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Abstract

We present a generative model for simultaneously clus-
tering documents and terms. Our model is a four-level
hierarchical Bayesian model, in which each document is
modeled as a random mixture of document topics , where
each topic is a distribution over some segments of the text.
Each of these segments in the document can be modeled
as a mixture of word topics where each topic is a distri-
bution over words. We present efficient approximate in-
ference techniques based on Markov Chain Monte Carlo
method and a Moment-Matching algorithm for empirical
Bayes parameter estimation. We report results in docu-
ment modeling, document and term clustering, comparing
to other topic models, Clustering and Co-Clustering algo-
rithms including Latent Dirichlet Allocation (LDA), Model-
based Overlapping Clustering (MOC), Model-based Over-
lapping Co-Clustering (MOCC) and Information-Theoretic
Co-Clustering (ITCC).

1 Introduction

Finding the appropriate representation model for text
data has been one of the main issues for the data min-
ing community since it started to look at the problem of
processing text automatically. The “bag-of-words” repre-
sentation is the basic and most widely used representation
method for textual data [19]. In this approach, the order of
words at which they appear in documents are ignored and
only the word frequencies are taken into account. But this
approach has been criticized for several reasons. Among
those, it provides a relatively high dimensional represen-
tation of data (equal to the dictionary size) which causes
curse of dimensionality problem [19]. Furthermore, it does
not consider synonymy and polysemy relations of words in
natural language. It has been also criticized of losing infor-
mation due to its ignorance of word order. Various prepro-
cessing steps such as removing stop-words and stemming
have been used to reduce dimensionality, create and select

better features.

To overcome the high dimensionality issue of the bag-of-
words representation, several dimension reduction methods
have been proposed. Feature selection methods select a sub-
set of words to reduce the dimensionality. Feature transfor-
mation methods try to tackle not only the high dimensional-
ity problem of “bag-of-words” representation, but indirectly
consider synonymy and polysemy as well. Latent Semantic
Indexing (LSI) [6] is one of these approaches which uses
singular value decomposition to identify a linear subspace
in the original space of features. It is believed that the result-
ing new features also capture the two mentioned properties
of natural language - polysemy and synonymy.

But the problem with most cartesian space representation
approaches for text like LSI is their inability to provide in-
terpretable components. Despite some work on interpreting
the dimensions generated by these methods [5], these ap-
proaches are still far from providing a natural interpretation
in the case of text. Topic models, on the other hand, are a
class of statistical models in which the semantic properties
of words and documents are expressed in terms of proba-
bilistic topics. Probabilistic topic modeling as a way of rep-
resenting the content of words and documents has the dis-
tinct advantage that each topic is individually interpretable,
providing a probability distribution over words that picks
out a coherent cluster of correlated terms. The major dif-
ference between cartesian space methods like LSI and sta-
tistical topic models is that LSI family methods claim that
words and documents can be represented as points in the
Euclidean space whereas for the topic models, this is not
the case.

One common assumption among most statistical models
for language is still the bag-of-words assumption. In these
models, no assumption is made about the order of words. In
other words, while this family of methods tries to deal with
the two first issues of bag-of-words representation, high di-
mensionality and ignoring polysemy and synonymy prop-
erties, it still keeps the “bag-of-words” assumption intact.
Recently, there has been increased research interest in mod-
els sensitive to this kind of information [11].
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The basic idea behind all proposed topic models [10, 3]
is that a document is a mixture of several topics where each
topic is some distribution over words. Each topic model is a
generative model which specifies a simple probabilistic pro-
cess by which the words in a document are being generated
on the basis of a small number of latent variables.

Using standard statistical techniques, one can invert the
process and infer the set of latent variables responsible for
generating a given set of documents [21]. Assuming a
model for generating the data, the goal of fitting this gen-
erative model is to find the best set of latent variables that
can explain the observed data (i.e., observed words in doc-
uments).

Probabilistic Latent Semantic Analysis (also known as
the aspect model) [12] was one of the first attempts toward
using probabilistic models for document and text modeling.
In this model, each word is assumed to be a sample from a
mixture model. Mixture components are multinomial ran-
dom variables that can be viewed as representations of “top-
ics”. Each word is generated from a single topic and a doc-
ument is a collection of words generated potentially from
different topics.

Though a useful step after LSI, the PLSI model does
not provide a generative model for a document, instead it
is a model for word/document co-occurrences [13]. This
assumption makes it difficult to assign probabilities to doc-
uments outside of the learning corpus. Latent Dirichlet Al-
location [3], on the contrary, is a true generative model for
documents and therefore provides the means for generating
both the observed and unseen documents. In LDA, the doc-
uments are assumed to be sampled from a random mixture
over latent topics, where each topic is characterized by a
distribution over words. Furthermore, the mixture coeffi-
cients are also assumed to be random and by considering a
prior probability on them, LDA provides a complete gener-
ative model for the documents [10].

