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Abstract— Autonomous vehicle navigation with standard IMU
and differential GPS has been widely used for aviation and
military applications. Our research interesting is focused on
using some low-cost off-the-shelf sensors, such as strap-down
IMU, inexpensive single GPS receiver. In this paper, we present
an autonomous vehicle navigation method by integrating the
measurements of IMU, GPS, and digital compass. Two steps are
adopted to overcome the low precision of the sensors. The first is
to establish sophisticated dynamics models which consider Earth
self rotation, measurement bias, and system noise. The second
is to use a sigma Kalman filter for the system state estimation,
which has higher accuracy compared with the extended Kalman
filter. The method was evaluated by experimenting on a land
vehicle equipped with IMU, GPS, and digital compass.

Index Terms— Sensor fusion. Navigation. Unscented Kalman
filter. Estimation.

I. INTRODUCTION

Autonomous navigation vehicles, used for military missions,
forest surveys, and ocean environment inspection, usually em-
ploy multiple sensors of various types. The sensors commonly
used in these applications can be classified into two broad
categories [4]: dead-reckoning sensors and external sensors.
Generally dead-reckoning sensors are very robust, but accu-
mulate errors with time. Therefore, they must be periodically
reset by using information from external sensors. External
sensors provide absolute information by making measurements
from known landmarks. In our navigation platform, a low cost
Inertial Measurement Unit (IMU) is used as a dead-reckoning
sensor, while a Global Positioning System (GPS) receiver and
a digital compass are used as external sensors for the outdoor
navigation mission.

The rapidly expanding use of the Global Positioning System
(GPS) enables commercial navigation devices to be more
popular and attainable for the civil users. GPS provides ab-
solute positioning information covering any part of the world
during day and night. However, the signal quality from an
adequate number of GPS satellites for the recipient is still
critical in using GPS as navigation devices, such as under
trees, inside buildings, in tunnels, between tall buildings, and

under-water [5]. Therefore, for a reliable navigation system,
another type of sensor, such as IMU, is needed.

The inertial navigation system (INS), originally developed
in the mid 60s for Missile Guidance systems, measures the
accelerations and rotations applied to a system’s inertial frame
of reference. These measurements are done via an inertial
measurement unit (IMU) that consists of three linear ac-
celerometers (devices that measure acceleration) and three rate
gyroscopes (devices that measure angular rotation rate). An
IMU system assembled from low-cost solid state components
is always constructed in a strap-down configuration. The strap-
down means that the gyroscopes and accelerometers are fixed
to a common chassis and are not actively controlled on gimbals
to align themselves in a prespecified direction [4]. The strap-
down configuration makes the IMU widely accessible. But the
tradeoff for a low cost IMU is its high noise and low accuracy.
These drawbacks of the strap-down IMU can be overcome by
careful filter design which is based on appropriate dynamic
modeling.

In this paper, we present a general dynamic model for a
strap-down IMU sensor for an autonomous navigation vehicle.
The initial state of the IMU is calibrated by using a digital
compass. And the IMU, GPS receiver, and digital compass
are combined by using an unscented Kalman filter (UKF) [3]
to obtain an optimal state of the vehicle.

II. PREVIOUS WORK

The integration of an inertial measurement unit (IMU) with
a global positioning system (GPS) receiver has been done for
application areas in which attitude information is indispensable
and rapid collection of geographic information is required.
Because of its high price and government regulation, the
high performance IMU is only used in military application
and commercial airliners. Recent research efforts have been
focused on using a low-cost strap-down IMU.

Farrell and Barth [1] introduced a very general method to
establish an error process model for the INS/GPS navigation
system. The error process model is obtained by using first
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order perturbation from the IMU dynamic models. A Kalman
filter is used to estimate the errors in the IMU measurement.

In the low-cost IMU and GPS navigation system, the initial
attitude of the IMU is very important. Nebot and Durrant-
Whyte [4] presented a very clear and simple approach for the
initial calibration and alignment of a low-cost IMU for land
vehicle application based on the error process model, where
two stable pendulum gyros are used to provide external attitude
information for the IMU calibration. Salychev et al. [6] used
external heading information to align the IMU. Sukkarieh [7]
proposed the use of non-holonomic constraints, which describe
the characteristics of the motion of land vehicles. which states
that the motion of a wheeled vehicle on a surface is governed
by two non-holonomic constraints.

