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Abstract

The theme of this thesis is shape registration �also called shape matching or shape alignment�

using optimization�based algorithms� We primarily address this problem in the context of solving

the mobile robot self�localization problem in unknown environments� Here the task is matching 	D

laser range scans of the environment to derive the relative position and heading of the robot� The

di
culties in this problem are that the scans are noisy� discontinuous� not necessarily linear� and

two scans taken at di�erent positions may not completely overlap because of occlusion� We propose

two iterative scan matching algorithms which do not require feature extraction or segmentation�

Experiments demonstrate that the algorithms are e�ective in solving the scan matching problem�

Based on the result of aligning pairwise scans� we then study the optimal registration and inte�

gration of multiple range scans for mapping an unknown environment� Here the issue of maintaining

consistency in the integrated model is speci�cally raised� We address this issue by maintaining in�

dividual local frames of data and a network of uncertain spatial relations among data frames� We

then formulate an optimal procedure to combine all available spatial relations to resolve possible

map inconsistency� Two types of sensor data� odometry and range measurements� are used jointly

to form uncertain spatial relations�

Besides the applications for mobile robots� we also study the shape registration problem in other

domains� Particularly� we apply extensions of our methods for registration of D surfaces described

by range images� and 	D shapes from intensity images�
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To put it simply� shape registration is to align two similar shapes� typically a data �object� shape

and a model shape� by moving one around with respect to the other� We consider that two shapes

are in alignment if they spatially conform with each other to achieve a minimum distance according

to some distance criterion� For example� Fig� ����a� shows two similar shapes misaligned with each

other� A possible registration result is given in Fig� ����b� where we rotated and translated one

shape to make it aligned with the other shape� The type of shapes we consider here are contour

curves �in 	D� and surfaces �in D�� In this thesis� we are more concerned about the geometric

alignment of shapes rather than the determination of whether the given shapes are similar� although

we may obtain a measure of similarity as a by�product� Under this context� we use the terms shape

registration� shape alignment� and shape matching almost interchangeably�

A typical approach to shape registration is to use distinctive features� For example� in aligning

the triangles in Fig� ���� we may locate the corner points or the linear segments in the shapes and

use them as features� By making correspondences between pairs of features on the two shapes� a

registration can be determined�

Feature�based methods may be inappropriate for matching smooth free�form shapes where it is

di
cult to detect distinctive features reliably� Consider the example in Fig� ��	 and imagine how

a human would align these shapes� One may draw the two shapes on separate transparencies and

visually align them� After overlapping the two transparencies containing the shapes� one can try to

make a series of small adjustments to the relative position and orientation to improve the alignment�

and �nally derive an optimal registration� This intuitive process can be achieved computationally

�
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a b

Figure ���� Shape registration� Corners or linear segments can be used as features to align these
shapes�

using iterative optimization techniques� In this thesis� we will pay close attention to this type of

optimization�based matching methods�

��� Applications of Shape Registration

Shape registration is an important problem in computer vision� especially in object recognition�

motion analysis� and robot navigation�

There are many applications for shape registration� For instance� in the medical and surgical

�elds� various imaging sensors can provide speci�c information for a patient �e�g� Computed To�

mography �CT�� Magnetic Resonance Imaging �MRI�� and D Ultrasound images�� There is a real

need to register all of these D images in the same reference system� and to then link these images

with the operating instruments such as guiding systems or robots ����� To achieve this goal� one

possibility is to use some anatomical surfaces as references in all these images� In some cases� it

becomes necessary to use a laser range �nder to acquire the skin surface of a patient� and then to

register this reference surface with the skin surface segmented on another imaging device�

In the industrial world� it is often required to inspect D parts to determine if they agree

with the geometric design speci�cations� This can be achieved by digitizing the D object using

a high�accuracy laser range �nder over a shallow depth of �eld and matching the data with an
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ba

Figure ��	� The smooth free�form shapes in �a� can be registered by making a series of small
adjustments to the relative position and orientation� Part �b� gives a possible registration result�

ideal CAD model� Furthermore� it is also important to build integrated models from existing D

objects� An automatic model acquisition system could signi�cantly improve the speed and �exibility

compared to conventional interactive techniques such as computer�aided geometric design �CAGD�

and coordinate�measurement machines �CMM�� Since a range map only samples the surface of the

object which is visible from a given viewpoint� the acquisition of several range views is mandatory

in order to scan the entire object� Therefore� to obtain an integrated model� it is necessary to

transform and register all the partial views into a common reference frame�

��� Mobile Robot Navigation

The task of mobile robot navigation is to guide the vehicle through its world based on sensory

information� The questions that a robot often faces are�

� Where am I�

� Where are other places relative to me�

� How do I get to other places from here�

We will address the �rst question� which concerns the robot pose estimation problem� by using

laser range sensing on the robot and then matching the range measurements� We will also study
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Figure ��� Example of robot pose estimation from matching range scans� A is a reference pose at
which a reference scan �labeled as x�s� is taken� The robot is now at pose B in reality� but thinks
it is at pose B� due to error� Part �a� shows that the scan at B �labeled with small circles� does
not align with the reference scan because of the pose error� Part �b� shows the result of aligning
the two scans� The pose B� is corrected to the true pose B at the same time�

the issue of building world models which is relevant to many aspects of navigation�

