance [13], which

is expressed by

A. Euclidean Distance i i 1, AT
d(Mg, RM{_y = T) =v;S; " (vi) (8)

The Euclidean distance is direct and simple for the data
registration. It has the expression as where M} is assumed to be a model and; , is the
: s i ; 9 measurement, where both of them have same error distribution,
d(Mi, RM{_, +T) = (M{ = RM;_, = T) @ and S; is the variance based on the measurement error.
The advantage of using the Euclidean distance model is thatdeally, if there is no noise in the measurement data, the
a closed-form solution can be obtained [11], [19], [9]. correlation coeff|C|e_nt b'etweeMt and RM;_, +T should
In order to account for the influence of the data error 8¢ 1. However, noise is always present in the data. If we
the objective function, a modified Euclidean distance model@&sume that noise is so limited that the correlation coefficient
used by introducing a weight,, [5], [11] is approximately 1, the variancg, according to the property
1 of the covariance should be:
d(M{,RM} | +T)=—(M; - RM;_, -T)> (3)
¢ t=1 O'di ¢ t=1 Si :O'Jw;i +RJI\127]RI_2‘/O']\'I:R /0'1\4:'71 (9)
When the reliability of the measurement datf and M; Apparently, ML and Mahalanobis distance use properties of

is low, then the We'ght’,di W,'" be large, and the contrlputhn the measurement noise as weight, which should be better than
of d; to the error function is small; and when the reI|ab|I|t3ﬂ]e Euclidean distance for the data registration

of the measurement is high,, is small, and the contribution
of d; is large. But this weight can not be obtained directly IV. | TERATIVE APPROACH

from the error distribution of the measurement data. In [5], The objective function with Euclidean distance can be

Dorai used linear regression method to make plane fitting {8ived with closed-form solution [19]. The other two meth-

estimate the weight; . ods involve a non-linear function, both of which have same
B. Maximum Likelihood Formulation expression, but different covariance estimates. In order to make
the calculation simple, we can obtain the centroid of the two

Gaussian based maximum likelihood (ML) method can be
sets of data as

used for this problem [1], [15], [16]. Supposing that at titha n 4
measurement 3D point &//. The measurement error has zero My = Z M /n (20)
mean and covariance,,; , and the measurement expectation i=1
is RM} , +T. Theinnovationcan be obtained by and
vi= M= RM_, ~T @) My =3 My /n (11)

. i=1
wherer; has covariance

Subtracting the centroid from each point, we obtain two new
Si=Royi R + oy (5) data setshi = M — M¢ and M} , = M, — Mg ,.



Substituting the new data sefd} and M , into equation ;
(@), the objective functior[ {7) can be changed to

— sigma=0.1, Euclidian
—= 1, ML

N
o

5 ML
sigma=0.5, Mahalanobis

min  E =Y (Mj—RM; )"S;'(M; — RM;_,) (12)
i=1
If we express the rotatiok in the form of quaternionR = et .
R(q) andq = (g0, 41,92, q3), it is possible to solve for the \\ ey .
rotation R with the Levenberg-Marquardt method. b \ e,
In this paper, we solve this optimization problem through T~—
linearization and iteration, which was applied by Lu and D
Milios [13] and Olson et al [16]. We linearize the problem ——
by taking the first-order expansion with respect to the rotation
in the quaternion expression. Le? be the initial rotation
estimates and?, be the corresponding rotation matrix. The F
first-order expansion is:

~

of objective fuction (mm)
o

. 1. Average residual error in simulation

o

— sigma=0.1, Euclidian
—= 1, ML

n T T T
= Z(Gi — Jth)ls,l_l(Gi - ng) (13) o o 1.'Man_a|;nnoms H
i=1 \

oma=0.5,
sigma=0.5, Mahalanobis f1

Where JEZ 4: [%M;—l»%MZ—l’ %Mg—D%Mti—l] ! and )
Gi = M} — RyM}_, — J}q". Differentiating the objective
function with respect tg; and setting the derivatives to zero
yields:

Translation error (mm)

n

T o - iT o—1 i a \
q= (Z VS Z(Jt S;1GY) (14) | T
i=1

i1 —
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After solving [14), this estimated rotation is used as an initial
estimation of the next step, and the process is iterated until it
is convergence. Then the translation can be obtained by Fig. 2. Translation error in simulation

