
Matching and Retrieval of Distorted and Occluded

Shapes Using Dynamic Programming
�

Euripides G.M. Petrakis
�

Aristeidis Diplaros
�

Evangelos Milios
�

April 10, 2002

Abstract

We propose an approach for matching distorted and possibly occluded shapes using Dy-

namic Programming (DP). We distinguish among various cases of matching such as cases

where the shapes are scaled with respect to each other and cases where an open shape matches

the whole or only a part of another open or closed shape. Our algorithm treats noise and shape

distortions by allowing matching of merged sequences of consecutive small segments in a

shape with larger segments of another shape, while being invariant to translation, scale, orien-

tation and starting point selection. We illustrate the effectiveness of our algorithm in retrieval

of shapes on two datasets of two-dimensional open and closed shapes of marine life species.

We demonstrate the superiority of our approach over traditional approaches to shape matching

and retrieval based on Fourier descriptors and moments. We also compare our method with

SQUID, a well known method which is available on the Internet. Our evaluation is based on

human relevance judgments following a well-established methodology from the information

retrieval field.
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1 Introduction

A wide range of shape recognition methods have been proposed and many of them have been

implemented into commercial systems and experimental prototypes [1, 2]. Recently, the increasing

amounts of image data in many application domains has generated additional interest for real-

time management and retrieval of shapes from large collections of shapes referred to as shape or

image databases [3, 4, 5]. The effectiveness of an image database system supporting retrievals by

shape content depends on the types of shape representations used, the types of queries allowed and

the efficiency of the shape matching techniques implemented. Image database systems must be

capable of handling even unknown shapes and to respond to queries of arbitrary shape complexity

such as queries by example (i.e., by providing an example shape or by drawing a sketch on the

screen). To determine which shapes are similar to a given query, representations extracted from all

stored shapes are matched with a similar representation computed to the query shape.

Below are some criteria for shape representation for reliable shape matching and retrieval: (a)

Uniqueness: A representation must uniquely specify a shape; otherwise, a query may retrieve

shapes which are not similar to it, although they have similar representations. (b) Robustness: A

representation must be resistant to moderate amounts of distortion and noise, which are typical of

real images of natural shapes. Because it is not possible to guarantee that a shape representation is

not affected by such factors, distortions and noise should (at least) result in variations in the rep-

resentations of similar magnitude. (c) Invariance: A representation must be invariant to viewing

conditions that is, it must be invariant to translation, scale, rotation, viewing angle changes and

symmetric transformations of the shapes. (d) Scalability: It must contain information about the

shape at many levels of detail so that similar shapes can be recognized even if they appear at dif-

ferent view-scales (resolution). (e) Efficiency: A representation must be computationally efficient.

A shape matching algorithm must take advantage of the properties of its underlying represen-

tation and, in addition, it must be accurate (i.e., finds the similar objects with as few errors as

possible). Shape representations alone are often insufficient to support accurate retrievals and are

combined with color and texture features [6, 4, 5]. However, shape representation and matching

remains a central problem in retrieving images by shape content.
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This work focuses on shape matching. We propose a methodology for shape matching based on

Dynamic Programming (DP). We assume that the shapes have already been extracted from images

and are represented by their bounding contours. The basic idea behind our approach is to represent

each shape by a sequence of convex and concave segments and to allow the matching of merged

sequences of small segments in a noisy shape with larger segments in the other shape. Individual

small or noisy segments are more likely to correspond to corrupted larger segments. Merging has

a similar effect to that of smoothing several short segments in a shape to produce a single longer

segment, but without actually performing the costly smoothing operation. The algorithm selects

the most promising merges (the equivalent of degree of smoothing) based on local information.

This is determined at run-time, as the algorithm searches for the least cost match (path) in a DP

table.

Existing shape matching approaches address complex issues such as matching with occlusion

(e.g., [7]), matching under excessive noise conditions (e.g., [8]) etc. However, most approaches

suffer from one or more of the following drawbacks: (a) They work only for closed shapes (e.g.,

[8, 9, 10, 11]) assuming that whole shapes can always be extracted from images or, (b) They are

sensitive to geometric transformations (e.g., [12, 7]) or, (c) They are not always optimal in that

they may fail to find they may fail to find the least cost (correct) match and, even worse, they may

fail to find a match, although one exists [10, 11]. Our proposed approach addresses all these issues

and, in addition, through merging, treats noise and shape distortions or shapes at different levels

of detail without performing the costly smoothing operation of the actual scale-based approaches

[8, 10, 9]. The contributions of our shape matching approach are summarized in the following:

� It is always optimal, in that it always computes the least cost match.

� Handles both open and closed shapes uniformly (i.e., it doesn’t require reconfiguration of

the basic algorithm) and cases where one shape is open and matches only a part of the other

(open or closed) shape. This is considered to be a far more difficult problem than whole-

to-whole matching treated by most other methods (e.g., [10, 9, 11] but also a much more

interesting one, as it is unlikely in general to know in advance which parts of the two shapes

are similar.

� Matching is independent of shape translation, scaling, rotation and starting point selection.

Our shape matching algorithm handles occlusion assuming that occlusion boundaries have

been identified and segments belonging to the contours of single objects are available as open
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shapes. Our method cannot handle the case of shapes consisting of multiple objects occluding

each other or cases where parts of one shape may match parts of another shape. This is the most

complex case of occlusion and it is still an unsolved problem.

A recent contribution by Gdalyahu and Weinshall [7] shares some commonalities with our

approach in the use of dynamic programming to deal with shape matching and handles overlapping

objects. Their formulation (based on polygonal approximations) and their matching approach are

inherently different to ours. Their algorithm is not intrinsically invariant to scale and rotation and

their merging scheme might be weak for noisy or very smooth shapes. A more elaborate discussion

on commonalities and differences between this and our approach is presented in the next section.

We study the effectiveness of our proposed shape matching approach in retrieving similar ob-

jects from a shape database. Given a query shape, we want to find the � (e.g., 50) most similar

shapes. We performed extensive performance comparisons using two data sets, one of 1,100 closed

shapes and one of 1,500 open shapes of marine life species, already available as boundary contours.

Regarding retrieval by shape content, the contributions of our work are as follows:

� We establish the superiority of our approach for matching and retrieval of shapes with mod-

erate amounts of noise and distortions over traditional methods such as, methods based on

Fourier descriptors [13] and moments [14, 15, 16]. We also establish the superiority of our

proposed method over our previous method [11] which, however, works only for closed

shapes.

� We compare results obtained by our method with similar results obtained by SQUID [9].