In Latent Dirichlet Allocation, a document is gener-
ated by first picking a distribution over latent topics from
a Dirichlet distribution, which determines the multinomial
distribution over topics for words in that document. The
words in the document are then generated by picking a topic
for each word from this distribution and then picking a word
from that topic according to another multinomial distribu-
tion. Fig. 1.b shows the graphical model corresponding to
the generative model of LDA.

The major and direct output of these models is a set of
overlapping clusters of words. Clustering documents can
be viewed only as a byproduct and not as a direct output of
topic models. On the other hand, co-clustering [8, 20, 15]
is a data mining technique with various applications such
as text clustering and microarray analysis. Co-clustering
algorithms try to simultaneously cluster rows and columns
of a two-dimensional data matrix. One of the benefits of

co-clustering algorithms is taking advantage of the dual-
ity between documents and words and in general the du-
ality between the rows and columns of an adjacency ma-
trix. Co-clustering algorithms, using the clustering results
on words as a low dimensional representation of documents
can achieve a more accurate clustering for documents [8].
In this work, we try to combine these two ideas, proba-
bilistic topic models and co-clustering, using topic mod-
els to construct a low-dimensional representation of docu-
ments. Therefore, we extend the original idea of topic mod-
els to consider the resulting low-dimensional representation
of documents in another nested topic model for clustering
documents.

The topics discovered by most probabilistic topic models
capture the correlation between words, but the correlations
between topics are not modeled. Several models have been
recently proposed to capture the correlation between topics,
such as Hierarchical Dirichlet Processes Model (HDP) [22],
Correlated Topic Models (CTM) [2] and Pachinko Alloca-
tion Model (PAM) [14]. In natural text data, it is common
to have correlations among topics. As pointed out in [2],
“a document about sports is more likely to also be about
health than international finance”. In the LDA model, the
topic proportions are derived from a Dirichlet distribution
and hence are nearly independent. CTM tries to capture
topic correlations by introducing logistic normal distribu-
tion instead of Dirichlet distribution for drawing topic mix-
ture proportions. The logistic normal distribution is yet
again a distribution on the simplex where the correlation
between pairs of components is described through a covari-
ance matrix. In CTM, only the pairwise correlations are
modeled and the number of parameters grows quadratically
with the number of topics [14]. In the PAM model, similar
to our proposed model, the concept of topic is extended to
include not only distributions over words, but also distribu-
tion over topics. The model structure is an arbitrary DAG
where each leaf is associated with a word and each non-leaf
node is a distribution over its children. The direct parents of
the leaf nodes are distributions over words and correspond
to topics in LDA. All other interior nodes are distributions
over topics and called “super-topics”. Allowing an arbitrary
DAG structure, the PAM model is able to capture arbitrary
correlations between word topics.

In this paper, we propose a generative model for text doc-
uments based on LDA model which is able to cluster both
words and documents simultaneously. The model is also
more sensitive to to the locations of words in documents by
focusing on meaningful segments of text. This enables the
model to detect multiple topics covered by a document.

The rest of this paper is organized as follows. In sec-
tion 2, we present the Latent Dirichlet Co-Clustering Model
(LDCC). We propose inference and parameter estimation
algorithms for LDCC in Section 3. Finally, we conclude the
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paper with a brief review of the paper and some discussion
on future works in section 5.

2 Latent Dirichlet Co-Clustering Model

We use the same notation and definitions as in [3]. We
define the following terms:

• A word is the basic building block of our data and it
is selected from a vocabulary indexed by {1, . . . , V }.
We represent words using unit-basis vectors that have
a single component equal to one and all other compo-
nents equal to zero. Thus, the vth word in the vocab-
ulary is represented by a V -vector w such that the vth
component is one and all other components are zero.

• A document is a sequence of words w =
(w1, w2, . . . , wN ), where N is the number of words
in the document.

• A corpus is a collection of M documents denoted by
D = {w1, w2, . . . , wM}

The basic idea of the LDA model is to assume each doc-
ument as a random mixture over latent topics, where each
topic is specified by a distribution over words. We extend
this idea by assuming each document is a random mixture
of topics , where each topic is a distribution over some seg-
ments of the document. Now, each of these segments in the
document can be modeled by LDA.

The intuition behind this work is that documents are
composed of meaningful single-topic segments put to-
gether. Each of these segments is assumed to convey a sin-
gle concept or topic. This topic is among a handful of top-
ics which specifies the theme of the document. If one looks
at each of these segments separately, the order of words in
the segment is assumed to have little impact on the concept
which the segment is trying to convey. Thus, the “bag-of-
words” assumption for these segments is fairly realistic, un-
like for the whole document. In this work, we assume seg-
ments are paragraphs of the text. The proposed model tries
to model each segment based on its word content similar to
most probabilistic topic models. Then these learned topics
on the words are being used to represent document topics.
In other words, each document topic is considered a mix-
ture of word topics where the mixture coefficients uniquely
specifies the document topic.