The low cost IMU is peculiar in its weak stand-alone
accuracy and poor run-to-run stability, which can result in
large errors over short time intervals if their errors are not
compensated [6]. Merwe and Wan [8] presented a dynamic
process model which includes time varying bias terms. They
used first-order Euler integration for system update and un-
scented Kalman filter (UKF) for system estimation. This
method was successfully applied to helicopter’s navigation.
Huster [2] also used UKF for the relative position sensing by
fusion monocular vision and inertial rate sensors.

The contribution of the paper is that we present a set of
general dynamic models of IMU to describe the state of a
robot. These dynamic equations are integrated by a fourth-
order Runge-Kutta approach instead of a first order Euler
integration as in [8]. UKF is used to fuse the data from
GPS receiver and IMU, in which an external sensor, digital
compass, is applied for the IMU’s calibration.

The paper is organized as follows. In section III, we
establish a process model and measurement model for the
IMU and GPS integration system. In section IV, we introduce
the unscented Kalman filter for the non-linear process model
and measurement model, which has more accuracy then the
extended Kalman filter. In section V, we address the issue for
the implementation of the system. In section VI, we discuss the
experiment results. In the last section, we present a summary
and conclusion.

III. SYSTEM MODELS

There are four reference frames related to a robot navi-
gation, which are the inertial frame, earth frame, navigation
frame, and body frame. The inertial frame (i-frame) is a
reference frame in which Newton’s laws of motion apply. All
the inertial sensors make measurements relative to an inertial
frame. The inertial coordinate system can take any point as
its origin, and three mutually perpendicular directions as its
axis. The earth frame (e-frame) has its origin fixed to the
center of the earth. There are two different coordinate systems,
rectangular and geodetic coordinate system, to describe the
location of a point in the e-frame. The navigation frame (n-
frame) is attached to a fixed point on the surface of the earth
at some convenient point for local measurements. The body
frame (b-frame) is rigidly attached to the vehicle of interest,

usually at a fixed point such as the gravity center of the vehicle,
which point is also the origin of the body coordinate system.
These definition of all the frames is given in [1].

In this paper, we use a fixed navigation frame (n-frame)
for the vehicle dynamics analysis. There are two issues which
need to be clearly understood. The first is that the n-frame
will not move with respect to the earth frame (e-frame). The
second is that any movement related to the body frame (b-
frame) must be projected to the n-frame.

A. Process Model

In the IMU/GPS/DigitalCompass supported vehicle naviga-
tion, we define a state vector x as follows.

x =
(

p v q ba bω

)T
(1)

where p = [x, y, z]T , v = [vn, ve, vd]T , and q =
[q0, q1, q2, q3]T represent the position, velocity, and attitude in
quaternion of the navigation vehicle in the n-frame. ba is the
IMU acceleration biases; and bω is the IMU gyro rate biases.

The measurements from an inertial sensor are based on the
inertial frame (e-frame), and they must be transformed to the n-
frame by the knowledge of attitude of the vehicle. We know all
movement in the i-frame follows Newton’s law, so the dynamic
models for the vehicle navigation can be established below.

⎛
⎜⎜⎜⎜⎝

ṗ
v̇
q̇

ḃa

˙bω

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

v
Cn

b ãb + gn − (2Ωn
ie + Ωn

en)vn
e

(wb
ib − Cb

n(ωn
ie + ωn

en) − bω − nω)q
Wba

Wbω

⎞
⎟⎟⎟⎟⎠ (2)

From the property of IMU, despite of their quality, the
acceleration and gyro rate output are known to be in error by
a unknown slowly time-varying bias. Usually the turn-on bias
is accurately known and accounted for in the IMU calibration.
The residual time-varying bias error is modelled as a random-
walk process [1]. Therefore, Wba

and Wbω
in Eq. (2) are white

noise of acceleration and gyro rate, respectively, in the IMU.
In the land vehicle navigation, the vehicle’s movement is

in a limited geographic area. Therefore the fixed n-frame is
sufficient. Otherwise the geodetic coordinate system needs to
be used. For the fixed n-frame, the ωn

en is a zeros vector. The
ωn

ie in Eq. (2) is the rotation rate of the e-frame with respect
to the i-frame projected to the n-frame. This is defined as

ωn
ie = Cn

e ωe
ie

= ωe

(
cosλ 0 −sinλ

)T
(3)

where ωe = 7.292115× 10−5rad/s [1] is the rotation rate of
the e-frame to the i-frame. λ is the latitude of the origin of the
n-frame in the geodetic coordinate system. The ωb

ib in Eq.(2)
is the rotation rate measurement of gyros in IMU.