SQUID is a well-established and well-researched approach to shape matching, and it is be-

coming accepted as a standard for whole shape matching. Our method demonstrates im-

proved performance over SQUID. Although the improvement is not dramatic, our method

has the advantage that is designed naturally for open shapes, which is not the case with

SQUID. Extending SQUID to the matching of open or occluded shapes is non-trivial.

� We introduce a well established method from information retrieval for the empirical eval-

uation of retrieval results obtained by many competing methods [17]. The evaluations are

based on human relevance judgments by four independent referees.

The rest of this work is organized as follows: A review of the work on object recognition and

shape retrieval is presented in Section 2. The main idea behind our proposed method along with

basic definitions of the DP table and cost functions are presented in Section 3. Our shape matching

4



algorithm is presented in Section 4. Finally, the evaluation method along with experimental results

are presented in Section 5 followed by conclusions and issues for future research in Section 6.

2 Related Work

A wide range of shape recognition methods have been published [1, 2]. They are classified into

structural (e.g., methods organizing local features into graphs [18, 19], trees [20] or strings [21]),

fuzzy or probabilistic (e.g., relaxation methods [22]), statistical (e.g., methods based on moments

[23]), methods that work in a transform domain (e.g., Fourier [13] or Hough [24]), methods based

on Neural Networks [25] etc. Shape recognition methods are also classified into local, emphasizing

local shape features (e.g., [18]) or global, representing the shape as a whole (e.g., [13]). Global

methods are usually easy to compute and robust against noise and shape distortions; local methods

are more complicated requiring sophisticated implementations and are slow but, are more suitable

than global methods for recognizing occluded or partially visible objects.

An important class of contour tracking and matching methods relies on physical models of the

deformation and is based on minimization of an energy function, without first extracting a sym-

bolic representation of the shapes [26, 27, 28, 29]. Contour matching has been also addressed

with dynamic programming together with detection of contours in image sequences. In [12, 30]

dynamic programming is used to minimize a cost function that accounts for displacement of a con-

tour in a pair of images from an image sequence. In [31, 32], dynamic programming is used to fit a

closed curve template to an image (deformable template matching). However, these methods have

been designed mainly for contour tracking over space or time and are not particularly well suited

for shape retrieval. They assume that the curves which are matched be close to each other, they

are sensitive to geometric transformations (i.e., scale, rotations, translations), they don’t handle

occlusion and, in certain cases, they fail to find the optimal match.

Another class of matching methods relies on symbolic entities extracted from shape contours

[33, 34, 35]. Dynamic programming has been a popular approach for matching such symbolic

entities [36, 37, 38, 39]. In [36], the inability of dynamic programming to combine contour seg-

ments is mentioned, as well as the fact that differing resolutions in the matched contours may

lead to reduced performance. In [38], deletions and insertions of features (corners in a polygonal

representation) as well as smoothing of features (i.e. dropping corners) is incorporated in the dy-

namic programming scheme. This type of smoothing lends a primitive multiple-scale character to
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the method. In [37], dynamic programming is used to guide the application of grammar rules that

transform one shape into another, in the spirit of [40]. In [39], matching proceeds both forward and

backward from a support match between two features (landmark points) that are maximally simi-

lar. Features are extracted based on their persistence across scales. However, there is no matching

of features at multiple scales. Therefore, multiple scales are used as a preprocessing stage only.

Multiscale methods are considered the most promising for shape matching because they are

resistant to moderate amounts of deformation and noise, typical of real images of natural shapes.

Different forms of scale space descriptions have been proposed [41, 42, 43]. In an earlier approach

[8], matching is performed through “interval trees” which are computed by tracking the “Curva-

ture Scale Space” (CSS) representation [41] from coarser to finer scales. In [35], which describes

the matching mechanism of SQUID, only the maxima of the CSS curves are used. In [10], it is

demonstrated that small shape changes may cause major structural changes in the interval tree and

this may lead to matching errors. Recently, multiscale methods have been combined with dynamic

programming [10, 11].

Building upon the previously mentioned work, [10] is a sophisticated dynamic programming

algorithm which can group segments together in order to come up with appropriate correspon-

dences. This algorithm uses the scale space representation of [41] to constrain the possible merges

(i.e., it accepts merges that are only present at coarser scales of the scale space representation). The

algorithm in [44, 11] is a substantial extension of the above algorithm to perform
�

-best search as

it searches for best matches in the DP framework while avoiding the expensive computation of

zero crossings in scale space. Algorithms such as [10, 44, 11] work only for closed shapes and,

as observed in [45], they are not optimal, in that they may miss the optimal match, or even worse,

they may fail to find a valid match altogether.

A recent contribution by Gdalyahu and Weinshall [7] shares some commonalities with our

approach, in that it is motivated by an effort to avoid the high computational complexity of the

true scale-space approaches. That algorithm, treats occlusion, while remaining computationally

efficient. That paper uses a polygonal approximation, which may be weak in representing smooth

shapes. The entities that are being associated are not convex and concave segments, but line

segments of the polygonal approximation, defined by curvature extrema or extra points added

to improve the approximation. This implies a finer-grained representation than ours. Gdalyahu

and Weinshall use line segments as primitives with length and orientation as attributes. Merging is

defined as simple vector addition, and is not constrained by an underlying shape grammar, therefore
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it is less principled, and might lead to excessive flattening for smooth shapes. Their method seems

to work well for noiseless shapes which are at the same scale and orientation and for moderate

amounts of deformation. They do not use the edit distance for computing the overall similarity

measure, but instead compute the residual distance between points after the matching. We instead

have taken the approach of normalizing the edit distance for curve length.

Gdalyahu and Weinshall [7], like us, generalize string-based dynamic programming to account

for merging, and introduce to the algorithm the notion of a gap to deal with occlusion. Their algo-

rithm is not intrinsically invariant to scale and rotation but it can handle objects overlapping each

other. Extending our algorithm to handle such occlusion is possible (e.g., by introducing a cost

of deleting a sequence of segments in one of the two shapes in our cost formulas) but non-trivial.

An issue with [7] involves the use of a heuristic to locate the most promising starting segments for

matching which also, determines the orientation and scale that align the shapes which are matched.

In case the heuristic fails, for example if it selects two inappropriate starting segments, the compu-

tation of orientation and scale will be inaccurate and the result of matching will be inaccurate too.

Our algorithm is intrinsically invariant to rotation and, similarly to theirs, invariant to translation

and scaling.