The generative probabilistic model we propose is shown
as a graphical model in Fig. 1. Plate notation [4] is a stan-
dard and convenient way of illustrating probabilistic gener-
ative models with repeated sampling steps. In this graphical
notation, shaded and unshaded variables indicate observed
and latent (i.e., unobserved) variables respectively.
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Figure 1. LDA Model and Co-Clustering
Model inspired by LDA

The LDCC model assumes the following generative pro-
cess for each document d in a corpus D (intuitive explana-
tions of model parameters are given in the text following the
overview of the generative process.):

1. Choose S ∼ Poisson(µ) : number of segments (para-
graphs or sentences) in the document

2. Choose φ ∼ Dir(δ)

3. For each of the S segments s

(a) Choose a topic for the segment ys ∼
Multinomial(φ)

(b) Choose Ns ∼ Poisson(ε) : number of words in
the segment

(c) Choose θs ∼ Dir(α, ys)

(d) For each of the Ns words wsn

i. Choose a topic zsn ∼ Multinomial(θs)
ii. Choose a word wsn from P (wsn|zsn, β), a

multinomial probability conditioned on the
topic zsn

We have assumed that the number of word and document
topics (and hence the dimensionality of topic variables z
and y) are known and fixed. We also model the word proba-
bilities conditioned on the topics by a L×V matrix β where
βij = p(wj = 1|zi = 1) which is assumed to be fixed and
will be estimated though the learning process. Finally, as
in the LDA model, we can use any other document length
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distribution instead of the Poisson distribution as it is not
important for the rest of the model. Furthermore, note that
the Ns variables are independent of all the other data gen-
erating variables (θ, z, φ and y) and we therefore ignore its
randomness in the subsequent development.

Note that φ represents the mixing proportion of
document-topics in a document. It specifies the parameters
of the K-dimensional multinomial distribution from which
the model draws samples for document topics. θs is a sam-
ple from the Dirichelt distribution and specifies the mixing
proportion of word-topics in the text segment s. Note that
this mixing proportion depends on the document-topic that
the current text segment is generated from. The model as-
sume that each document-topic is a mixture of several word-
topics and this fact is modeled through the matrix of hyper-
parameters α.

The Dirichlet distribution is a conjugate prior for the
multinomial distribution. Choosing a conjugate prior makes
the problem of statistical inference easier. Basically, the
posterior distribution would have the same functional form
as prior distribution and the process of statistical inference,
instead of being caught up in impractical integrations, be
reduced to simply adjusting the parameters of the posterior
distribution given the new evidence.

A k-dimensional Dirichlet random variable θ can take
values in the (k − 1)-simplex. The probability density of a
k-dimensional distribution on this simplex is defined by:

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 . . . θαk−1

k (1)

The parameters of this distribution are represented by a
k-vector α with components αi > 0. Each hyperparameter
αi has the nice interpretation that it could be considered as
a prior observation count of the number of times that the
corresponding topic has been sampled. Γ(x) is the Gamma
function.

Given the parameters α, β and γ, the joint distribution of
a word-topic mixture θ, document-topic mixture φ, a set of
N word-topics z, a set of S document-topics y, and a set of
N × S words w is given by:

p(φ, y, θ, z, w|α, β, δ) = p(φ|δ)
S∏

s=1

p(ys|φ)p(θs|α, ys)

Ns∏
n=1

p(zsn|θs)p(wsn|zsn, β)

where p(zsn|θs) is simply θsi for unique i such that zi
sn = 1

and p(ys|φ) is simply φi for unique i such that yi
s = 1.

Note that variables zsn and ys are boolean vectors that have
a single component equal to one and all other components
zero. The component equal to one simply represents the
word-topic or document-topic that the corresponding word

or segment belongs to. Integrating over θ and φ and sum-
ming over z and y, we obtain the marginal distribution of a
document w:

p(w|α, β, δ) =
∫

p(φ|δ)
(

S∏
s=1

∑
ys

p(ys|φ)
∫

p(θs|α, ys)

(
Ns∏

n=1

∑
zsn

p(zsn|θs)p(wsn|zsn, β)

)
dθs

)
dφ

Taking the product of marginal probabilities of documents
in a corpus gives us the probability of the corpus.

p(D|α, β, δ) =
M∏

d=1

p(wd|α, β, δ)

3 Inference and Parameter Estimation

The inference problem is to compute the posterior distri-
bution of hidden variables given the input variables α, β, δ
and observations w:

p(φ, y, θ, z|w, α, β, δ) = p(φ,y,θ,z,w|α,β,δ)
p(w|α,β,δ)

which is intractable to compute in general. Given a docu-
ment collection, we also need to estimate the model param-
eters α, η, δ so that the model likelihood for the collection
gets maximized.