In Eq. (2), the Cn
b is the direction cosine matrix (DCM)

from the b-frame to n-frame. Assuming the vehicle has an
attitude which can be obtained by three successive rotation of
angles φ, θ, and ψ around the x, y, and z axis, respectively.
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The transformation matrix Cn
b is expressed by

Cn
b =

⎛
⎝ cθcψ sφsθcψ − cφsψ sφsψ + cφsθcφ

cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎞
⎠ (4)

where s represents sin, and c represents cos. And gn is the
gravity vector in the n-frame, which is expressed by

gn =
(

0 0 g
)T

(5)

where g is the local gravity, which is decided by the coordi-
nates in the geodetic coordinate system [1]. The ãb in Eq.(2)
is defined as

ãb = ab
ib − ba − na (6)

where ab
ib is the acceleration measurement from accelerameter

in IMU, and na is the process noise. The Eq.(2) can be simply
expressed as

d

dt
x = f(x, ab

ib, ω
b
ib, np) (7)

where np is the process noise, which is na or nω .

B. Measurement Model

The position obtained from GPS is considered as the mea-
surement set in a Kalman filter. This can be expressed in the
following formulation.

zk = pk + Cn
b rgps + νgps (8)

where rgps is the vector from the origin of the b-frame
to the GPS mounting place. νgps is the GPS measurement
noise, which is white with normal probability distribution
p(v) ∼ N(0, R). The measurement noise matrix R =
diag(σ2

x, σ2
y, σ2

z) can be calculated by statistics from a set of
data which is obtained from the GPS in a fixed point in its
working environment.

IV. UNSCENTED KALMAN FILTER

A. Extended Kalman Filter

The extended Kalman filter (EKF) is a set of mathematical
equations which uses an underlying process model to make
an estimate of the current state of a system and corrects
the estimate using any available sensor measurements. Using
this predictor-corrector mechanism, it approximates an optimal
estimate from the linearization of the process and measurement
models [10]. Here is a brief introduction of the EKF:

Assuming the process has a state vector x ∈ Rn, but the
process is now governed by the non-linear stochastic difference
equation

xk = f(xk−1, wk−1) (9)

with a measurement z ∈ Rm that is

zk = h(xk, vk) (10)

where the random variable wk and vk represent the process
and measurement noise respectively. They are assumed to be
independent of each other, white, and with normal probability
distributions p(w) ∼ N(0, Q) and p(v) ∼ N(0, R). The

Prediction Estimation

Fig. 1. A high level of the operation of the Extended Kalman filter.
x̂k and x̄k represent estimate and predict of the state x at time step
k, respectively.

system dynamic models f(.) and h(.) are assumed to be
known.

Just like the basic Kalman filter, the extended Kalman filter
is also carried out in two steps: prediction and estimation
(Fig. 1). It is necessary to point out that a fundamental
issue with the EKF is that the distributions (or densities
in the continuous case) of the various random variables are
no longer normal after undergoing their respective nonlinear
transformations. The EKF is simply an ad hoc state estimation
that only approximates the optimality of Bayes’ rule by
linearization [10].

From the above recursive steps, the prediction covariances
P̄k are determined by linearizing the system model, Eqs.
(9) and (10), around the current estimate of the state and
determining (approximating) the posterior covariance matrices
analytically for the linear system. This is equivalent to ap-
plying the linear Kalman filter covariance update equations to
the first-order linearization of the nonlinear system. Therefore,
the EKF can be viewed as providing first-order approximated
estimation, and these approximations can result in large errors
in the estimates and even divergence of the filter.

B. Unscented Kalman Filter

UKF uses a deterministic sampling approach to capture the
mean and covariance estimates with a minimal set of sample
points, and it has 3rd order (Taylor series expansion) accuracy
for Gaussian error distribution for any non-linear system [9],
[3]; while EKF uses linearizing Jacobian matrix, which is a
first order approximation. The Unscented Kalman filter (UKF)
is claimed to have obvious advantage over EKF [3]. A brief
overview of the UKF algorithm is presented in this section.

The unscented transformation (UT) is a method for cal-
culating the statistics of a random variable which undergoes a
nonlinear transformation. The n dimensional random variable
x with mean x̄ and covariance Pxx is approximated by 2n+1
weighted points given by

χ0 =x̄

χi =x̄ + (
√

(n + κ)Pxx)i i = 1, · · · , n (11)

χi =x̄ − (
√

(n + κ)Pxx)i i = n + 1, · · · , 2n
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Generate sigma points

Predict (time update)

Estimation
(measurement update)

Transform the sigma points
according to process &

measurement model

Calculate the mean and
covariance of the

transformed sigma points

Fig. 2. A high level of the operation of the Unscented Kalman filter

Wm
0 =κ/(n + κ)