In our work, we propose a mechanism for computing the attributes for the merged segments,

which allows us to bypass the explicit and expensive computation of the scale-space representa-

tion. We introduce operators on invariant attributes that are equivalent to smoothing and we define

merging operations on attributes (by introducing an analytical relationship between the attributes

of the segments being merged to the attributes of the merged segment). This is considered “im-

possible” by Gdalyahu and Weinshall [7] and as a serious drawback of the method by Ueda and

Suzuki [10]. Finally, we present extensive performance comparisons with other methods using

much larger datasets than the sets used in [7] and in [10].

It is an interesting future project to have a thorough comparative experimental evaluation with

the above two methods. However, the underlying matching algorithms of these methods are quite

complicated and their implementation is non-trivial. In [46] we present performance comparisons

of our previous non-optimal DP-matching approach with the method by Ueda and Suzuki [10].
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3 Proposed Methodology

The shape matching algorithm that lies at the core of our methodology takes in two shapes, deter-

mines whether the shapes are open or closed, and computes: (a) Their distance; the more similar

the shapes are, the lower the value of the distance function and (b) The correspondences between

similar parts of the two shapes. In retrievals, only distances between shapes are used. However,

the correspondences help assess the plausibility of the distance computation, if necessary.

In matching two shapes
�

and � , the algorithm builds a Dynamic Programming (DP) table

(Figure 1), where rows and columns correspond to inflection points of
�

and � respectively. Start-

ing at a cell at the bottom row and proceeding upwards and to the right, the table is filled with the

cost of the partial match containing the segments between the inflection points (rows and columns)

swept so far. Because convex segments cannot match concave ones [37], only about half the cells

are assigned cost values, in a checkerboard pattern. Merges, where a segment sequence of one

shape matches a single segment of the other shape, can occur. Merges introduce “jumps” in the

traversal of the DP table. Reaching the top row implies a complete match, where all inflection

points of shape
�

have been swept. Additional information is stored in each cell to allow the trac-

ing of a path starting from that cell and working backwards. The tracing of a path reveals segment

associations between the two shapes. Dynamic Programming is used to find the minimum cost

path from a cell in the initialization area to one in the termination area. In the remainder of this

section we will define more precisely the algorithm and associated data structures.

3.1 Shape Representation

We assume that all objects are segmented into closed contours which are approximated by poly-

gons. Automatic shape extraction from images (e.g., via region segmentation or edge following)

is a non-trivial problem, and it is outside the scope of this paper. For our purposes, the images are

already available in the desired polygonal form. The curvature of the shape polygons is computed

via smooth approximations obtained by local cubic B-splines [47]: Inflection points are computed

and the shape is segmented into convex and concave segments. The smoothness of this approx-

imation is controlled by a parameter (called “tension”) which, in this work is set to 1 (i.e., this

value seems to be a good compromise between loss of shape information and noise smoothing).

Noise and distortions remaining after this smoothing can still be treated by the matching algorithm

through merging. Notice that, inflection points computed on such B-spline approximated curves
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are more stable than inflection points computed on raw contour data.

Let
�

and � be the two shapes to be matched. Elements of
�

and � are indexed by
�

and
�

respectively (
������� �

) ; inflection points are denoted by �
	 and ��� . ������ � ��� ������� ���
and

�
���� � ��� ������� ���

denote the sequences of � and � convex ( � ) and concave (  ) segments of the

two shapes respectively, with
� 	 being the segment between inflection points �
	 and �!	#" � and

� �
the segment between inflection points $%� and $&�'" � . Henceforth,

�)( �+*-,/. �10
,
, �32

, denotes the

sequence of segments
� 	54�6 � � 	74�68" � ���9�5�9� � 	 ; similarly for

�:( �;* � . �<0 , � �=2
. If shape

�
(or � ) is

closed, then � �+ � � " � (or $ �> $ � " � ). This implies that the number of inflection points in closed

shapes equals the number of segments. If shape
�

(or � ) is open, then � �@? � � " � (or $ �A? $ � " � )
and the number of inflection points equals � B �

(or �3B �
).

3.2 Matching Cases

Let
�

and � be the two shapes to be matched. We distinguish between the following two cases of

matching:

Global: The algorithm will find the best mapping between segments in
�

and segments in � so

that, no segments remain unassociated in either shape.

Local: The algorithm will find the best association of all segments of
�

to all or to a subsequence

of segments of � (i.e., part of � may be left unmatched) and vice versa. Computing an

appropriate scale for matching and finding which part of a shape matches the other shape,

are the key issues in this case.

We focus our attention on the more general case of shape matching, that of local matching.

However, it is more difficult to handle: The two shapes may be scaled with respect to each other

and it is not possible to know in advance which shape is included within the other. Our proposed

algorithm resolves both these issues.

Shapes
�

and � can be either open or closed. Based on this information, we consider the

following matching cases as being of more practical interest:

Both shapes are open: Matching is local. Because we cannot know in advance which shape is

included within the other one, we run the algorithm twice (i.e., once for each possibility) and

we take the matching with the minimum cost. Local matching will also consider the case

where all segments from both shapes are matched (global matching).
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Shape
�

is open and shape � is closed: Matching is local. Shape
�

may be contained within

shape � , but not the other way around (part of � may be left unmatched). Again, this

includes the case where shape A matches the whole shape B (global matching).

Both shapes are closed: Matching is global. This case reduces to the previous one by pretend-

ing that
�

is open ( � is closed), repeating the algorithm for global open and closed shape

matching for each possible starting point on
�

, and by taking the least cost match as the cost

of matching (see also Section 4). Notice that, regardless of cost, local matching would make

no sense here.

3.3 Dynamic Programming (DP) Table

The DP table has
�

rows and � columns, where
�

and � are defined as follows:

Both shapes are open:
�  � B �

and �  �=B �
.

Shape
�

is open and shape � is closed:
�  � B �

and � �� � . Shape � is traversed twice

to force the algorithm consider all possible starting points on � . If
�

is closed and � is

open, we switch the roles of
�

and � .

Both shapes are closed: This case reduces to the previous one.

The rows of a DP table are indexed by
�
,
��� ��� �

and its columns are indexed by
�
,

���=��� � where,
�
,
�

are indices to inflection points of
�

and � respectively. If shape � is

closed, its indices are taken modulo � . The cell at the intersection of rows
�

and column
�

is

referred to as 	�
��� ( �����<0 . A link between cells
( ��� 4 � �1��� 4 � 0 and

( ��� ����� 0
denotes the matching of

the merged sequence of segments
�)( ��� 4 � . ��� 0 with

� ( ��� 4 � . ��� 0 . 	�
��� ( ��� 4 � ����� 4 � 0 is called parent of

	�
��� ( ��� ����� 0 .
A path is a linked sequence of cells

(�( ��� ������0�� ( � � ��� � 0 ������� ( �����1��� 0�0
, not necessarily adjacent, indi-

cating a partial match, where
��� ����� � � �3������� ����� �

and
��� �� � � � � �����!� ����� � .

