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Abstract— We address the problem of globally consistent
estimation of the trajectory of a robot arm moving in three
dimensional space based on a sequence of binocular stereo
images from a stereo camera mounted on the tip of the arm.
Correspondence between 3D points from successive stereo camera
positions is established through matching of 2D SIFT features in
the images. We compare three different methods for solving this
estimation problem, based on three distance measures between
3D points, Euclidean distance, Mahalanobis distance and a
distance measure defined by a Maximum Likelihood formulation.
Theoretical analysis and experimental results demonstrate that
the maximum likelihood formulation is the most accurate. If the
measurement error is guaranteed to be small, then Euclidean dis-
tance is the fastest, without significantly compromising accuracy,
and therefore it is best for on-line robot navigation.

I. I NTRODUCTION

Vision based robot navigation needs to use relative align-
ment information from consecutive images to estimate its
localization. Approaches can be classified as correspondence-
based and flow-based. In the correspondence-based method, a
set of 3D points is obtained from each robot position. The
estimation of the localization requires the establishment of
correspondence and registration between sets of 3D points
from consecutive robot positions.

3D data registration is still a challenge in computer vision,
robot navigation, as well as in medical photogrammetry [18].
Selecting or designing a reliable and reasonable objective
function is the critical issue for this registration. We focus
to discuss this issue in the paper.

II. PREVIOUS WORK

Approaches for extracting motion information from image
sequences can be classified ascorrespondence-basedandflow-
based. Correspondence methods [15], [8], [17] track distinct
features such as corner, line, high curvature point, SIFT,
etc., through the image sequence and compute 3D structure
by triangulation. Flow-based methods [14] treat the image
sequence as functionf(x, y, t), where(x, y) are image pixel
coordinates andt is time, restrict the motion between frames
to be small, and compute shape and motion in terms of
differential changes in the functionf .

In the correspondence-based method, the most important
step is to register one set of data to another according to

their correspondences. Many methods have been proposed to
solve the registration problem. Among these methods, the ICP
algorithm [18], [2] has attracted significant attention from
the machine vision community. The goal of ICP is to find
the rigid transformation T that best aligns a cloud of scene
points S with a model M. The alignment process works to
minimize the mean squared distance between scene points and
their closest model points. ICP is efficient, and it converges
monotonically to a local minimum. There are two main steps
at each iteration: (1) finding the correspondence points, and
(2) minimizing the mean square error in position between the
correspondences [6]. This paper will focus on the second step
in ICP.

Generally, there are three methods to define objective func-
tion for the data registration. The first method is to minimize
the sum of Euclidean distance between the correspondence
points [9], [11], [19]. The advantage of Euclidean distance
is that it is possible to obtain a closed-form solution. In
order to consider the influence of measurement error on the
objective function, different weights for different 3D point
pairs are used in the objective function based on Euclidean
distance [5], [11]. How to set the weights remains as a
problem. Dorai [5] proposed a method to estimate the weight
for the range image registration, but this method requires to
establish an interpolation surface using all the range data,
which is computationally expensive. The second method is
the maximum likelihood formulation which is based on the
Gaussian noise assumption [1], [16]. The third method is
the Mahalanobis distance which uses all the components’
variance in the data set. This idea is derived from the statistical
distance [13]. The general Mahalanobis distance can not solve
the problem in the case where the two sets of 3D points have
different covariances. This is a frequently occurring scenario
in the vision-based self-localization estimation. The contribu-
tion in this paper is the experimental analysis of alignment
residual errors and robot trajectory error for the three tested
distance functions: Euclidean distance, Mahalanobis distance,
and a distance measure defined by a Maximum Likelihood
formulation.

The paper is organized in the following. In section III, we
propose the three objective functions for the data registration.
In section IV, we design an iterative approach to solve the non-



linear objective function for the transformation parameters. In
section V, we compare the three methods by simulation and
field experiment. In the last section, we present a summary of
our proposal and conclusions.

III. O BJECTIVE FUNCTION FOR THEDATA REGISTRATION

With the stereo camera system, it is possible to get a 3D
cloud Ct at time t, for all t. Furthermore, it is possible to
obtain, for a 3D pointM i

t in Ct, a corresponding 3D point
M i

t−1 ∈ R3, i = 1, . . . , n can be obtained inCt−1. Since the
two data sets are derived from different image frames, and
their covariance will change with the image’s depth. Thus the
corresponding points will have different error covariance. We
assume that the error for every pointi can be expressed as
σMi

t
. The objective function for the registration problem is

min
R,T

E(R, T ) =
n∑

i=1

d(M i
t , RM i

t−1 + T ) (1)

whereR and T are the rotation and translation between the
consecutive clouds of points at timest− 1 andt, andd is the
generalized distance between corresponding 3D points. There
are three ways to establish the objective function.