W c
0 =κ/(n + κ) + (a − α2 + β) (12)

W c
i =Wm

i = 1/[2(κ + n)] i = 1, · · · , 2n

where κ = α2(n+λ)−n is a scaling parameter. λ determines
the spread of the sigma points around x̄ and is usually set to a
small positive value. λ is a secondary scaling parameter which
is usually set to 0, and β is a parameter used to incorporate any
prior knowledge about the distribution of x. (

√
(n + κ)Pxx)i

is the ith row or column of the matrix square root of ((n +
κ)Pxx) and Wi is the weight which is associated with the ith
point. These sigma points are propagated through the function

Yi = f(χi) i = 0, · · · , 2n (13)

and the mean and covariance for Y are approximated using a
weighted sample mean and covariance of the posterior sigma
points,

ȳ =
2n∑
i=0

Wm
i Yi (14)

Pyy =
2n∑
i=0

[Yi − ȳ][Yi − ȳ]T (15)

The unscented Kalman filter (UKF) can be implemented
using UT by expanding the state space to include the noise
component: xa

k = (xT
k , wT

k , vT
k )T . The UKF can be summa-

rized as follows [3], [9].
1. Initialization:

x̂a
0 =

(
x̂T

0 0 0
)T

(16)

P a
0 =

⎛
⎝ P0 0 0

0 Q 0
0 0 R

⎞
⎠ (17)

2. Iteration for each time step k(∈ 1, · · · ,∞)
a). Calculation the sigma points

χa
k−1 =

(
x̂a

k−1 x̂a
k−1 ±

√
(n + κ)P a

k−1

)
(18)

IMU

Gyros rate
transform

Acceleration
transform

State prediction

GPS State estimation

Unscented
Kalman

Filter

Frame
Transformation

Sensors

Output

Fig. 3. Systems implementation digram

b). Time update:

χ̄x
k = f(χx

k−1, χ
w
k−1) (19)

x̄k =
2N∑
i=0

Wm
i χ̄x

i,k (20)

P̄k =
2N∑
i=0

W c
i [χ̄x

i,k − x̂k−1][χ̄x
i,k − x̂k−1]T (21)

Ȳk = h(χ̄x
k, χ̄v

k) (22)

ȳk =
2N∑
i=0

Wm
i Ȳk (23)

c). Measurement update:

Pykyk
=

2N∑
i=0

W c
i [Ȳi,k − ȳk][Ȳi,k−1 − ȳk]T (24)

Pxkyk
=

2N∑
i=0

W c
i [χ̄i,k − x̄k][Ȳi,k − ȳk]T (25)

K = Pykyk
Pxkyk

(26)

x̂k = x̂k−1 + K(zk − ȳk) (27)

Pk = Pk−1 − KPykyk
KT (28)

The N in the previous equations is the dimension of the
expended state space, which is equal to Nx+Nw +Nv . Where
Nx is the dimension of the original state xk; Nw and Nv are
the dimension of noise wk and vk, respectively. In Eq.(17)
Q is the process noise covariance, and R is the measurement
noise covariance. Wi is the weight calculated by Eq.(12).

V. SYSTEM IMPLEMENTATION

As soon as the process model and measurement model have
been established, the Unscented Kalman filter procedure can
be implemented directly. The system diagram is shown in
Fig. 3. For our practical case, two issues must be addressed.

A. Sigma point propagation of UKF

The implementation of the unscented Kalman filter needs
to create sigma points from a mean and covariance. Before
creating the sigma points, the state vector has to be augmented
to handle nonlinear process noise np and measurement noise
νgps. Let the augmented states be Y ∈ �N×1, (N = Nx +
Nn+Nnu). Where Nx is the number of state variables, and Nn

and Nnu are the dimension of process noise and the dimension
of measurement noise, respectively. Then in any time step k

1500



of the UKF, we can obtain a set of sigma points yi (i =
1 · · · 2N + 1). These sigma points are transformed by using
the dynamic process model (Eq. (7)) to obtain the points χi.
Since the process model is nonlinear equations, we can assume
the nonlinear function is defined as

χi = F (yi, a
b, ωb

ib, np)

=
∫

f(yi, a
b, ωb

ib, np)dt (29)

where i = 1 · · · 2N +1. For every point χi, we can implement
4th order Runge Kutta integration between the time step k−1
and k. The time interval is defined as ΔT . At time step k−1,
we have y(k − 1). And at time step k, the IMU has provided
the measurement ab

ib(k), ωb
ib(k). The χi(k) can be obtained

using the algorithm 1.