Index " denotes number of associations (between segments or between groups of segments) along

the path. This path begins at inflection point � 	$# of shape
�

and at inflection point $���# of shape

� and tries to match sequences of segments
�)( ��� 4 � . ��� 0 of

�
with sequences

�:( �� 4 � . ��� 0 of � for
%  � � � ������� " .

Each 	�
��� ( ��� ����� 0 contains the following values: & ( �'� ����� 0 , ��� 4 � , ��� 4 � , ( � , ) � and * � where

& ( ��� �1��� 0 is the partially accumulated match cost up to that cell, ( � and ) � denote number of
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Figure 1: Example of a DP table with
�  �

(shape
�

) and � ��
(shape � ). � , � and �

denote cells in the initialization, computation and termination areas respectively.

unmatched segments of
�

and � respectively,
��� 4 � and

��� 4 � are the indices of the parent cell

of 	�
��� ( ��� ����� 0 and are used to trace back a complete path. Finally, * � denotes the scale factor

corresponding to the parts of
�

and � which have been matched up to 	�
��� ( �'� ����� 0 and it is defined

in Section 3.4.

Figure 1 illustrates an example of a DP table. The DP table consists of three distinct areas:

Initialization area: It is the first row of the DP table. All paths start from cells in this area.

Matching starts always at the first segment
�)�

of
�

(
���  �

). Matching may start at

any segment
� ��# of � , where

� � ��� � � . If
���

and
� ��# have the same polarity, then

& ( � ������0��&��� 4 � ����� 4 � � ( � � ) � � * � are
2���2��&2�� � � � ��� respectively; otherwise, & ( � �����0 �� .

Computation area: It is the area between the first and last row of the DP table. Cells in this area

correspond to incomplete paths.

Termination area: It is the last row of the DP table. All complete paths end at cells in this area.

The best match corresponds to the path with the least cost.

Notice that about half of the cells of the above DP table are empty; this is because associations

between opposite type segments (i.e., � and  ) are not allowed [37]. By convention, the cost of

matching � with  segments is infinite. Matching always starts at the first inflection point of
�

while any point of � is a candidate starting point. Figure 1 implies that the first segments of
�

and

� have the same polarity; otherwise matching will start from the second segment of � .
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3.4 Distance Function

A complete match is a correspondence between sequences of segments in order, such that no

segments are left unassociated in shape
�

and there are no crossovers or omissions. A complete

match is characterized by a complete path
('( ��������� 0�� ( � � ��� � 0 ���5�9�5� ( � � �1� � 0�0 in the DP table, i.e. a path

that starts at the initialization and ends at the termination area. The cost
� ( � � � 0

of matching

shape
�

with shape � is defined as

� ( � � � 0 ������� � & ( � � ��� � 0
	�� (1)

where & ( � � ��� � 0 is the cost of a complete match. In turn, & ( � � ��� � 0 is defined as follows:

& ( � � ��� � 0  ����� 	���� �����
��
��� ��� ( �)( ��� 4 � . ��� 0 � �:( ��� 4 � . ��� 0'0
� (2)

Function � ( �)( ��� 4 � . ��� 0 � �:( ��� 4 � . ��� 0'0 represents the dissimilarity cost of its two arguments and

consists of three additive components:

� ( �)( ��� 4 � . ��� 0 � � ( ��� 4 � . ��� 0�0 � ��
�� & � � &�������" ( �
( ��� 4 � . ��� 0'0 B (3)
� ��
�� & � � & � ����" ( �:( ��� 4 � . ��� 0�0 B

� � �!� � , � � � � � "#"�������" ( �)( ��� 4 � . ��� 0 � � ( ��� 4 � . ��� 0'0
�

The first two terms in Equation 3 represent the cost of merging segments
�)( � � 4 � . ��� 0 in shape

�
and segments

�:( ��� 4 � . ��� 0 in shape � respectively while, the last term is the cost of associating

the merged sequence
�)( ��� 4 � . ��� 0 with the merged sequence

�:( ��� 4 � . ��� 0 .
Each allowable merging should be a recursive application of the grammar rules �  �%$ �

and  �  &$  [37]. This is enforced by the DP algorithm. Constant
�

represents the relative

importance of the merging and dissimilarity costs. Low values of
�

encourage merging and, con-

versely, high values of
�

inhibit merging. For example, matching shapes with much detail must

employ low values of
�

. A method for the experimental specification of an appropriate value for
�

is discussed in Section 5.2.1.

3.5 Geometric Quantities

We now define geometric quantities (features), as illustrated in Figure 2, that are required in the

definition of the cost functions.
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area  s i

segment   a 

tangent p

i+1
tangent

i

θrotation  angle  ip

length  l i

i

Figure 2: Geometric quantities for defining the importance of a segment

Rotation Angle
� 	 is the angle traversed by the tangent to the segment from inflection point � 	 to

inflection point � 	#" � and shows how strongly a segment is curved.
� 	 is positive for convex

and negative for concave segments.

Length �#	 is the length of segment
� 	 .

Area ��	 is the area enclosed between the chord and the arc between the inflection points �)	 and

�!	 " � .

3.6 Scale Factor

If one of the two shapes is scaled with respect to the other, then the length of one of the two

shapes (i.e., shape � ) has to be multiplied by an appropriate scale factor. This scale factor can

be computed as the ratio of the lengths of the matched parts of shapes
�

and � respectively. The

definition of scale factor depends on the type of matching as follows:

Global matching: Shape
�

matches the whole shape � . The algorithm consumes all segments

from both shapes. The scale factor is constant and is computed as

*  ��

� & "�� ��� �

��
 � & "�� ��� �
�

(4)

Equivalently, we can normalize initially both shapes with respect to their perimeter. It is

easy to accommodate this in our method by setting all scale terms * to 1 in the algorithm.

Local matching: Shape
�

may match either the whole or only a part of shape � . This case is

more difficult to handle but it is more general and includes the previous one (i.e., when

matching the whole shape � yields the least cost). Although we know that
�

matches
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completely, the matched portion of shape � is unknown before the algorithm terminates. To

handle this problem, we introduce a scale factor * � , that is estimated for each partial match
( ( ��� ����� 0 � ( � � �1� � 0 ���9�9�5� ( ��� 4 � ����� 4 � 0'0 , corresponding to matched parts so far (i.e., up to " * �

):

* � 
� � 4 �� � � � 	���4 �	 � 	 ����� �5	 ( � 0� � 4 ���� � � ��� 4 �� � � ����� � � ( � 0 � (5)

where
� � " � � and �9	 ( � 0

and � � ( � 0
are the lengths of

� 	 and
� � respectively. This value is

an approximation of the actual scale factor of a complete match. Notice that * � is undefined

since the total matched length is 0 for both shapes. In this work * � is set to 1.