A. Euclidean Distance

The Euclidean distance is direct and simple for the data
registration. It has the expression as

d(M i
t , RM i

t−1 + T ) = (M i
t −RM i

t−1 − T )2 (2)

The advantage of using the Euclidean distance model is that
a closed-form solution can be obtained [11], [19], [9].

In order to account for the influence of the data error to
the objective function, a modified Euclidean distance model is
used by introducing a weightσdi

[5], [11]

d(M i
t , RM i

t−1 + T ) =
1

σdi

(M i
t −RM i

t−1 − T )2 (3)

When the reliability of the measurement dataMt and Mt−1

is low, then the weightσdi
will be large, and the contribution

of di to the error function is small; and when the reliability
of the measurement is high,σdi is small, and the contribution
of di is large. But this weight can not be obtained directly
from the error distribution of the measurement data. In [5],
Dorai used linear regression method to make plane fitting to
estimate the weightσdi

.

B. Maximum Likelihood Formulation

Gaussian based maximum likelihood (ML) method can be
used for this problem [1], [15], [16]. Supposing that at timet, a
measurement 3D point isM i

t . The measurement error has zero
mean and covarianceσMi

t
, and the measurement expectation

is RM i
t−1 + T . The innovationcan be obtained by

νi = M i
t −RM i

t−1 − T (4)

whereνi has covariance

Si = RσMi
t−1

R′ + σMi
t

(5)

According to the Gaussian assumption, the joint probability
distribution function (PDF) of the measurements (i = 1 · · ·n)
is denoted as

p(Mt) = (
n∏

i=1

(2πSi)−1/2)exp(−1
2

n∑
i=1

ν
′

iS
−1
i νi) (6)

where we assume that all the 3D point measurements are
independent. The maximum-likelihood estimate forR andT
is given by minimizing the exponent in the above equation
and can be expressed by

min
R,T

E(R, T ) =
n∑

i=1

νT
i S−1

i νi (7)

C. Mahalanobis Distance

In the first method, all components of a measurementM i
t

contribute equally to the Euclidean distance ofd. However in
statistics we prefer a distance such that each of the compo-
nents (the variables) takes the variability of that variable into
account. Components with high variability should receive less
weight than components with low variability. This idea leads
to the statistical distance or Mahalanobis distance [13], which
is expressed by

d(M i
t , RM i

t−1 − T ) = νiS
−1
i (νi)T (8)

where M i
t is assumed to be a model andM i

t−1 is the
measurement, where both of them have same error distribution,
andSi is the variance based on the measurement error.

Ideally, if there is no noise in the measurement data, the
correlation coefficient betweenMt and RM i

t−1 + T should
be 1. However, noise is always present in the data. If we
assume that noise is so limited that the correlation coefficient
is approximately 1, the varianceSi, according to the property
of the covariance should be:

Si = σMi
t
+ RσMi

t−1
R′ − 2

√
σMi

t
R

√
σMi

t−1
(9)

Apparently, ML and Mahalanobis distance use properties of
the measurement noise as weight, which should be better than
the Euclidean distance for the data registration.

IV. I TERATIVE APPROACH

The objective function with Euclidean distance can be
solved with closed-form solution [19]. The other two meth-
ods involve a non-linear function, both of which have same
expression, but different covariance estimates. In order to make
the calculation simple, we can obtain the centroid of the two
sets of data as

M c
t =

n∑
i=1

M i
t/n (10)

and

M c
t−1 =

n∑
i=1

M i
t−1/n (11)

Subtracting the centroid from each point, we obtain two new
data setsM̂ i

t = M i
t − M c

t and M̂ i
t−1 = M i

t−1 − M c
t−1.



Substituting the new data setŝM i
t and M̂ i

t−1 into equation
(4), the objective function (7) can be changed to

min E =
n∑

i=1

(M̂ i
t −RM̂ i

t−1)
T S−1

i (M̂ i
t −RM̂ i

t−1) (12)

If we express the rotationR in the form of quaternionR =
R(q) and q = (q0, q1, q2, q3), it is possible to solve for the
rotationR with the Levenberg-Marquardt method.