Exact inference on models in the LDA family cannot
be performed practically. Three standard approximation
methods have been used to carry out the inference and ob-
tain practical results: variational methods [3], Gibbs sam-
pling [10], and expectation propagation [16]. The EM based
algorithms tend to face local maxima problems in this mod-
els [3]. Therefore, we use algorithms in which some of the
hidden parameters - in our case β, φ and δ - can be inte-
grated out instead of explicitly being estimated. Note that
we use conjugate priors in our model, and thus we can easily
integrate out these parameters. This simplifies the sampling
since we do not need to sample β, φ and δ at all. Besides
doing inference for document and word topic assignment
variables y and z, we also need to learn the parameters of
the Dirichlet distribution α = {α1, . . . , αK}. In this sec-
tion, we describe procedures for inference and parameter
estimation and present a Gibbs sampling procedure for do-
ing inference in the proposed model.

MCMC algorithms are a family of approximate itera-
tive algorithms used to draw samples from a complex and
usually high-dimensional distribution. Gibbs sampling is a
member of this family and is applicable where the whole
joint distribution is unknown or impractical to sample from,
but the conditional distributions are known and sampling
from them is not difficult.
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In each turn of the algorithm, a subset of variables are
sampled from their conditional distribution conditioned on
the current values of all other variables. This process is per-
formed sequentially and continues until the sampled values
approximate the target distribution. In our problem, the dis-
tribution that we want to sample from is the posterior dis-
tribution of word-topics and document-topics given the col-
lection of documents. Since this distribution is intractable
and difficult to sample from, in each iteration of Gibbs sam-
pling, we sample from the conditional distribution of a sin-
gle word in a document given that the topic assignment for
all other words and paragraphs in all documents except the
current word are known. We also sample from the condi-
tional distribution of a single paragraph given that the topic
assignments of all other words not in the current paragraph
and topic assignments of all other paragraphs are known.
For our proposed model, Gibbs sampling algorithm is easy
to implement, requires little memory, and is competitive in
speed and performance with existing algorithms.

We order the documents in the corpus and represent the
collection of documents by three list of indices: word in-
dices wl, paragraph indices pl and document indices dl.
wli denotes the index of the ith word in the sequence of
words (if we assume the whole corpus as a sequence of
words fed to the algorithm) and dli and pli are the docu-
ment index and paragraph index of the corresponding word
respectively. These lists will then be fed to the Gibbs Sam-
pling algorithm. For each word token, the Gibbs sampling
algorithm estimates the probability of assigning the current
word to word-topics given assignment of all other words to
word-topics from the corresponding conditional distribution
that we will derive shortly. Then the current word would be
assigned to a word-topic and this assignment will be stored
for being used when the Gibbs sampling algorithm works
on other words.

While scanning the list of words, we keep track of the
paragraphs. For each new paragraph, the Gibbs sampling
algorithm estimates the probability of assigning this para-
graph to document-topics given assignments of all other
paragraphs to document-topics. These probabilities are
computed from the corresponding conditional distribution
for a paragraph given all other topic assignment to every
other paragraph and all words not in this paragraph. Then
the new paragraph would be assigned to a document-topic.

In our case we need to compute the conditional distribu-
tion p(zdsn|z−dsn, y, w) and p(yds|z, y−ds, w), where zdsn

represents the word-topic assignment for word wdsn ( word
n in document d and paragraph s ) and z−dsn denotes the
word-topic assignments for all other words except the cur-
rent word wdsn. yds denotes the document-topic assign-
ment for paragraph pds in document d and y−ds represents
the document-topic assignments for all paragraphs except
the current paragraph pds. Beginning with the joint proba-

bility of a dataset, and using the chain rule, we can obtain
the conditional probabilities conveniently. The derivations
are provided in detail in Appendix A. For the LDCC Model,
we obtain:

Algorithm 1: LDCC Gibbs Sampling Algorithm
Input: δ, α, η, L, K,Corpus, MaxIteration
Output: topic assignments for all words and paragraphs in the

Corpus
Initialization: Randomly, initialize the word-topic and document1
topic assignments for all word token and paragraphs
Compute Pdk for all values of k ∈ {1..K} and all documents2
Compute nlv for all values of l ∈ {1..L} and all word tokens3

Compute n
(ds)
l

for all values of l ∈ {1..L} and all documents and4
their paragraphs
if doing parameter estimation then5

Initialize alpha parameters using Eq. 46

Randomize the order of documents in the corpus7
Randomize the order of paragraphs in each document8
Randomize the order of words in each paragraph9
for iter ← 1 to MaxIteration do10

foreach word i according to the order do11
Exclude word i and its assigned topic l from variables12

n
(ds)
l

and nli

newl = sample new word-topic for word i using Eq. 213

Update variables n
(ds)
l

and nli using the new word-topic14
newl for word i
if entered a new paragraph j then15