3.7 Dissimilarity Cost

The dissimilarity cost of associating a group of segments from shape
�

with a group of segments

from shape � is computed as

� � �!� � , � � � � � "#" � ����"  � ���	�
��������
 ����� ����� ��� � 	�� (6)

The term
� � is the cost associated with the difference in feature � (i.e., length, area or angle).

The intuition behind the use of
, ���

is that it tends to emphasize large differences on any feature.

We choose the max operation instead of product [10] because in the product, a small cost in terms

of one feature can cancel the effect of a high cost in terms of another feature, something that may

lead to a visually implausible outcome. The max operation addresses this problem.�
is a weight term associated with the importance of this partial match.

�
emphasizes the im-

portance of matching large parts from both shapes similarly to the way humans pay more attention

on large shape parts when judging the quality of matching. The proportion of the matched shape

length with respect to total length is used to define
�

:�  ������� � 	 �	 � 	 ����� �9	 ( � 0
��
 � & "�� ��� � � � � �� � � ����� � � ( � 0

��
 � & "�� ��� � � �
(7)

The term
� � is defined as � �  .! #" * � � ( � 0� #$ . #" B � � ( � 0� #$ �

(8)

where,
 %"  � 	��	 � 	������ . � 	 . ,  &$  � ���� � � ����� . � � . and � � ( � 0 is a parameter depending on the

feature � . Specifically � � ( � 0  * � for � being length and *
��

for � being area. * � is computed

according to Equation 5 or Equation 4 for local and global matching respectively. For � being

rotation angle, � � ( � 0  �
, since angle measurements do not depend on a scale factor.
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3.8 Merging Cost

Let the types of the segments being merged be �  � ����� � , leading to a single merged convex

segment C by absorbing the concave segments in between. The opposite case is obtained by

switching � and  in the formulas. The merging cost is defined as follows:

��
�� & � � & ��� ��"  � ���
 � ������
 ��� � � ��� � � � � � 	�� (9)

where subscript � refers to a feature (length, area or rotation angle).

For all features:

� �  � � � ������� ��� � � ��� . � .� 
������������� �	� � � ��� . � . � (10)

where the sum of the numerator is over the absorbed concave segments, whereas the sum of the

denominator is over all segments of the group. The intuition behind this formula is to measure

the importance of the absorbed segments (of type  ) relative to the whole matched consecutive

segments of the group.

For � being any feature (length, area, rotation angle) the weight term of the merging cost is

defined as � �  � � � ������� �	� � � ��� . � .� � � ������� � ��
�
 � � . � . � (11)

where the sum of the numerator is over the absorbed concave segments, while the sum of the

denominator is over all concave segments of the shape. The intuition behind this weight term is to

measure the importance of the absorbed segments (of type  ) within the shape as a whole.

We choose the maximization formula in Equation 9 instead of sum of products of terms com-

paring consecutive segments [10], because in a product, a small cost in terms of one feature can

cancel the effect of a high cost in terms of another. Another drawback of the use of a sum is that the

merging cost increases with the number of segments merged, even if several very short segments

are being merged into a large one.

4 Algorithm

Let
�

and � be the two shapes to be matched.
�

is assumed to be open; � can be either open or

closed. If both shapes are closed, we assume that
�

is open and we attempt to match the open
�

on the closed � . Each point of
�

is a candidate starting point for matching. Matching starts with

segments having the same polarity ( � or  ). There are � � �
such segments (i.e. potential starting
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points) on
�

and the algorithm is repeated � � �
times. In the following, we assume that the first

segment of � has the same polarity ( � or  ) with the first segment of
�

; otherwise, matching

starts at the second segment of � . The last matched segments of
�

and � must have the same

polarity too.

The following summarizes the above discussion (“S”,“X” and “T” denote cells in the initial-

ization, computation and termination areas respectively as in Figure 1):

Global matching: The algorithm consumes all segments from both shapes. Equivalently, the

algorithm starts at the left-most cell (marked “S”), of the DP table, proceeds upwards and

to the right through cells of computation area (marked “X”) and terminates at the right-most

filled (marked “T”) cell of the DP table corresponding to same polarity segments of
�

and

� . This cell contains the overall cost of matching (i.e., there is not need to search the top

row for the least cost match). The scale factor is computed according to Equation 4.

Local matching: Any segment on shape � is a candidate starting segment for matching provided

that it has the same polarity with the first segment of
�

. Only half of the cells (marked “S”)

in the initialization area are candidate cells of starting a path. The algorithm consumes some

or all segments of � and may end at any segment of � having the same polarity with the last

segment of
�

. Therefore, half of the cells (marked “T”) at the termination area are candidate

termination cells of a complete match path. All these cells must be searched to select the

least cost match (best match). The scale factor is computed according to Equation 5.

Figure 3 outlines the matching algorithm. The algorithm computes the distance
� ( � � � 0

of

its two input shapes. The � �!� loop for
� �

does not run over all the indicated values, as convex

to concave matches are not possible (only half of the cells are used) At each cell, the algorithm

computes the optimum cost of the incomplete path ending at this cell:

& ( ��� ����� 0  ����� � & ( ��� 4 � ����� 4 � 0 B � ( �
( ��� 4 � . ��� 0�� �:( ��� 4 � . ��� 0�0 	 � (12)

where the minimum is over all possible values of
( � � 4 � ����� 4 � 0 . Merging always involves an odd

number of segments that is,
( ��� 4 � �1��� 4 � 0  ( ��� * � ,�� * � ����� * � � � * � 0

, where
, � � 2

and � ��� 2
. Equation 12 determines the minimum cost transition from cell 	�
��� ( � � 4 � ����� 4 � 0 to

	�
��� ( ��� ����� 0 for all possible values of
��� 4 � and

��� 4 � . Indices
��� 4 � and

��� 4 � are stored in 	�
��� ( ��� ����� 0
and can be used to retrace the path from 	�
��� ( ���8����� 0 back to its starting point.
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Input: Shapes
� ��<� � ��� ������� ���

, �
���� � ��� ������� ���

;

Output: Distance
� ( � � � 0

and correspondences between segments;

// Initialization: Fill the first row

for
���  � � � ���9�9�5� � do

if
���

and
� ��# are both � or  then 	�
��� ( � ���� 0  ( 2���2 ��2�� � � � ��� 0 ;

otherwise 	�
��� ( � ���� 0  ( � ��2��&2�� � � � ��� 0 ;
end for

// Fill from the 2nd to the
� *

th row

for
��� �� �������9�9�5� �

do

for
��� �� �������9�5�9� � do

if
� 	 � and

� � � are both � or  then fill 	�
��� ( ��� ����� 0 using Equation 12;

compute * � using Equation 4 or Equation 5;

end for

end for

// Select the least cost complete path

select the least cost path from the
�

-th row;

retrace path using
��� 4 � , ��� 4 � cell values;

Figure 3: Outline of the algorithm.