In this paper, we solve this optimization problem through
linearization and iteration, which was applied by Lu and
Milios [13] and Olson et al [16]. We linearize the problem
by taking the first-order expansion with respect to the rotation
in the quaternion expression. Letq0 be the initial rotation
estimates andR0 be the corresponding rotation matrix. The
first-order expansion is:

E =
n∑

i=1

(Gi
t − J i

tq)
′S−1

i (Gi
t − J i

tq) (13)

whereJ i
t = [ ∂R

∂q0
M̂ i

t−1,
∂R
∂q1

M̂ i
t−1,

∂R
∂q2

M̂ i
t−1,

∂R
∂q3

M̂ i
t−1] , and

Gi
t = M̂ i

t − R0M̂
i
t−1 − J i

tq
0. Differentiating the objective

function with respect toq and setting the derivatives to zero
yields:

q = (
n∑

i=1

J i
t

T
S−1

i J i
t )
−1

n∑
i=1

(J i
t

T
S−1

i Gi
t) (14)

After solving (14), this estimated rotation is used as an initial
estimation of the next step, and the process is iterated until it
is convergence. Then the translation can be obtained by

T = RM c
t−1 −M c

t (15)

The computational complexity of this algorithm isO(n),
wheren is the number of corresponding points. The algorithm
for the registration of 3D data is shown in Table 1.

Input:two sets of 3D correspondence pointsM i
t ,

M i
t−1, and their covarianceσMi

t
and σMi

t−1

Initial rotation q0,convergence thresholdε
Output: transformation q, T; function error E
1 calculate centroid ofM i

t and M i
t−1, i = 1, · · · , n

2 translate the 3D points based on their centroid
3 while E > ε
4 calculate the JacobianJ i

t

5 calculate q by equation (14)
6 estimate the function error E by eq. (12)
7 end while
8 calculate the translation T by eq. (15)
9 output the q, T, and E

Table 1 Algorithm for 3D data registration

V. EXPERIMENT AND ANALYSIS

In order to check the reliability of the different objective
functions, simulations and lab experiments are performed.
During the lab experiment, we use the BumbleBee camera
system, which has baseline 12cm and focal length 6mm. Its
view angle is45 degree and resolution is320 × 240. This
stereo system’s effective distance measurement range is from
0.6 to 6m.

Fig. 1. Average residual error in simulation

Fig. 2. Translation error in simulation

A. Simulation

Assume that there areN 3D points in the view field of
the BumbleBee camera, and all points have depth in the
BumbleBee’s effective measurement range. We back-project
the 3D points on both right and left images. The 3D points
are transformed by translation (100, 120, 500) mm and rotation
(1, 1, 5) degree in Euler angle, and these new points are
back-projected to the images again. By using the error model
of [15], noise is added on both of the 3D data sets according
to the Gaussian distribution. In the simulation, two levels of
image pixel noise are used. One has variance 0.1, and another
has 0.5.

We only use the simple unweighted formulation of the
Euclidean distance since there is no obvious method to decide
the weight. For the Maximum likelihood and Mahalanobis
distance formulation, the variance which is needed for the cor-
respondence method can be calculated based on the Gaussian
distribution error model. The Monte Carlo simulation method
is used for the three objective functions. The mean value of
the results from 500 iterations are displayed in the Fig. 1 to
Fig. 3.

The average residual error in Fig. 1 tells us that all the
three objective functions have almost the same error at the
same image noise level. Among the three objective functions,



Fig. 3. Rotation error in simulation

Fig. 4. PA10-7CE Arm Robot and Environment Setting up

ML has the best performance in the translation error (Fig. 2)
and the rotation error (Fig. 3). The Mahalanobis has the same
performance as Euclidean in the translation, but better per-
formance than Euclidean in the rotation. The more correspon-
dence points, the lower are the errors in the objective function,
translation, and rotation. When the number of correspondence
points is bigger than 150, the error will not show much change.
Generally, there is no significant difference among all the three
objective functions in the translation error, and rotation error.
Therefore, all the three functions can be used for the robot’s
self-localization estimation.

B. Lab Experiment

We performed the lab experiment with a BumbleBee camera
system mounted on a Mitsubishi PA10-7CE Robot. The robot
arm has a maximum speed of 3.33m/s and a payload of 10kg
(Fig. 4). The camera connects via an IEEE 1394 link to a PC.
The stereo camera captures two320×240 color images when
the robot is stationary. Functions of a library provided by the
company process the original images and return the associated
rectified color images and a list of 3D cloud points associated
with of its rectified pixels. Points farther than four meters are
discarded during the stereo processing in this test environment.
During the lab experiment, we did not use any artificial mark.
The features used in this paper are SIFT features [12], which

Fig. 5. Case 1: Robot trajectory in 3D

are extracted from the image in every time step. Two adjacent
images are matched for the self-localization estimation. We
used the RANSAC method [7] to delete the outliers. From
the matched image points, their associated 3D points could
be obtained from the associated 3D cloud. The SIFT feature
gives a sub-pixel position in the image, making it necessary
to use bilinear interpolation to get the correct 3D position.
After this processing, there are two sets of 3D points which
are matched correctly, and can be used for the data registration
by the method described in section III. Suppose that the start
position isP0, and the translation at timet is Tt and rotation
is Rt, then the absolute position of the robot can be obtained
by

Pt = Pt−1 + Rt ∗ Tt (16)

where t = 1, · · · , N . The robot’s built-in high precision
position system provides ground truth of the robot motion
trajectory. Three test cases are implemented in the lab to
compare the three different objective functions.