Exclude paragraph j and its assigned topic k from16
variable Pdk

newk = sample new document-topic for paragraph17
j using Eq. 3
Update variable Pdk using the new document-topic18
newk for paragraph j
if doing parameter estimation then19

Update alpha parameters using Eqs. 420

p(zdsn|z−dsn, y, w) = (αydszdsn
+ n(ds)

zdsn
− 1) (2)

×nzdsnwdsn
+ ηwdsn

− 1∑V
v=1 nzdsnv + ηv − 1

where n
(ds)
zdsn represents how many times a word in para-

graph s of document d has been assigned to topic
zdsn. Furthermore, αydszdsn

is the zdsnth component in
αyds

. nzdsnwdsn
represents the total number of times that

the word wdsn has been assigned to topic zdsn. For
p(yds|z, y−ds, w), we have

p(yds|z, y−ds, w) = (δyds
+ Pdyds

− 1) (3)

×
∏L

l=1

∏n
(ds)
l

−1

j=0 (αydsl + j)∏n(ds)−1
j=0 (

∑L
l=1 αydsl + j)

where yds is the document-topic that has been assigned to
paragraph s in document d and Pdyds

is the number of times
a paragraph in document d has been assigned to document-
topic yds. n(ds) is the number of words in paragraph s of
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SYMBOL DESCRIPTION
L number of word-topics
K number of document-topics
Ns number of words in paragraph s
M number of documents in the collection
y document-topic variable for the corpus
z word-topic variable for the corpus
δ parameters of the Dirichlet prior on document-topics
α matrix of K × L dimensions, row i represents

mixing proportion of word-topics in document-topic i
β parameters of multinomial distribution of words

conditioned on word-topics
η parameters of the prior probability for distribution

of words conditioned on word-topics
φ mixing proportion of document-topics in document
θs mixing proportion of word-topics in the text segment s
wdsn word n in paragraph s of document d
zdsn word-topic assignment for word wdsn

z−dsn word-topic assignments for all other words except
the current word wdsn

nlv number of times that the word v assigned to topic l

n
(ds)
l

number of times a word in paragraph s of document d
assigned to topic l

yds document-topic assigned to paragraph s in document d
Pdk number of paragraphs in document d assigned to

document-topic k

n(ds) number of words in paragraph s of document d

Table 1. List of symbols used in this paper

document d. δyds
is the corresponding Dirichlet parameter

for document-topic yds that the paragraph s in document d
has been assigned to.

The Gibbs sampling algorithm is initialized by assigning
each word token to a random word-topic in [1..L] and each
paragraph to random document-topic [1..K]. A number of
initial samples have to be discarded (also known as burn-in
samples) because they are poor estimates of the posterior.
After this burn-in period, the next Gibbs samples start to
approximate the target distribution (i.e., the posterior distri-
bution over word-topic and document-topic assignments).
Now, we pick a number of Gibbs samples and save them as
a representative set of samples from this distribution. This
should be done at regularly spaced intervals to prevent cor-
relations between samples [9].

In the LDA model as adopted by previous works, the
Dirichlet parameters α are assumed to be given and fixed.
This would give us reasonable results when we choose a
uniform Dirichlet. But for our proposed model, the pa-
rameters α capture relationships between document and
word topics and must be learned from the data. In a
sense, they somehow summarize the corresponding term-
document matrix of the corpus. For estimating parameters
of a Dirichlet distribution, one can use different approaches
proposed in the literature [17]. These methods are based on
maximum likelihood or maximum a posteriori estimation
of parameters. There is no closed-form solution for these
methods and one should use iterative methods to learn the
parameters. In order to avoid these often computationally

expensive methods, we use moment matching [17] to ap-
proximate the parameters of the Dirichlet prior α. In each
iteration of Gibbs sampling, we update

meankl =
1

Nk

∑
s∈Sk

n
(s)
l

n(s)

varkl =
1

Nk

∑
s∈Sk

(
n

(s)
l

n(s)
− meankl)

mkl =
meankl(1 − meankl)

varkl
− 1 (4)

αkl ∝ meankl

L∑
l=1

αkl = exp(
∑L

l=1 log(mkl)
L − 1

)

where Sk represents the set of paragraphs assigned to
document-topic k and Nk is the number of paragraphs as-
signed to document-topic k. n

(s)
l represents the number of

times a word in paragraph s has been assigned to word-
topic l. n(s) is the number of words in paragraph s. Note
that for meankl and varkl, we only consider the paragraphs
assigned to document-topic k. For each document-topic k,
we first compute sample mean meankl and sample variance
varkl. They are computed over all paragraphs assigned to
document-topic k. Algorithm 1 shows the pseudocode for
the Gibbs sampling process for the proposed model. A sum-
mary of symbols and their description is given in Table 1.