The algorithm of Figure 3 is optimal, in that it always finds the path with the least cost from

the initialization to the termination area that fully matches shape A with a portion of shape B [45].

It is worth noting that the algorithm for closed shape matching is optimal too.

Equation 12 implies that the algorithm computes the minimum cost transition from each allow-

able cell
( ��� 4 � ����� 4 � 0 to cell

( ��� ����� 0
. However, the algorithm may become very slow especially on

large DP tables. Notice that, transitions on the DP table correspond to merges of segments. The al-

gorithm examines all merges, even the less plausible ones, such as merges involving all segments.

It seems reasonable to restrict the maximum number of segments which are allowed to merge to a

constant � (
��� * ��� 4 �> � ,

��� * ��� 4 �> � ). � is always an odd number and for global matching

has to be � � � � � ( � � � ). The results in Section 5.2 indicates that the algorithm exchanges

a small loss of accuracy for much faster retrieval: The algorithm may miss the least cost match if

this involves merging of more than � segments.
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Figure 4: Curve representation cases:
� �

is the original curve,
�@�

is its mirror image,
� � il-

lustrates curve traversal in the opposite direction and
���

is the mirror image of
�

with opposite

traversal.

4.1 Invariance to Shape Transformations

The matching algorithm must be capable of handling symmetric shapes and alternative curve

traversals. Figure 4 illustrates all these cases for an open curve
�

:
� �

is the original curve,
�@�

is its mirror image,
� � corresponds to the opposite curve traversal of

� �
(i.e., selection of starting

point) and
���

corresponds to a combination of
� �

and
� � . A complete representation of

�
consists

of the representations of all
� �

,
� �

,
� � and

���
; this is denoted as

�  ( � � � � � � � � � ��� 0
. The same

holds for
�

closed. Notice that,
�@�

,
� � and

���
need not be computed from raw curve data but they

are derived from
� �

:
� �

is derived from
� �

by switching � to  and vice versa;
� � is derived from

�A�
by taking its sequence of segments in reverse order and by switching � and  and, finally,

���

is obtained by taking the segments of
� �

in reverse order.

We handle the cases with symmetric shapes or different starting points by repeating the algo-

rithm of Figure 3 for each possible case and by taking the least cost match as the cost of matching.

For open shapes and local matching, because we cannot know in advance which shape is included

within the other one, we repeat the algorithm twice, once for each possibility. Table 1 summarizes

the necessary distance computations.
�

denotes the overall distance between
�

and � .
���

denotes

global distance between the open
� 	�� � and the closed shape � ;

� 	�� � denotes the open
� 	 which is

produced starting at the
�
-th inflection point of the closed

� 	 .

4.2 Complexity

The run-time complexity of the algorithm depends on the time of computing � , the cost of match-

ing two sequences of segments. This is the basic operation of the algorithm. From Equation 12,
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local matching global matching

A open
� ( � � � 0 ������ � ����� 	 ��� � � � � � � ��� � � ( � 	 � �

� 0 	
,

� ( � � � 0 ������ 	 ��� � � � � � � ��� � � ( � 	 � �
� 0 	

B open
����� � ��� � � � � � � ��� � � ( � � � � � 0 	�	

A open
� ( � � � 0  ����� 	 ��� � � � � � � ��� � � ( � 	 � �

� 0
	 � � ( � � � 0  ����� 	 ��� � � � � � � ��� � � ( � 	�� � � �
� 0 	

B closed

A closed undefined
� ( � � � 0  ����� ��� � � � � � � ( � � � 0
	

B closed

Table 1: Distance computations to achieve invariance with respect to shape transformations.

the cost computation at each 	�
��� ( �'���<0 takes
	 �� time (i.e., equals the number of filled cells up to

	�
��� ( ��� ����� 0 ). Therefore, the time complexity for filling a DP table of size
� � � is 	 ( �

�
�
� 0

.

This is the time complexity of the algorithm when at least one of the shapes is open. If both

shapes are closed, the algorithm is repeated � times (i.e., for all starting points of
�

) so the time

complexity of the algorithm becomes 	 ( � � �
� 0

. By restricting merging to � segments (usually

� � � � � � ), the complexity becomes 	 ( �
�
� � 0 for open shapes and 	 ( �

�
�
�
� 0 for closed

shapes.

4.3 Matching Examples

Figure 5: Segment associations reported by the matching algorithm.

Figure 5 illustrates segment correspondences (indicated by consecutive lines connecting the
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starting and ending points of the associated segments) obtained by matching fish silhouettes. In-

flection points on the two shapes are denoted by dots and triangles respectively. Figure 5 illustrates

original polygonal shapes. Inflection points are computed on their B-spline approximation and are

back-projected on the original (polygonal) shapes. One of the two shapes has been shrunk, rotated,

and translated to better illustrate the associations between matched parts of the two shapes. The

top left figure illustrates local matching between open shapes (i.e., part of the bigger shape has

been left unmatched). The figure on its right illustrates global matching. The bottom left figure

illustrates local matching between an open and a closed curve while figure on its right corresponds

to global matching between closed shapes.

5 Shape Retrieval

In our experiments1 we used the following datasets

CLOSED: It is the dataset of SQUID2 and consists of 1,100 closed shapes of marine life species.

OPEN: Consists of 1.500 open shapes which have been generated from the CLOSED dataset by

editing (i.e., by deleting manually about half of each shape).

To evaluate the effectiveness of each method we also created 20 query shapes for each data set.

In all our experiments with open shapes we focus on the most general case of matching, that is

local matching. In our experiments, each measurement is the average over 20 queries. Each query

retrieved the 50 most similar shapes.

The experiments are designed to illustrate the superiority of our approach over traditional meth-

ods for shape matching and retrieval based on Fourier descriptors [13] and moments [14, 15, 16].

We also establish the superiority of our method over our previously proposed (non-optimal) method

[11]. Finally, we compare results obtained by our method with similar results obtained by the

method of SQUID for closed shapes. The same queries and the same measurements are used with

all methods. Each method computes a distance for each pair of matched shapes (e.g., for a query

and a stored shape). The shape database is searched sequentially and the retrieved shapes are

ranked by descending similarity with the query. Our method has the additional advantage of re-
1We have made our algorihtm, the results and the datasets available on the internet at:

http://www.ced.tuc.gr/˜petrakis.
2http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.
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porting all associations between similar segments choosing (possibly) different scales for different

parts of the shapes depending on noise or shape detail.