T = RM¢ | — Mf (15)

The computational complexity of this algorithm @(n), A. Simulation
wheren is the number of corresponding points. The algorithm

. . . X Assume that there ar& 3D points in the view field of
for the registration of 3D data is shown in Table 1. P

the BumbleBee camera, and all points have depth in the

Inputtwo sets of 3D correspondence poits, BumbleBee’s effective measurement range. We back-project
M;_,, and their covariancer,;; and o, the 3D points on both right and left images. The 3D points
Initial rotation ¢°,convergence threshold are transformed by translation (100, 120, 500) mm and rotation
Output: transformation g, T; function error E (1, 1, 5) degree in Euler angle, and these new points are
1 calculate centroid ofM/; and M;_;,i=1,---,n back-projected to the images again. By using the error model
gf’;%ri}zlege;r;e 3D points based on their centroid of [15], noise is added on both of the 3D data sets according
4 calculate the Jacobiar; fco the Qaussm_n distribution. In the 5|mu_lat|on, two levels of
5 calculate q by equatior] (}4) image pixel noise are used. One has variance 0.1, and another
6 estimate the function error E by e@lZ) has 0.5.
7 end while _ We only use the simple unweighted formulation of the
g gilt%ﬂﬁﬁ;hqe Eltagilgtgnn T by eﬂlS) Euclidean distance since there is no obvious method to decide
Table T Al'gdrlthm for 3D data registration the weight. For the Maximum likelihood and Mahalanobis
distance formulation, the variance which is needed for the cor-
V. EXPERIMENT AND ANALYSIS respondence method can be calculated based on the Gaussian

In order to check the reliability of the different objectivedistribution error model. The Monte Carlo simulation method
functions, simulations and lab experiments are performed.used for the three objective functions. The mean value of
During the lab experiment, we use the BumbleBee camdhe results from 500 iterations are displayed in the Fjg. 1 to
system, which has baseline 12cm and focal length 6mm. kig.[3.
view angle is45 degree and resolution 820 x 240. This The average residual error in Fig] 1 tells us that all the
stereo system’s effective distance measurement range is friilmee objective functions have almost the same error at the
0.6 to 6m. same image noise level. Among the three objective functions,
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Fig. 3. Rotation error in simulation

Fig. 5. Case 1: Robot trajectory in 3D

are extracted from the image in every time step. Two adjacent
images are matched for the self-localization estimation. We
used the RANSAC method [7] to delete the outliers. From
the matched image points, their associated 3D points could
be obtained from the associated 3D cloud. The SIFT feature
gives a sub-pixel position in the image, making it necessary
to use bilinear interpolation to get the correct 3D position.
After this processing, there are two sets of 3D points which
are matched correctly, and can be used for the data registration
by the method described in section Ill. Suppose that the start
position is Py, and the translation at timeis 7; and rotation

is R:, then the absolute position of the robot can be obtained

by
ML has the best performance in the translation error (Fig. 2) B=hat+RxT (16)
and the rotation error (Fif] 3). The Mahalanobis has the safjfere ¢t — 1,---,N. The robot's built-in high precision

performance as Euclidean in the translation, but better pggsition system provides ground truth of the robot motion

formance than Euclidean in the rotation. The more correspQfgjectory. Three test cases are implemented in the lab to
dence points, the lower are the errors in the objective functicdhmpare the three different objective functions.

translation, and rotation. When the number of correspondence)) Test Case 1:n the first case, the robot rotated in a

points is bigger than 150, the error will not show much changgircle with radius 0.678m, stopping every 10 degrees for the
Generally, there is no significant difference among all the thrggmera to take an image. The estimated trajectory in 3D and
objective functions in the translation error, and rotation eroyp on the x-y plane are showed in F[g. 5 and Fip. 6. The
Therefore, all the three functions can be used for the robofiage based self-localization estimation is a 6 DOF problem,
self-localization estimation. because, even though the robot moves in a plane, the estimated
trajectory is not planar (Fif] 5) due to the estimation error. The

translation and rotation error with respect to ground truth in
We performed the lab experiment with a BumbleBee cametifis case are presented in Hig. 7.