4 Experimental Results

We use two real-world datasets in our experiments. We
built our first dataset using NIPS conference papers avail-
able in both text and XML format 1. Each paper cor-
responds to a XML file contains nested tags for pages,
columns, paragraphs, lines, and words. We removed all the
words occurred in less than 5 documents from the list of
final word tokens. We also used a list of standard “stop-
words” and deleted all numbers, words with length less
than 3 and having non-ascii characters. For NIPS dataset,
we keep certain two characters length words like “EM”
and “ML”. We do not consider paragraphs with less than
5 words and do not also include documents with less than
3 paragraphs. As a result, the NIPS dataset contains 1803
documents with the total of 1858577 word tokens. There
are 11891 paragraphs in this dataset and word tokens are
taken from 20485 unique words.

Our second dataset is a subset of Wikipedia XML cor-
pus 2 [7]. This subset contains 1236 articles categorized
in 9 overlapping classes. Each documents belongs to

1It is available at http://nips.djvuzone.org/txt.html
2it is available for download at http://www-

connex.lip6.fr/˜denoyer/wikipediaXML by registration
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topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9

error neuron image analog data control function rule distribution
generalization neurons images circuit clustering model functions rules probability
learning synaptic object current principal motor basis set gaussian
training firing recognition figure cluster forward linear step data
optimal spike face chip pca inverse regression form parameters
order time objects voltage set dynamics kernel fuzzy model
large activity hand vlsi algorithm controller space problem bayesian
average rate pixel circuits points feedback gaussian relative mixture
small synapses system digital approach system approximation extraction density
examples potential view implementation clusters position rbf expert likelihood

Figure 2. Example word-topics for the NIPS dataset
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10

language game church house air league war apollo party system
english player god parliament aircraft football german earth government computer
greek cards christian members world team army moon president game
languages players jesus commons force world soviet lunar political games
word games christ lords military club battle time national apple
russell play orthodox bill ship home germany mission minister atari
century card baptism act gun season world program states commodore
theory hand life power war won forces module united home
words round catholic chopin ships game french jpg election software
modern played roman speaker navy major union crew state video

Figure 3. Example word-topics for the Wikipedia dataset

1.47 classes on average. The biggest class corresponds to
”Art/Categories“ whit 510 documents. The smallest class,
”United Kingdom/Categories“ has 74 documents. There are
774958 word tokens, 21453 paragraphs and 17406 unique
words after preprocessing. The preprocessing phase is sim-
ilar to the one for NIPS dataset. For the Wikipedia dataset,
we do not have the tags for separating words, therefore we
used all delimiting characters to separate words.

In this section, we describe the details of our experiments
that demonstrate the improved performance of LDCC on
NIPS dataset, compared to the LDA in terms of generaliza-
tion of the topics found measured by perplexity. We also
show the improved clustering performance of LDCC com-
pared to the MOC and MOCC models.

In Gibbs sampling for both LDCC and LDA, we run 5
markov chains, discarding the first 500 iterations as burn-in
iterations, and then draw 5 samples from each chain at a lag
of 50 iterations, a total of 25 samples for each experiment.
For the NIPS dataset, the total training time for LDCC is
approximately 23 hours on a machine with a dual core In-
tel Pentium IV 64-bit (EM64T ) processor (2 × 3.0GHz
processor) with 2GB of RAM.

4.1 Word and Document Topic Examples

In this section, we show 9 word-topics derived from
NIPS dataset and 10 word-topics derived from Wikipedia
dataset, each represented by their first 10 most probable
words, presented in Fig.2 and Fig.3 respectively. As it can
be seen, the model seems to be able to capture some of the
underlying word-topics in both datasets.

We have also constructed a graph of latent word-topics

and document-topics which explains the correlations found
by the model amongst word-topics appearing in a cluster
of documents represented by a document-topic. A part of
this graph is shown in Figure 4. For each word-topic in the
graph, we have a box where the word-topic is represented
by its 6 most probable words. For each document-topic k,
we rank the word-topics {l}according to Dirichlet parame-
ters αkl. From the top 10 word-topics for each document-
topics, we have picked some of them and it is depicted in
Figure 4. The idea is that we try to get word-topics as tight
as possible representing a very specific word-topic. We can
illustrate these word-topics by a set of their most probable
words. Document-topics are distributions over these word-
topics and thus theoretically can be represented by their
most probable words. But each document-topic can be a
mixture of seemingly unrelated word-topics and this makes
representation of a document-topic with words less descrip-
tive than with word-topics. Representing document-topics
with a set of most probable word-topics would allow the
user himself to figure out the associated concept. Addition-
ally, this representation makes the visualization of word-
topic correlations more intuitive.