5.1 Evaluation Method

Two shapes (open or closed) are considered similar if they represent the same figure. In particular,

an open shape is considered similar to another open or closed shape if the former is similar (at

least) to a part of the later. We used human relevance judgments to compute the effectiveness

of each method. The evaluations have been carried-out by four different human reviewers. Each

reviewer inspects the answers of a query and, for each answer, judges if it is similar to the query or

not. This is a highly subjective process. Two or more methods may retrieve the same answer for

the same query, but the same answer might be considered similar by one reviewer and not similar

by another. Moreover, the same answer may not be recognized as similar when it is retrieved by

different methods. To be fair, the evaluations must be consistent. To achieve consistency, a query

and a retrieved shape are taken to be similar if at least one human reviewer considers them similar

for any method tested.

To evaluate the effectiveness of retrieval, for each candidate method we computed:

Precision is the percentage of qualifying (similar) shapes retrieved with respect to the total number

of retrieved shapes.

Recall is the percentage of qualifying shapes retrieved with respect to the total number of sim-

ilar shapes in the database. Because we don’t have the resources to visually compare each

query with every database shape (this would require, for each method, 1,100 or 1,500 hu-

man relevance judgments for each one of the 20 queries) for each query, we estimate the

total number of similar shapes in the database by merging the similar shapes obtained by all

methods tested for this query. This is a valid sampling method known as “pooling method”

[17]. This method does not allow for absolute judgments such as “method
�

misses 10%

of the total qualifying answers in the database”. It provides, however, a fair basis for com-

parisons between methods allowing judgments such as “method
�

returns 5% fewer correct

answers than method � ”.

We present a precision-recall plot for each method. The horizontal axis in such a plot corre-

sponds to the measured recall while, the vertical axis corresponds to precision. Each method in

such a plot is represented by a curve. Each query retrieves the best 50 answers (best matches) and
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each point in our plots is the average over 20 queries. Precision and recall values are computed

from each answer set after each answer (from 1 to 50) and therefore, each plot contains exactly 50

points. The top-left point of a precision/recall curve corresponds to the precision/recall values for

the best answer or best match (which has rank 1) while, the bottom right point corresponds to the

precision/recall values for the entire answer set.

A method is better than another if it achieves better precision and better recall. As we shall

see in the experiments, it is possible for two precision-recall curves to cross-over. This means that

one of the two methods performs better for small answer sets (containing less answers than the

number of points up to the cross-section) while, the other performs better for larger answer sets.

The method achieving higher precision and recall for large answer sets is considered to be the

better method (based on the assumption that typical users retrieve more than 10 or 20 shapes).

5.2 Experimental Results

We carried-out several groups of experiments with open and closed shapes. In all our experiments

two or more candidate methods are compared.

5.2.1 Estimation of
�

The goal of this set of experiments is to select an appropriate value of
�

. This value controls the

amount of merging (the basic feature of our algorithm) and, through merging, effects the quality

of matches and, therefore, the accuracy of retrievals. Low values of
�

encourage merging; this is

desirable for shapes with much shape detail or noise. For smooth shapes, high values of
�

are more

appropriate.

Figure 6 illustrates the precision-recall diagram for retrievals with local matching on the OPEN

dataset and open queries for various values of
�

. The appropriate value of
�

is the one achieving

better precision and better recall than any other value. Based on Figure 6 we select
�  �

. We

also confirmed this value for global matching. This was expected since the value of
�

depends on

shape properties and not on the type of matching.

5.2.2 Response Time

Fourier descriptors and moments are pre-computed and stored in separate files in the database

along with the original contours. Searching such a database typically takes less than 2 seconds
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Figure 6: Precision-recall diagram corresponding to local matching and retrievals on the OPEN

dataset, for various values of
�

.

per query on a Pentium PC 1000MHz. For our method, no pre-computed information is stored.

Instead, the actual shape contours are used to search the database. For this reason, our method is

the slowest requiring (depending on � ) more than 8 minutes to search the CLOSED dataset and

more than 2 minutes to search the OPEN dataset. Table 2 illustrates these results. Notice the speed-

up as a function of � ( �
��

corresponds to the original method with no restriction on merging).

Certain optimizations that could speed up our method are possible, such as the precomputation and

storage of the convex and concave segments of all shapes in the database and the non consideration

of symmetric shapes.

Maximum merging �
 � �

 � �
 � �

��

CLOSED dataset 518 916 1,884 3,202

OPEN dataset 146 159 182 183

Table 2: Average retrieval response times in seconds for the CLOSED and OPEN datasets as a

function of the of allowable merging � .
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5.2.3 Open Shapes

Figure 7 illustrates the precision-recall diagram for OPEN queries on the OPEN dataset. The

competitors to our method for this group of experiments are:

Fourier Descriptors [48]: We take the lower order 20 coefficients (excluding the 0-th coefficient)

of the Fourier transform of the of arclength versus turning angle representation of the curve.

The distance between a query and model (database) curve is computed as the Euclidean

distance between their vectors of coefficients.

Polygon Moments [16]: The coordinate transform that aligns the two curves is computed. This

transform involves computation of cross moments and polygon moments and minimizes a

squared error which is taken to be the distance between the two curves.

All methods are invariant to geometric curve transforms (i.e., translation, scale, rotation). They

are also taken to be independent on starting point selection and on symmetric transformations using

the method described in Section 4.1.

Figure 7 demonstrates that our method achieves at least 10% better precision and better recall

for answer sets with the best 50 shapes (rightmost points of the precision/recall curves). Fourier

and moments perform about the same. For small answer sets (top left points of the precision/recall

curves), all methods perform approximately the same achieving precision close to 1 (i.e., their

answers are almost 100% correct). Notice that, our DP local matching method is always more

accurate than global matching methods such as Fourier and Moments for any � . Notice finally

that, matching with � � �
achieves almost the same precision and recall with the original method

(without restriction on the size of merging), which means that merges of more that 5 segments are

rare.

Figure 8 illustrates an open query (an open curve) and its 20 best retrieved curves. Notice that

almost all answers (except 1 marked with “no”) may be considered similar to the query. Answer

10 looks dissimilar to the query. However, a closer look reveals that this shape matches the upper

part (the fish tail) of the query.

5.2.4 Closed Shapes

Figure 9 illustrates the precision recall diagram for closed queries on the CLOSED dataset. The

competitors to our method are as follows.