Algorithm 1: 4th order Runge Kutta integration
Input: yi(k − 1) and ab

ib(k), ωb
ib(k), n, and time ΔT

Output: predicted sigma point χi(k)

k1 = ΔTf(yi(k − 1), ab
ib(k), ωb

ib(k))
k2 = ΔTf(yi(k − 1) + 1

2ΔTk1, a
b
ib(k), ωb

ib(k))
k3 = ΔTf(yi(k − 1) + 1

2ΔTk2, a
b
ib(k), ωb

ib(k))
k4 = ΔTf(yi(k − 1) + ΔTk3, a

b
ib(k), ωb

ib(k))
χi(k) = yi(k − 1) + 1

6 (k1 + 2k2 + 2k3 + k4)

B. Synchronization with INS

Usually, measurement frequency in IMU is higher than that
in GPS. And their measurement times will not be coincident
(Fig. 4). In real time, linear extrapolation is used to obtain the
IMU’s predict position at the time the GPS gets its position
by the following equation (Fig. 5)

pIMU (tGPS) =pIMU (tk−1)+
pIMU (tk−1) − pIMU (tk−2)

tk−1 − tk−2
(tGPS − tk−1)

(30)

where P IMU means the predicted position of IMU. From
Fig. 4, we know the IMU always predicts the vehicle state as
soon as it gets measurement, and the navigation system starts
to estimate its position when the GPS receives measurement
data. The previous state prediction only based on the IMU can
be updated based on the estimation.

VI. EXPERIMENTAL RESULTS

In our field experiment, three sensors (an IMU-C300, a
GPS, and a digital compass) are installed on a car with sun-
roof. The IMU and digital compass are mounted at the center
of the car, and the GPS is placed on the top of the car
through the sun-roof window (Fig.6). During the experiment,
we set the measurement frequency to 20Hz for the IMU
and digital compass, and 1Hz for the GPS. The experiment
was implemented on a parking lot of our campus. The raw

t
1

t1 t3t2

t

t

t

System estimation

IMU prediction

GPS measurement

IMU initial position

a

b

c

IMU prediction

tGPS2
tGPS1

Fig. 4. IMU and GPS measurement time steps. a. IMU initial
position obtained from calibration; b. system predict according to
IMU measurement; c. system estimation when GPS measurement is
received

t

tGPS

t
k-1

t
k-2

t
k-3

IMU measurement

GPS measurement

Fig. 5. IMU and GPS measurement time steps for linear extrapolation

measurement data for IMU is shown on Fig.7. Since the strap-
down IMU is very sensitive to noise and environment, the
measurement data are denoised with wavelet filter before they
are used for vehicle state estimation. Fig.8 is the measurement
data after denoising and initial alignment based on the digital
compass measurement at the static state of the system.

The IMU is a dead reckoning sensor, and any noise and
bias in the measurement of accelerometer in the IMU will
cause second order deviation for its position estimate. And
any noise and bias in the measurement of gyro in the IMU
will change the estimate of the direction of vehicle greatly.
So the measurements from a strap-down IMU can only be

Fig. 6. Experimental setup for land vehicle navigation with IMU,
GPS and Digital Compass
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Fig. 7. Raw measurement data from IMU. The top is the accelerations
from accelerameters in IMU, and the bottom is the rotation rate from
gyros in IMU

Fig. 8. The IMU measurements after denoising and initial alignment.
The top is the accelerations, and the bottom is the rotation rate

reliable for a very short time. In Fig. 9, the fusion of IMU
and GPS provides a continuously vehicle trajectory. Although
we can not obtain the ground truth of the trajectory, the result
is reasonable and consistent with respect to the dimensions of
the parking lot.

It must be pointed out that the strap-down IMU is very
sensitive to its working environment. Careful setup and initial
system alignment during the experiment is very important.

VII. CONCLUSION

We present a vehicle navigation method by integrating
the measurements of IMU, GPS, and digital compass. The
measurement of an inertial sensor is based on the i-frame, and
the measurement of a GPS receiver is based on the e-frame,
but the vehicle navigation is based on a fixed local n-frame.
So the dynamic models for the system process include the
associated transformations from the i-frame and e- frame to
the n-frame. The non-linear process models are integrated
with fourth order Runge Kutta method. And then the system
estimation is implemented by using a sigma Kalman filter
which has higher calculation accuracy compared with an
extended Kalman filter. This method was evaluated by the

Fig. 9. The trajectory estimated from our field experiment

experimentation of a land vehicle equipped with IMU, GPS,
and digital compass on a parking lot.
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