4.2 Likelihood Comparison for Document
Modeling

We trained LDA and LDCC using the training set and
we want to compare the generalization performance of these
two models in terms of the likelihood achieved on the test
set. Perplexity is a widely used and standard measure for
comparing the performance of statistical models for natu-
ral language [3]. Perplexity can be though of as the uncer-
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Figure 4. Correlation identified by LDCC between word-topics. Each circle shows a document-topic
and each box corresponds to a word-topic. As it can be seen, one document-topic can be connected
to several word-topics and capture their correlation.

tainty in predicting a single word according to the model
and lower values are better. Formally, for a test set of M
documents, it is defined as:

perplexity(Dtest) = exp

(
−
∑M

d=1 log p(wd)∑M
d=1 Nd

)
(5)

In order to compute perplexity, we need to compute the like-
lihood p(w) and this requires summing over all possible as-
signments of words to word topics z and text segments (in
our datasets, the text segments corresponds to paragraphs)
to document topics y. This problem has no closed-form so-
lution. Previous work on LDA [10] has used harmonic mean
estimator introduced in [18]. We estimate p(w) by taking
the harmonic mean of a set of values p(w|z). By using the
chain rule and integrating the parameter out, we get:

p(w|z) =

(
Γ(
∑V

v=1 ηv)∏V
v=1 Γ(ηv)

)L L∏
l=1

∏V
v=1 Γ(nlv + ηv)

Γ(
∑V

v=1 nlv + ηv)
(6)

z is sampled from the posterior P (z|w) using the Gibbs
sampling procedure described in section 3. The derivation
of this is similar to the one described in Appendix A.

In these experiments, we use the NIPS dataset and split
it into 80% for training and 20% for calculating the likeli-
hood. We use 20 document topics and change the number of
word topics from 20 to 100. We split the dataset randomly
so that the training and test subsets have relatively 80% and
20% of the documents respectively and each topic in both
subsets has at least 5 documents.

We present perplexity results for different number of
word topics in Fig. 5. For all these experiments, the num-
ber of document topics are assumed fixed and equal to 20.
As it can be observed, for different number of word-topics,
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Figure 5. Perplexity results for NIPS dataset
with different numbers of topics

LDCC always produce lower perplexity compared to LDA.
As it can be seen in Fig. 5, the perplexity for the LDCC
method is increasing in the range of values that we have
examined, as opposed to LDA model. This shows that the
proposed method can not keep up its generalization perfor-
mance as the number of word-topics increases, in contrast
to the LDA model.

We also show the results comparing LDCC and LDA
when we use different amount of training data for learning
the model parameters. In these set of experiments, the num-
ber of word-topics and document-topics are assumed fixed
and equal to 20 and 100 respectively. We present these re-
sults in Fig. 6. As it can be seen, the LDCC model has
lower perplexity compared to LDA model as the amount of
training data increase. The perplexity for LDCC model de-
creases while we increase the amount of training data while
for the LDA model, the perplexity has a peak when we use
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Figure 6. Perplexity results for NIPS dataset
with different amounts of training data

60% of the data for training.

4.3 Document Clustering Performance

We compare LDCC algorithm in terms of cluster-
ing accuracy with another algorithm for overlapping
clustering, namely Model-based Overlapping Clustering
(MOC) [1] and two other co-clustering algorithms, namely
Model-based Overlapping Co-Clustering (MOCC) [20] and
Information-Theoretic Co-Clustering (ITCC) [8]. We con-
ducted this experiment on our subset of Wikipedia XML
corpus [7].

In order to compare clustering results, we use precision,
recall, and F-measure calculated over pairs of points, as de-
fined in [1]. For each pair of points that share at least one
cluster in the overlapping clustering results, these measures
try to estimate whether the prediction of this pair as being
in the same cluster was correct with respect to the under-
lying true categories in the data. Precision is calculated as
the fraction of pairs correctly put in the same cluster, re-
call is the fraction of actual pairs that were identified, and
F-measure is the harmonic mean of precision and recall.

Table 2 presents the results of LDCC versus ITCC al-
gorithm in terms of precision, recall and F-Measure for the
Wikipedia Corpus. Each reported result is an average over
ten trials. We have chosen the number of word-topics to be
fixed and equal to 50. Table 2 contains the results for two
different values for the number of document-topics, 15 and
20. Table 2 shows that the precision of LDCC is very close
to the other three methods investigated but it can also be
seen that our proposed algorithm shows a major improve-
ment in terms of recall and F-Measure.