1) Test Case 1:In the first case, the robot rotated in a
circle with radius 0.678m, stopping every 10 degrees for the
camera to take an image. The estimated trajectory in 3D and
2D on the x-y plane are showed in Fig. 5 and Fig. 6. The
image based self-localization estimation is a 6 DOF problem,
because, even though the robot moves in a plane, the estimated
trajectory is not planar (Fig. 5) due to the estimation error. The
translation and rotation error with respect to ground truth in
this case are presented in Fig. 7.

2) Test Case 2:Sufficient overlap of adjacent images
is very important for correspondence based self-localization
estimation. In the case of second experiment, we had the same
environment set up, but took more images. The camera takes
an image every 5 degrees. The estimated trajectory is shown
in Fig. 8, Fig. 9, and their associated error are displayed in
Fig. 10.

C. Analysis and Discussion

In the previous test, it is possible to obtain an estimated
camera trajectory from all three objective functions. Since



Fig. 6. Case 1: Robot trajectory in x-y plane

Fig. 7. Case 1: Translation and Rotation Error in each Step

Fig. 8. Case 2: Robot trajectory in 3D

Fig. 9. Case 2: Robot trajectory in x-y plane

Fig. 10. Case 2: Translation and Rotation Error in each Step

these self-localization estimations are 6 DOF, it is hard to tell
which method is best simply from the estimated trajectory.
But we can obtain the error statistics (table 2) from every test
case for all the methods.

Test Case 1 Test Case 2
Eu. ML Ma. Eu. ML Ma.

Aver. SIFT No 789 786
Match SIFT No 126 191
Worst Match No 16 42

Translation 117.72, 10.30, 0 58.86, 5.15, 0
Rotation 0,0,10 0,0,5

Image Overlap 86.8% 91.3%
Trans. Mean -9.2 -3.4 -4.7 -7.0 -3.0 -5.2
Error Var. 93.1 28.0 95.4 16.4 15.2 27.7
Rota. Mean -0.03 0.01 -0.01 -0.03 -0.02 -0.0
Error Var. 0.01 0.01 0.04 0.02 0.02 0.01
Table 2 Statistical Results of the Lab Test (Unit: (mm))

In the two test cases, the ML has the least translation error
variance to compare with other two methods, and has least
translation error mean. To compare case 1 with case 2, the
translation error is decreased by increasing the image overlap,



since the number of feature matches can be increased.
For the rotation error, Mahalanobis has the least error among

the two test cases, but the difference among them is very small
(less than0.02 degrees). Generally, the rotation error is not
very big in all the three methods (smaller than 0.12 degree).
All of them have the same performance in rotation estimation.

For all our tests, t-test is performed to check the translation
and rotation results. In the confidence range of95%, all
translations satisfy the hypothesis that the error of translation
in each case is comply with Gaussian distribution. But the
rotation is rejected by the Gaussian distribution hypothesis. In
this case, bias must be existed [4].

The computational complexity of optimizing all three ob-
jective functions isO(n), where n is the number of cor-
responding points. Since Euclidean objective function has a
closed form solution, it is the most attractive option for on-
line self-localization estimation. When high quality estimation
is needed, ML is the best candidate among the three objective
functions. In our test, ML converged within 2 or 3 iterations
in most runs where it took the optimum from the Euclidean
objective function as its initial value.

VI. CONCLUSION

Three objective functions have been formulated for
correspondence-based vision data registration for robot naviga-
tion. The objective function based on a Maximum Likelihood
distance has the highest estimation quality among the three
functions. Euclidean distance leads to the fastest estimate, and
therefore best for on-line trajectory estimation if the measure-
ment error is limited to a certain range. In all three meth-
ods, the number of available feature correspondences is the
most important factor in determining quality of the estimated
trajectory. We match the SIFT features in the overlapping
part of images from successive stereo camera positions, in
order to establish the required correspondences between the
respective 3D points. However, if the number of corresponding
SIFT features is less than 10, we should use the Iterative
Closest Point (ICP) algorithm directly on the 3D points from
successive stereo camera positions. Furthermore, the optimally
registered 3D points form a map of the environment, thereby
performing Simultaneous Localization and Mapping. These
are issues currently under investigation.
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