24



0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

pr
ec

is
io

n

recall

Open Shapes

DP Local
DP Local, K=3
DP Local, K=5
DP Local, K=9

Fourier
Moments

Figure 7: Precision-recall diagram for the OPEN dataset corresponding to the proposed DP local

matching method, the same method for �
 ��� �<� �

, Fourier descriptors, and Moments.

Non-Optimal DP [11]: This is our non-optimal DP method which works only for closed shapes.

Fourier Descriptors [13]: This is known to be one of the most successful methods for the recog-

nition of closed shapes. We computed the first (lower order) 20 coefficients of the Fourier

transform.

Sequential (Contour) Moments [15]: This is one of the most effective moment-based methods

for closed shapes. For each shape, a representation of 4 moment coefficients is computed

from its bounding contour.

Geometric (Area) Moments [14]: Known also as invariant moments. This is the original and the

most characteristic representative of a wide class of methods based on area moments. A

representation of 7 moment coefficients of the shape is computed from the area it occupies.

It has been adopted by many shape-based retrieval systems such as [3, 4].

For Fourier and moments, the distance between a query and a database curve is computed as

the Euclidean distance between their vectors of descriptors.

Figure 9 illustrates that our proposed method achieves approximately 30% better precision and

better recall than any other method for any � . Notice the loss of accuracy for retrievals with

� � �
. On this dataset, merges of more that 5 segments are very common and by restricting
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Figure 8: Example of an open query and its 20 best matches retrieved by the optimal DP method.

merging to �
 �

or �
 �

the algorithm becomes less accurate. Our previous non-optimal

method still performs much better than Fourier descriptors, Sequential and Geometric moments.

This experiment also confirms the results of [11]. Notice finally that, our method is the only

method with precision close to 1 for small answer sets (i.e., most of its answers are correct).

Figure 10 illustrates a typical query (top left image) and its 20 best matches retrieved by our

method. Notice that almost all shapes (except two marked with “no”) may be considered similar

to the query.

The results on the marine datasets indicate that our method performs better than its competitors

on shapes with moderate amounts of noise and shape detail (all other methods are more sensitive

to noise and detail). The algorithm may not be the same effective on smooth shapes such as the

shapes of the GESTURES dateset [11]: Either it will try to match segments one by one or, it

will try less plausible merges. Figure 11 illustrates the results obtained on the above GESTURES

dataset with 980 smooth hand gestures shapes. On this dataset,
�  �

(optimal value). Our method

performs approximately the same with our previous non-optimal method and with Fourier (in fact,

our method performs slightly better for large answer sets and slightly worst for small answer sets).
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Figure 9: Precision-recall diagram for the CLOSED dataset corresponding to the Proposed DP

method, the Proposed DP method for �
 ��� � � �

, the Non-optimal DP method, Fourier descrip-

tors, Sequential moments, and Geometric moments.

5.2.5 Comparisons with SQUID

The purpose of this set of experiments is to compare the performance of our method with the

method of SQUID [9] which is available on the Internet3. SQUID is a well-established and well-

researched approach to shape matching, and it is becoming accepted as a standard for whole shape

matching. Notice that SQUID treats only closed shapes. Extending SQUID for open or occluded

shapes is non-trivial.

Figure 12 illustrates the precision-recall diagram for the same methods as in the previous ex-

periment including SQUID. For SQUID, we located the same queries on its WWW interface, we

applied these queries and we downloaded their results. We managed to locate all but 2 of the 20

queries of the previous experiment in Section 5.2.4. Therefore, our results are averages over 18

queries. SQUID interface supports only 18 answers. Therefore, each curve of Figure 12 contains

only 18 points instead of 50.

Figure 12 demonstrates that our method performs better than SQUID for large answer sets

containing more than 4 answers, achieving up to 10% better precision and better recall. Notice

that, in databases, users typically retrieve more than 5-10 answers. For small answer sets both
3http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.
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QUERY

1 2 3 4 5 6 7 8 9 10

11 13 14 15 16 18 19 2017
no
12

no

Figure 10: Example of a closed query and its 20 best matches retrieved by the optimal DP method.

methods achieve precision close to 1, that is, all their answers are correct.

Figure 13 illustrates the results (18 answers) obtained by SQUID by applying the same query of

Figure 10. Again, all shapes (except 2 marked with “no”) may be considered similar to the query.

Notice that, many shapes are common to the answers sets obtained by our method and SQUID.

6 Conclusions

We propose an approach for shape matching and shape similarity retrieval based on dynamic pro-

gramming. Our approach treats open, noisy or distorted shapes and is independent of translation,

scale, rotation and starting point selection. It operates implicitly at multiple scales by allowing the

matching of merged sequences of consecutive segments in the shapes which are matched. This

way our method maintains the advantages of previous methods (e.g., [10, 35]) utilizing smoothed

versions of the shapes at various levels of detail, while avoiding the expensive computation of

explicit scale-space representations.

We carried out extensive performance experiments on several datasets and our evaluations are

based on human relevance judgments by 4 independent referees. The experiments indicate that our

approach is well suited to shape matching and retrieval on shapes with moderate amounts of noise

and distortion, achieving higher precision and recall than traditional shape matching and retrieval

methods based on Fourier descriptors and moments. Our method performs better than our previous
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non-optimal method and SQUID, while being the only method capable of handling both open and

closed shapes at the same time.

Future work includes the extension of our method to handle gaps in shapes and partial matches

as in [7] (where parts of one shape match possible many parts on the other shape). Future work

also includes the experimentation with more datasets and methods, handling of combined queries

involving more than one feature (e.g., shape, color, text), the development of indexing methods

that could speed up retrievals and the development of a graphical user interface on the World Wide

Web.
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Input: Shapes
� ���������	�
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Output: Distance ��� � � ��� and correspondences between segments;
// Initialization: Fill the first row
for �� � ���! "��#�#�$�&%

do
if
���

and
��')(

are both * or + then ,�-�./.�� �0� � � � � �21 � 1 � 1 �!3���45�6� � ;
otherwise ,�-7.).�� �0� � � � � � ��� 1 � 1 ��3��!45�7� � ;

end for
// Fill from the 2nd to the 8 9 th row
for :2; �< "� �����$�#�#� 8 do

for �
; �< =� ����#�#�$�&%
do

if
�?>A@

and
� ' @

are both * or + then fill ,�-7.).��B:2; � ��;C� using Equation 12;
compute D?; using Equation 4 or Equation 5;

end for
end for
// Select the least cost complete path

select the least cost path from the 8 -th row;
retrace path using : ;FE � , � ;FE � cell values;
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