5 Conclusion

This paper has introduced a generative model for simul-
taneously clustering documents and terms. Latent Dirichlet

Algorithm K Precision Recall F-Measure

LDCC 15 30.88 79.21 44.43
MOC 15 31.75 42.45 36.33
MOCC 15 31.30 70.06 43.26
ITCC 15 31.06 7.44 12.00

LDCC 20 31.10 75.70 44.09
MOC 20 31.84 48.06 38.30
MOCC 20 31.27 68.25 42.89
ITCC 20 31.06 6.16 10.28

Table 2. Comparison of results of LDCC,
MOC, MOCC and ITCC algorithms on
Wikipedia Corpus in terms of Precision,
Recall and F-Measure.

Co-Clustering (LDCC) models each document as a random
mixture of document topics, where each topic is a distribu-
tion over some segments of the text. Each of these segments
in the document can be modeled as a mixture of word top-
ics where each topic is a distribution over words. Efficient
approximate inference techniques based on Markov Chain
Monte Carlo method and a Moment-Matching algorithm for
empirical Bayes parameter estimation has been proposed.
We have reported promising results on two text datasets, a
subset of Wikipedia articles and NIPS conference papers.
We compare the proposed model with the Latent Dirichlet
Allocation (LDA) model in terms of its ability in document
modeling and show improved performance in terms of per-
plexity. We also compare our algorithm for document clus-
tering with several other clustering and co-clustering algo-
rithms and demonstrate improved performance in terms of
clustering quality.
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A Gibbs Sampling Derivations

Beginning with the joint distribution p(w, z, y), we can
take advantage of conjugate priors to simplify the formulae.
All symbols are defined in Section 3 and Table 1.

p(w, z, y) = p(w|z, η)p(z|α, y)p(y|δ)

=

∫
p(w|z, β)p(β|η)dβ

∫
p(z|θ)p(θ|α, y)dθ

∫
p(y|φ)p(φ|δ)dφ

=

∫ M∏
d=1

Sd∏
s=1

Nsd∏
n=1

p(wzdsn |βzdsn )

L∏
l=1

p(βl|η)dβ

∫ M∏
d=1

Sd∏
s=1

(
Nsd∏
n=1

p(zdsn|θds)p(θds|α, yds)

)
dθ

∫ M∏
d=1

(
Sd∏

s=1

p(yds|φd)p(φd|δ)
)

dφ

=

∫ L∏
l=1

V∏
v=1

β
nlv
lv

L∏
l=1

(
Γ(
∑V

v=1
ηv)∏V

v=1
Γ(ηv)

V∏
v=1

βηv−1
lv

)
dβ

∫ M∏
d=1

Sd∏
s=1

L∏
l=1

θ
n
(ds)
l

dsl

M∏
d=1

Sd∏
s=1

(
Γ(
∑L

l=1
αydsl)∏L

l=1
Γ(αydsl)

L∏
l=1

θ
αydsl−1

dsl

)
dθ

∫ M∏
d=1

K∏
k=1

φ
Pdk
dk

M∏
d=1

(
Γ(
∑K

k=1
δk)∏K

k=1
Γ(δk)

K∏
k=1

φ
δk−1
dk

)
dφ

=

(
Γ(
∑V

v=1
ηv)∏V

v=1
Γ(ηv)

)L L∏
l=1

∏V

v=1
Γ(nlv + ηv)

Γ(
∑V

v=1
nlv + ηv)

M∏
d=1

Sd∏
s=1

(
Γ(
∑L

l=1
αydsl)∏L

l=1
Γ(αydsl)

)
M∏

d=1

Sd∏
s=1

∏L

l=1
Γ(αydsl + n

(ds)
l

)

Γ(
∑L

l=1
αydsl + n

(ds)
l

)(
Γ(
∑K

k=1
δk)∏K

k=1
Γ(δk)

)M M∏
d=1

∏K

k=1
Γ(δk + Pdk)

Γ(
∑K

k=1
δk + Pdk)

Using the chain rule, we have

p(zdsn|z−dsn, y, w) =
p(zdsn, wdsn|z−dsn, y, w−dsn)

p(wdsn|z−dsn, y, w−dsn)

∝ p(z,y,w)
p(z−dsn,y,w−dsn)

= (αydszdsn + n
(ds)
zdsn

− 1)× nzdsnwdsn
+ηwdsn

−1∑V

v=1
nzdsnv+ηv−1

Using chain rule, again we have

p(yds|z, y−ds, w) =
p(zds, yds, wds|z−ds, y−ds, w−ds)

p(wds, zds|z−ds, y−ds, w−ds)

∝ p(z,y,w)
p(z−ds,y−ds,w−ds)

= (δyds + Pdyds
− 1)× Γ(

∑L

l=1
αydsl)∏L

l=1
Γ(αydsl)

∏L

l=1
Γ(αydsl+n

(ds)
l

)

Γ(
∑L

l=1
αydsl+n

(ds)
l

)

= (δyds + Pdyds
− 1)×

∏L

l=1

∏n
(ds)
l

−1

j=0 (αydsl+j)∏n(ds)−1

j=0
(
∑L

l=1
αydsl+j)
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