system mounted on a Mitsubishi PA10-7CE Robot. The I'ObOtZ) Test Case 2:Sufficient overlap of adjacent images
arm has a maximum speed of 3.33m/s and a payload of 10kgvery important for correspondence based self-localization
(Fig.[4). The camera connects via an IEEE 1394 link to a Pestimation. In the case of second experiment, we had the same
The stereo camera captures t821) x 240 color images when environment set up, but took more images. The camera takes
the robot is stationary. Functions of a library provided by thgn image every 5 degrees. The estimated trajectory is shown

company process the original images and return the associaie¢ig. [g, Fig.[9, and their associated error are displayed in
rectified color images and a list of 3D cloud points associatggly. [T0.

with of its rectified pixels. Points farther than four meters are ] ] )

discarded during the stereo processing in this test environmént, Analysis and Discussion

During the lab experiment, we did not use any artificial mark. In the previous test, it is possible to obtain an estimated
The features used in this paper are SIFT features [12], whichmera trajectory from all three objective functions. Since

Fig. 4. PA10-7CE Arm Robot and Environment Setting up

B. Lab Experiment
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Fig. 7. Case 1: Translation and Rotation Error in each Step these self-localization estimations are 6 DOF, it is hard to tell
which method is best simply from the estimated trajectory.
But we can obtain the error statistics (table 2) from every test
case for all the methods.

—&— Euclidian

oo Test Case 1 Test Case 2
5 Ground Truth Eu. [ ML | Ma. Eu. [ ML | Ma.
o Aver. SIFT No 789 786
£ ﬁ e Match SIFT No 126 191
g S sl Worst Match No 16 42
.'g Translation 117.72, 10.30, O 58.86, 5.15, 0
3 Rotation 0,0,10 0,0,5
H Image Overlap 86.8% 91.3%
Trans.| Mean 92 | -34 | 47 -7.0 | -3.0 | -5.2
Error Var. 93.1 | 28.0| 954 164 | 152 | 27.7
Rota. Mean -0.03 | 0.01| -0.01 || -0.03| -0.02| -0.0
Trensiationin ¥-ass mes) 0>) : Translation in X-axis (mm) Error Var. 0.01 0.01 0.04 0.02 0.02 0.01

Table 2 Statistical Results of the Lab Test (Unit: (mm)

In the two test cases, the ML has the least translation error

variance to compare with other two methods, and has least

Fig. 8. Case 2: Robot trajectory in 3D translation error mean. To compare case 1 with case 2, the
translation error is decreased by increasing the image overlap,



since the number of feature matches can be increased. [4]
For the rotation error, Mahalanobis has the least error among
the two test cases, but the difference among them is very smﬁ]
(less than0.02 degrees). Generally, the rotation error is not
very big in all the three methods (smaller than 0.12 degree 3
All of them have the same performance in rotation estimatior.

For all our tests, t-test is performed to check the translation
and rotation results. In the confidence range 96%, all [7]
translations satisfy the hypothesis that the error of translation
in each case is comply with Gaussian distribution. But thés]
rotation is rejected by the Gaussian distribution hypothesis. In
this case, bias must be existed [4].

The computational complexity of optimizing all three ob-[9]
jective functions isO(n), wheren is the number of cor-
responding points. Since Euclidean objective function has;g
closed form solution, it is the most attractive option for on-
line self-localization estimation. When high quality estimatiof-!!
is needed, ML is the best candidate among the three objective
functions. In our test, ML converged within 2 or 3 iteration$t2]
in most runs where it took the optimum from the Euclideaﬂs]
objective function as its initial value.

[14]
VI. CONCLUSION

Three objective functions have been formulated fqys;
correspondence-based vision data registration for robot naviga-
tion. The objective function based on a Maximum Likelihoo&-6]
distance has the highest estimation quality among the three
functions. Euclidean distance leads to the fastest estimate, and
therefore best for on-line trajectory estimation if the measuré”’!
ment error is limited to a certain range. In all three meth-
ods, the number of available feature correspondences is g
most important factor in determining quality of the estimat?ﬁg
trajectory. We match the SIFT features in the overlapping
part of images from successive stereo camera positions, in
order to establish the required correspondences between the
respective 3D points. However, if the number of corresponding
SIFT features is less than 10, we should use the lIterative
Closest Point (ICP) algorithm directly on the 3D points from
successive stereo camera positions. Furthermore, the optimally
registered 3D points form a map of the environment, thereby
performing Simultaneous Localization and Mapping. These
are issues currently under investigation.
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