����� Robot Pose Estimation

We represent the contour of the world in a horizontal plane using a 	D curve model� Suppose that

the robot is equipped with a laser range �nder which rotates in the same horizontal plane and takes

range measurements at many directions� If these measurements are su
ciently dense� the points

corresponding to the intersection points of the laser beams and the world contour essentially form

the same shape as the world model� Then by aligning the shape described by the data points with

the model shape� we can determine the pose of the robot in the model coordinate system�

A world model may not always be available a priori to the navigation task� For example� a

robot exploring an unknown environment does not have such a model to reference its position� One

solution is to build a world model from previously collected sensor data and then use this model

to reference the robot�s new position� A simple case is to just use one previous range scan as a

reference� By registering the current range scan with the reference scan� we can determine the

relative pose� We will study this problem in great detail in the thesis� Here we give an example to

illustrate the problem �Fig� ����
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Figure ���� Building a world model from scans of sensor data� �a� the world being explored� �b�
accumulated model so far� �c� a new scan of range data� �d� updated model�

����� Building a World Model from Sensor Data

A world model can be useful in solving problems such as path planning and robot self�localization�

Acquiring a world model of an unknown environment could also be the goal of a robot�s mission�

A robot may build a world model by integrating successive frames of sensor data� Figure ��� shows

an example of dynamically building a world contour map from range data�

In order to integrate multiple frames of sensor data� it is essential to �rst register them in a

common coordinate system� A possible approach is to align each new frame of data to a previous

frame or a cumulative model� But a potential problem with this approach is that the resulting model

may become inconsistent as local registrations are derived independently from di�erent parts of the

model and there are errors in the registrations� Especially� if a long chain of registrations are

compounded� there can be a signi�cant error in the integrated model� Figure ��� illustrates this

problem� Although there is only a small registration error at every step of adding new data� error
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Figure ���� Inconsistent model due to accumulation of registration errors� �a��a�� show local frames
of sensor data from a rectangular environment� Each frame only overlaps with two adjacent frames�
�b��b�� are the cumulative models where only slight registration error is present at each step� The
�nal model in �b�� appears to be inconsistent in the bottom part�

accumulation leads to a signi�cant inconsistency in the �nal model�

In this thesis� we will study the problem of integrating multiple range scans and we will specif�

ically raise the issue of maintaining model consistency�

��� Thesis Outline

The theme of the thesis is shape registration or shape matching� We �rst address this problem

in the context of mobile robot applications� In particular� we propose algorithms for aligning 	D

shapes of the environment which the robot observes in the form of range scans� Relative poses of

the robot can be derived through the alignment of scans� Moreover� by aligning multiple scans� we

can coherently integrate the range measurements for mapping the environment�

Besides the applications for robot navigation� we also study the shape registration problem in

other domains� Particularly� we examine our methods as well as other techniques for registration
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of D surfaces described in range images and registration of 	D shapes from intensity images�

Throughout the thesis� we focus on matching based on iterative optimization� as opposed to

feature correspondence�

The rest of the thesis contains four parts� We give a brief outline below�

First of all� we present a literature review in Part I �Chapter 	�� Areas related to our work�

including robot navigation� pose estimation� robot map building� and shape registration techniques�

will be surveyed� The signi�cance of our own work in the context of the literature will also be pointed

out�

In Part II of the thesis �Chapter  to Chapter ��� we study the problem of robot pose estimation

in unknown environments by matching range scans� We propose two iterative algorithms which can

e�ectively align a range scan against another scan so as to derive their relative pose� Experiments

using both simulated data and real data will be presented�

In Part III �Chapters � and ��� we study the consistent registration and integration of multi�

ple range scans for mapping the environment� First� pose constraints are derived from matching

pairwise scans as well as from odometry sensing� which form a network of pose relations� Then we

formulate an optimal estimation procedure based on the maximum likelihood criterion to combine

all the pose relations and derive the scan poses� Experiments using simulated and real data will be

shown�

Part IV �Chapters � and �� investigates the shape registration problem in domains other than

mobile robotics� namely the registration of D range surfaces and 	D planar image shapes� We will

examine the extensions of our algorithms �from Part II� as well as other techniques�

Finally� Chapter �� concludes the thesis with a summary and a discussion of possible future

research directions�
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Review of Related Work

�



�

We present a literature review in the areas related to our research work� The organization of

the review and its relationship with our own work are the following�

First of all� in Section 	��� we review the topic of mobile robot navigation and particularly�

robot pose estimation� This discussion gives a big picture of the area and lays a background for

the thesis since our work in Part II and Part III are related to mobile robot navigation�

In Section 	�	� we speci�cally examine existing techniques of matching sensor data for robot

pose estimation� A substantial part of our own work �presented in Part II of the thesis� belongs in

this area�

In Section 	�� we discuss the types of world models used for robot pose estimation and the

techniques for dynamically building models from sensor data� One issue in model building that

we are particularly interested in is the global consistency in integrating sensor data� Our research

work regarding this issue is presented in Part III of the thesis�

Finally� in Section 	��� we review the general shape matching techniques in a broader domain�

Shape matching is the theme throughout the thesis and it is the central issue in the problem of

robot pose estimation using range data� Besides� we also study shape matching techniques for other

applications such as D range surface registration and planar image shape registration �presented

in Part IV of the thesis��
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Review of Related Work

��� Mobile Robot Navigation

Navigation is a fundamental requirement of autonomous mobile robots� It is de�ned as �the sci�

ence of getting ships� aircrafts� or spacecrafts from place to place� esp� the method of determining

position� course� and distance traveled� ����� Navigation and position estimation has been exten�

sively studied for ships� missiles� aircrafts� and spacecrafts� However� navigation for mobile robots

remains a di
cult problem� given the available knowledge and experience in the land� marine and

aerospace communities� The reason for this is clear� it is not navigation itself that is the problem�

rather it is the reliable acquisition or extraction of sensor information� and the automatic correla�

tion or correspondence of these measurements with a navigation map that makes the autonomous

navigation problem so di
cult�

����� Issues in Robot Navigation

The goal of sensor�based autonomous robot navigation is to build a system which dynamically

guides and controls a mobile robot from its start position to a prede�ned end position� while

avoiding known or unknown obstacles� The robot should e
ciently interpret data from its on�line

sensors to determine its relationship to the world and the current state of the task� and then should

plan and execute an appropriate course of action to accomplish the task�

Previous research in mobile robotics has typically addressed the following types of problems�

Path planning

First� path planning in a known environment is studied� The optimality criterion in this class

of problems is the minimization of the cost for traversal between a start and an end position� while

��



���� MOBILE ROBOT NAVIGATION ��

avoiding obstacles ����� A common approach is to represent the world as a graph and perform an A�

search or to apply some form of Dijkstra�s algorithm to determine the shortest path� The visibility

graph algorithm ���� ��� is an example in this class� Voronoi diagrams have been used to plan a

path that stays away from obstacles as far as possible �	�� ���� Explicit representation of free

space using overlapping cones called �freeways� is also proposed for path planning ����� Another

approach is to recursively subdivide free space into smaller cells until a collision�free path can be

found through a connected set of free cells �	��� A multiresolution quadtree structure has been

suggested ��	� for the e
cient representation of free space� The theoretical issue of path planning

complexity with complete information �the �Piano Mover�s Model�� is studied in ������

If environmental sensing is imperfect� uncertainty should be considered in path planning� A

method using Sensory Uncertainty Field for planning a robot path that minimizes uncertainty at

navigation time is proposed in ����� with preliminary results� A method which integrates dynamic

path planning with self�localization and landmark extraction is discussed in �����

Trajectory planning

Then� robot trajectory or motion planning in the presence of moving obstacles is studied� The

goal is to �nd an optimal robot trajectory �consisting of both a path and the motion along the

path� which avoids collision with moving obstacles� Some theoretical results about the complexity

of trajectory planning can be found in ����� 		�� Some heuristic approaches for planning a collision�

free path in the presence of moving obstacles are presented in ���� ��� ����

The concept of con�guration space has been widely used for solving the path planning problem�

Here the original problem of planning the motion of an object through a space of obstacles is

transformed into an equivalent� but simpler� problem of planning the motion of a point through a

space of enlarged con�guration space obstacles ���� ���� Con�guration space provides an e�ective

framework for investigating motion planning problem for robot arm manipulators �����

Algorithmic exploration

Another type of problem is exploration of an unknown world with perfect range sensing and

odometry information ����� Here the issues are primarily the covering of the entire environment

and the complexity of the algorithm as a function of the complexity of the environment �number

of vertices and edges of objects�� Some research work on this class of problem can be found in

���� ��� �� �	���
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Path execution and self�localization

A practical problem which has attracted much research attention is the problem of path execu�

tion within a known or mostly known real environment� The focus here is typically on the sensing

required to accurately execute a preplanned path� and the key problem is robot self�localization

�the �where am I� problem�� One primary issue in solving this problem is how to match sensed

data �vision� sonar� laser� infrared etc�� against map information� A comprehensive survey of the

literature in this area can be found in ��� ���� We will discuss the robot self�localization problem

in more detail in the following subsection�

Local obstacle avoidance

The issue of local obstacle avoidance arises when the world is not perfectly known� During the

execution of a path� if an unexpected obstacle is encountered� the path needs to be modi�ed or

local strategies should be employed to avoid collision with the obstacle� A common approach is

based on the arti�cial potential �eld �� ��� ��� 	�� A heuristic approach for path replanning is used

in �����

Exploration with imperfect sensing

The problem of exploration of an unknown world with imperfect range sensing and odometry

information is addressed ����� The general approach is to gather sensing information and accumulate

local measurements into a global model� Here self�localization of the robot is still an important

issue� We will review some of the techniques in building world models in a later section� We will

discuss a speci�c issue in mapping an unknown environment� that is to maintain the consistency

among the sensing data as they are integrated into a cumulative global model�

System architecture

Finally� the issue of system architecture is studied for coordinating di�erent actions of a robot

system� such as path following� obstacle avoidance� exploration� etc�� Brooks proposed a sub�

sumption architecture which is much di�erent from the conventional centralized robot control �����

Connell built a functioning mobile robot� Herbert� based on this subsumption architecture �	���

The ARK robot combined a classical occupancy grid based global path planner and a low�level

subsumption based architecture to accomplish both path generation and path execution ������ An�

other autonomous mobile robot system� AuRA� employed a motor schema�based control system

which is implemented using arti�cial potential �elds �� ���
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����� Pose Estimation

Robot pose estimation� or self�localization� is a key issue in robot navigation� The goal of pose

estimation is to keep track of the robot�s position and heading direction with respect to a global

reference frame� The reference frame is either de�ned by models of external landmarks or by the

robot�s initial pose� In most robot applications� only the D robot pose consisting of a 	D position

�x� y� and a heading direction � is considered� For more complicated tasks� the estimation of a full

�D pose may be required�

Essentially� pose estimation is done in two ways� dead reckoning and external referencing� In

dead reckoning� the current robot pose �as relative to a previous pose� is measured using an internal

sensor �an odometry�� In external referencing� robot pose is determined with respect to external

landmarks�

Pose Estimation by Dead Reckoning

Dead reckoning is done by integrating an internal sensor �e�g� odometry� over time� Odometry is

typically implemented by shaft encoders on wheels to record the distance traveled or the change in

heading angle� Dead reckoning is convenient and inexpensive� and it is present in most mobile robot

systems� In certain man�made clean environments� odometry usually gives accurate measurements

about the travel distance and turning angle over a short period� However� a serious problem with

dead reckoning is that small measurement errors �due to surface roughness� wheel slippage etc��

may build up� leading to unbounded pose errors� Thus odometry alone is not su
cient for pose

estimation for a navigation task� Nevertheless� odometry provides good initial pose estimates which

may greatly help landmark�based pose estimation procedures�

Pose estimation using odometry is a straightforward open�looped process� Some research work

on odometry con�gurations and their error models can be found in ����� ����� A method for

correcting systematic odometry errors is discussed in �����

Given a previous pose and the odometry estimate of a relative pose� the current pose is computed

by a compounding operation� Smith and Cheeseman ����� formulated the change of uncertainties

through compounding� As a part of a Kalman �lter model� a time state transition equation for the

change in robot pose and its uncertainty is formulated in ���� ����

Pose Estimation by Landmark Recognition

Because of the accumulation of pose error in odometry measurements� it is necessary to check

with external references from time to time� A typical approach is to locate known landmarks in the
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environment using external sensors �video camera� sonar� laser range�nder etc��� Then compare

the sensed landmarks against their representations in a metric model so as to derive a correction

to the pose error�

Depending on a given task� it is also possible to navigate a robot without a metric model� i�e�

to use qualitative information only� Kuipers and Levitt described a hierarchy of such approaches�

namely sensorimotor� topological� and procedural approaches ��	�� Here sensorimotor means el�

ementary sensing and motor actions� topological means a network of places and routes without

metric information� and procedural means local control strategies such as obstacle avoidance� route

following and landmark tracking� A qualitative solution by tracking which side of landmark�de�ned

lines the robot is on is proposed in ����� A navigation strategy by means of path remembering is

used by the Herbert robot �	��� A neural network based method is proposed in ��� for estimating

robot pose from images without using explicit object models�

Navigation methods which do not use a metric model have to rely on the unambiguous recog�

nition of landmarks which is a very di
cult problem in general�

Combining dead reckoning and external sensing

An e�ective approach to solving the navigation problem is to combine dead reckoning with

external sensing that uses a metric model� By maintaining a pose estimate� the robot can use

odometry to obtain an approximate current pose� This pose estimate provides expectations and

constraints for searching and data association and it greatly simpli�es landmark recognition� On

the other hand� the recognized landmarks provide correction to the odometry pose errors�

A typical pose estimation procedure is shown in Figure 	��� In this procedure� �rst a pose

estimate is obtained from odometry� The world model� together with the pose estimate� provides

prediction about the current sensor observation� After taking the sensor measurements� the cor�

respondence between the sensor data and the predicted part of the model is determined� and any

discrepancy between each corresponding data�model pair is used to correct the estimate of the

robot pose� The major issues of this procedure are discussed below�

Sensing and feature extraction

The commonly used sensing methods are vision and range sensing� Vision is the most �exible

sensing technique� Although it only provides 	D images� various information such as depth� shape�

motion can be extracted indirectly� The computer vision community has extensively studied these

problems ��� ��� ���� To interpret the image data for pose estimation� usually features are �rst
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Figure 	��� A typical procedure of pose estimation using both odometry and external sensing� First
a pose estimate is obtained from odometry� The world model� together with the pose estimate�
provides prediction about the current sensor observation� After taking the sensor measurements�
the correspondence between the sensor data and the predicted part of the model is determined�
and any discrepancy between each corresponding data�model pair is used to correct the estimate
of the robot pose�
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extracted� A widely used example drawn from image processing is the so�called �edge�� which is

some curve in an image in which a rapid intensity change occurs� Such a feature is hypothesized

to correspond to some three�dimensional entity� either a change in re�ectance or a change in the

surface structure� A potential problem is that feature detectors may be unreliable� and erroneous

features lead to errors in pose estimation�

For robot pose estimation� range information is particularly useful and convenient to process�

Commonly used range sensors include sonar and laser range��nder� Sonar is inexpensive� but its

measurements are very noisy due to its wide beam width and specular re�ection� Laser range��nder

gives more accurate readings and its range of measurements is also larger� Typically� a single shot of

a range sensor gives one depth measurement� The sensor is thus often rotated in order to take a scan

or an image of measurements which gives more context of the shape of the current environment�

From a scan of range data� geometric features can be extracted for matching and recognition� The

commonly used features are line segments� corners� depth continuities� curvature extrema� etc��

Geometric features are relatively more stable than image features� But due to occlusion� sensor

noise� and pose uncertainty� these features are still di
cult to interpret�

World model for pose estimation

A metric a priori world model provides the reference for pose estimation� The model keeps the

geometric or other properties of features for recognition and the global coordinates of the features�

If an estimate of the current pose is available� predictions about the current visible features can

be made �i�e� to select the relevant features from the model�� We will discuss in more detail about

world models in a later section�

Matching and estimation

Matching is a procedure of associating features from sensing data with the model� With the

feature�model correspondence� the current robot pose can estimated� We discuss the matching

techniques in the following section�

��� Matching Sensor Data for Pose Estimation

The central issue in robot pose estimation is to match sensor data to a world model so as to

infer the robot pose� Suppose that there is an error in the robot pose in the sense that the robot

mistakenly thinks it is at one place while it is actually somewhere else� This pose error may lead to

a discrepancy between the location of a data feature in a sensor coordinate system and the location
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of the corresponding model of that feature �assuming a known model�� By comparing the sensor

data with the model� the robot can solve or correct its pose based on this discrepancy�

There are two issues involved in the matching techniques� �nding the correspondence between

the data and the model� and solving for the robot pose using the correspondence� The two issues

are closely related to each other as one can usually be easily solved assuming the other� We discuss

some matching techniques for pose estimation as the following�

����� Correlation Methods

Images �of either intensity or range� can be matched to another image by a correlation�based

approach� Here one image �or a small region in the image� is placed in all possible relative positions

and orientations with respect to the other image� Then one particular transformation between the

two images which minimizes some sort of distance measure is selected as the matching solution�

In robot navigation applications� correlation method is often used for matching grid�type world

representations� For example� Elfes used a heuristically improved correlation method to match

sonar maps which are represented in occupancy grids ��	�� Correlating two grids usually takes

extensive computation� especially when the grids are at di�erent orientation�

Weiss et al used a correlation method to match range scans for keeping track robot position

and orientation� They �rst correlate the �angle histograms� of two scans to recover the relative

orientation� Then the X and Y histograms are used to compute translation�

Straightforward correlation�based matching methods are generally unable to handle outliers�

For example� if some areas are visible in one scan but not in the other because of occlusion� the

correlation of the two scan may produce arbitrarily bad estimation� Robust techniques which limit

the in�uence of outliers have also been studied ����

����� Combinatorial Search

Many matching techniques are feature�based� The typical process is to �rst identify a set of features

in the sensor data that potentially corresponds to entities in the world� and then match the features

to a world model through some form of combinatorial search� In order to limit the exponential

explosion in search complexity� various constraints and heuristics are applied�

In a vision�based robot navigation system� Fennema et al used a heuristic search technique

coupled with an objective function to match image features to a known model ����� The features

used in their approach are the 	D line segments extracted from intensity images� The objective
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function is de�ned on each possible state of correspondence between the lines in data and lines in

the model� by taking into account both the �tting error for the matched data�model pairs and the

penalty for the unmatched model parts� The search strategy is to add or delete k lines from the

data�model correspondence at every step� and try to search for a state with the minimum matching

error� Once the correspondence is determined� the D camera pose is solved by a least�squares

spatial �tting procedure�

The above approach is very computationally expensive� An example in the paper shows that it

can take hours to perform the model matching if the search is not focussed� Many issues still need

to be addressed� Such as how to determine a good starting correspondence� how to select k lines

to add�delete� etc�� The value of k also plays an important role in the method� Small k �such as

k � �� may leads to local minima in the evaluation function� For a larger value of k� the search

space increases by O�Nk� where N is the number of possible pairings of model and data lines�

In addition to the high computational complexity in feature�based matching technique� another

major problem is that the quality of matching depends on the reliability of features�

����� Statistical Data Association and Estimation

Probablistic models have been used to represent measurements with uncertainty� Typically� a

measurement is modeled as a random variable with assumed Gaussian distribution� Uncertainty is

then represented by the variance of the random variable�

Given a pose estimate� data�model correspondence can be determined by associating each fea�

ture with the closest model� Besides� a threshold on the con�dence of matching can be set based on

the pose uncertainty� If a feature is too far away from the closest model �exceeding the statistical

threshold�� it can be rejected as an outlier� An extensive study about statistical data association

can be found in ����

A di
cult decision in data association is that� if more than one feature is within the acceptance

zone of a model� which one�s� should be selected� Possible strategies include selecting the closest

one� selecting the average of all close ones� or not to select any feature at all in case of ambiguity�

Each strategy has its own drawbacks�

In the work by Leonard and Durrant�Whyte ����� geometric features called �regions of constant

depth� are extracted from a scan of sonar range data� On the other hand� predictions about

possible feature occurrences are generated based on a model and an estimate of the sensor pose�

Sensing errors and positional errors are modeled as additive Gaussian random noises with known
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covariances� A statistical test that measures the di�erence between observation and prediction is

applied to every pair of feature and model� Pairs satisfying the test are accepted as good matches�

Other features that do not correspond to any model are discarded as outliers� A potential problem

with this approach is that it relies on the reliable extraction of robust features from sonar data�

But sonar data are usually very noisy and it might be di
cult to obtain enough reliable features�

To register line segments extracted from images to model� Ayache and Faugeras also used

probabilistic predictions of feature locations and their uncertainties ���� To further improve the

reliability of feature association� they employed a strategy which starts with registering features

which have a small error covariance� or features which can be matched unambiguously� Uncertainty

in the positions of the remaining features may be reduced when the robot�s pose is updated using

the good matching pairs� Then these remaining features can be registered more reliably�

Kosaka and Kak applied a more sophisticated procedure to probabilistically associate features

to models based on a maximum likelihood criterion for the mapping function ����� For each model

element� the candidates of corresponding feature are the ones within the uncertainty region� The

procedure sequentially selects trial model�feature correspondences and updates the robot pose using

a Kalman �lter� The optimal mapping is considered as a path in the correspondence search space

which contains the minimum number of missing features and a maximum value for the objective

function� Here the objective function is de�ned from the distances in the selected correspondence

pairs� taking into account the sequential updates to the pose from previously selected correspon�

dences along the current path� Backtracking is needed to select the optimal mapping function�

To avoid making irreversible decisions about data association at too early a stage� Cox and

Leonard used a multiple hypothesis approach �	� which maintains more than one interpretation of

sensor measurements at one time and carries these hypotheses over time� Thus ambiguity in data

association in one step can be possibly resolved in a later step when more evidence is gathered�

Once the correspondence of features are determined� the next issue is to solve for or update the

pose estimate using the correspondences� The Kalman �lter and the extended Kalman �lter are

the most commonly used estimation algorithms� The linear Kalman �lter gives an optimal estimate

in the sense of least�squares or minimum variance� The extended Kalman �lter linearizes a non�

linear problem and then applies the linear Kalman �lter ���� ���� Many mobile robot navigation

systems apply the �extended� Kalman �lter for robot pose estimation and model construction �e�g�

��� ��� �� �����

To apply the Kalman �lter� random variables are modeled with mean values and covariance
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matrices� The sensor observation is modeled as

z � Hx� w

where x is the parameter to be estimated� usually the robot�s pose� z is the sensor observation

reading� w is the random sensor noise modeled as white Gaussian� H is a linear transformation�

The recursive Kalman �lter gives the new estimate of x as�

x � x� �K�z �Hx��

K � S�H
T �W �HS�H

T ���

S � �I �KH�S�

W � E�wwT �

where x and S are the mean value and covariance matrix of the new estimate of x� x� and S� are

the previous mean value and covariance matrix of x�

Straightforward correction to robot pose �non�statistical� has also been employed in navigation

systems� For example� in ��� the average angle between data and model line segments are used

to �x the robot�s orientation� and the average displacement between data and model are used to

correct the robot position� Spatial �tting methods based on least�squares �tting error are also used

to solve for robot pose� These methods are often applied iteratively� We will study them in the

next subsection�

����� Iterative Optimization Methods

The process of assigning correspondence and solving pose estimates can be carried out iteratively�

In each cycle� a previous pose estimate is used to associate correspondences of data features to the

model �assigning features to the closest model or using a statistical test�� The correspondence pairs

can be used to derive a potentially more accurate pose estimate �typically using a least�squares

spatial �tting method�� The process repeats until the pose solution converges�

Cox et al proposed an iterative matching algorithm which uses range measurements directly as

features �thus avoiding feature extraction� ��� 	�� 	��� In their approach� the model consists of line

segments of a world contour� while the data are the points on the world boundary received from a

laser range��nder� The system maintains an estimate of the robot�s pose� so the data points can

be placed near the linear world model� Matching is accomplished by associating each point with

its closest line segment in the model� A point may be regarded as outlier if it is too far away from
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the model� Once the correspondences are determined� a least�squares �tting is constructed as the

following� Each data point is transformed with an undetermined congruence consisting of a rotation

angle � and translation vector t� For each data point vi and the corresponding line model mi� a

�tting error as a function of � and t is de�ned by summing up the distances from the transformed

point R��� � vi � t to the line mi� Then the congruence is solved by minimizing the �tting error�

The entire process of associating correspondence and �tting is iterated until convergence� Finally�

the derived congruence is applied to correct the robot pose�

Cox�s method is e
cient and e�ective for indoor linear environments �i�e� whose contours consist

of mostly long line segments�� The algorithm has the nice property that it does not require feature

extraction� while it can also handle outliers to some extent� A limitation of the method is that it

requires an analytical world model� Thus the method can not be directly applied for navigation in

unknown environments� We are able to extend this algorithm� however� for matching a set of data

points against another set of data by �rst �tting line segments to one set of data �see Chapter ���

In the CMU Navlab project� Hebert et al described a gradient descent optimization algorithm

for matching terrain elevation maps ���� The purpose of matching is to align the local maps so as

to integrate them into a global map� The displacement �and correspondence� between two maps

is determined by an unknown transformation v� A distance function E is de�ned as the sum of

the squared distances between the corresponding points in the two maps� The function is then

minimized with respect to v using an iterative gradient descent of the form� vi�� � vi � k �E
�v

�vi��

The derivatives needed in the algorithm involve the gradient of the terrain surfaces which are

computed from the maps� The algorithm requires an initial estimate of v to start the iteration�

����� Our Work

We take an approach to the robot self�localization problem that aligns laser range scans� similar

to the approach of Cox et al� However� we consider more general cases as ��� an arbitrary two�

dimensional world� not necessarily polygonal� and �	� an unknown environment� We intend to

address the localization problem for both path execution and exploration of unknown world� Since

an analytical model of the environment is not available to us� we have to match a range scan to

another reference scan in order to derive relative robot pose� This is much harder than matching

data points to a linear world model�

In Part II of the thesis� we present two algorithms for aligning a pair of range scans� These algo�

rithms use iterative optimization techniques and they do not require explicit feature interpretation�
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The �rst algorithm is based on a combined search�least�squares procedure to minimize a distance

function and solve for the relative transformation between the scan poses� where the distance func�

tion is de�ned from the approximated tangent lines at pairs of corresponding points on the two

scans� The second algorithm is based on iteratively associating point�to�point correspondences and

solving incremental updates to the transformation�

��� World Models for Robot Navigation

We �rst discuss several types of a priori world models which are commonly used in navigation

systems� Then we discuss the dynamic construction of models from sensing data� Finally� the issue

of consistent data registration in dynamic model building is studied�

����� Types of World Model

A world model� also called a map� is an internal representation of the geometric� topological� or

physical properties of the world� Major uses of a model include path planning and pose estimation�

We are primarily interested in world models for pose estimation�

For the purpose of pose estimation� the world model should keep two types of information� the

metric locations of the world entities and the descriptions of their features� The locations� usually

represented by coordinates in a global reference frame� serve as the reference for computing vehicle

pose� The descriptions are about the geometric or other types of distinct features that can be

detected by sensors in order to recognize the entities� For primitive features� such as lines and

points in images� the descriptions are often implicitly embedded in the recognition algorithm�

If there are �xed� easily detectable beacons in the environment� then the world representation

for robot self�localization may be simply a map recording the locations of these beacon� Many robot

systems for industrial environments� such as AGV�s �automated guided vehicles�� use this approach�

However� installing the beacons means altering the environment� which is only practical in very

restricted domains� For more �exible autonomous robot applications� natural features should be

used�

A 	D contour model represents the boundaries of the objects �or free space� in the world as

projected to the �oor plane� The contour curve can be represented as a set of line segments �such

as in �	�� � ���� by a parametric curve �e�g� using the curvature primal sketch ������ or by features

of the contour such as corners or occlusion boundaries ���� ���� We also treat a set of points on

the contour as a model for matching with another set of points �see Chapter �� Typically� the
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contour model is used for matching with range data or with features that have been extracted

from range data� It appears that the contour model is adequate for navigation in a structured

environment �e�g� a simple indoor environment� and the construction of such a model is relatively

straightforward� However� since the model only represents geometric information and only in 	D

space� it may be unable to model more complicated environments�

Occupancy grid is a simple representation scheme suitable for modeling an environment from

range measurements ���	�� This type of model represents a tessellation of the environment in 	D or

D grids� while each elemental cell in the grid identi�es the state of a speci�c position as being �free

space� or �obstacle�� Sometime� the con�dence about whether a cell is occupied is also maintained�

Because of its simplicity� a grid model is chosen in some navigation systems �e�g� �	� �����

Another type of model working with image data is the D CAD model ����� It represents the

D line segments in the scene which can be detected in intensity images� Line segments in the

image are extracted as features to be matched with the model� The model is quite �exible in

modeling various kinds of environments� and the represented D structures are more informative

for navigation than the contour model� However� if the world contains many curves� it would be

inconvenient to model the world with line segments� Building such a detailed D model is usually

a tedious task� in many situations even unrealistic� If the CAD model is used� the related feature

matching problem can be very computationally expensive�

For robot exploration and mapping in large�scale spatial environments� qualitative and topo�

logical models have also been suggested ���� ��� ���

����� Dynamic World Modeling

The goal of dynamic world modeling is to acquire and represent geometric information about the

environment automatically by the robot to facilitate navigation and other tasks� Here the word

�dynamic� emphasizes that the world representation �model� is built or updated dynamically with

successive readings of sensor data as the robot explores the world�

Dynamic world modeling is involved in mobile robot navigation in an unknown �or partially

unknown� environment� The robot cumulatively builds a world model from the sensor data as it

moves around� The robot maintains the following information at each cycle of updating the model�

��� a current global world model representing the areas discovered so far� �	� some knowledge about

its own pose� and �� a robot�centered geometric model of the local environment perceived at the

current pose� The dynamic modeling process is to match the local model with the current global
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model and update the global model�

In an unknown environment� the robot has no absolute reference� The same sensor data must be

used for both correcting the robot�s pose and updating the world model� This has been remarked as

�pulling yourself up by your bootstraps� ���� However� it is only possible to do this provided there

is a substantial overlap between the observed data and the current model� This overlap provides

the basis for pose correction� while the new information is added to the model�

Ayache and Faugeras proposed ideas of representing and maintaining spatial relationships of

geometric primitives which are recognized by the robot ���� In their approach� successive frames

of local descriptions are fused to form a more global� coherent� and accurate representation� First�

local descriptions of the environment �points� lines� etc�� are extracted from images� A set of

geometric relations between the primitives of two visual maps are de�ned� such as �identical��

�contained�� �parallel�� and �orthogonal�� The geometric relations are expressed as the constraints

on the parameters of the primitives� These relations are searched for among all the primitives in

two maps� Each pair of primitives is registered by computing a probabilistic distance measure and

verifying an acceptance test� After registration� two primitives are combined to produce a better

estimate of their parameters and reduce the uncertainty� The tool used for matching and updating

is the extended Kalman �lter� The geometric relations provide nice constraints for interpreting

image features� However� it appears that accidental alignments may lead to many false alarms if

some weak relationships �such as parallel� are searched for among all pairs of primitives� There is

another problem unsolved in this approach� When the relations among the primitives are detected�

how can these relations be maintained systematically and consistently as more and more image

data are acquired�

Kriegman et al ���� discuss the problem of exploring the free space for a mobile robot operating

in an unknown indoor environment using stereo vision� A model of world contour is constructed

and maintained by connecting all the observed feature points on the contour without violating the

visibility constraints� At each step of sensing� feature points are extracted from stereo images and

the points are matched to the existing ones in the model� Those points with correspondence in the

model can help reducing the uncertainty in the model� Otherwise new points are inserted in the

model to augment the discovered free space� An O�n�� algorithm is used to update the model while

abiding the visibility constraints� A more e
cient algorithm �O�n logn� time� for connecting the

contour points without violating the visibility constraints is available ���� The algorithm requires

that all the points belong to a single simple object�
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In ����� the problem of matching a local model with a global model and constructing a new global

model is studied using simulated data� From each scan of range data� line segments are extracted

and classi�ed according to the status of how it is being occluded �for example� a line segment

labeled as �left partial wall� means that the right end of the line is an occlusion boundary�� The

lines are matched to a global model with the constraints according to the line types and their poses�

The matching process starts with a initial matching of complete walls and then propagates to the

entire model� After a successful matching� several rules are applied to update the global model�

The constructed model is globally consistent� which is desirable for global navigation� However�

the weakness of this work is that sensing and line extraction are assumed to be perfect� which is

quite impractical in real applications� Moreover� the approach did not make use of the robot�s pose

in registering local models onto the global model� Instead� a �constrained� global search is used to

match models elements� which is quite ine
cient�

Crowley discussed the approach of building and maintaining a composite local model �� ��

which is an intermediate level of representation of the environment in between a global model and

a sensor model� The composite local model re�ects the immediate state of the local environment

and it is used for local navigation� The model is built up by integrating recent information from

sensors� taken from di�erent poses� and also information from a pre�learned global model� The

primitives of the composite local model are the line segments extracted from ultrasonic range data�

representing the horizontal boundary of the world free space� Con�dence measures or probabilistic

uncertainties of model primitives are maintained� Matching a pair of line segments is accomplished

by a sequence of tests on the di�erence in orientations� co�linearity� and overlap� with respect to

the standard deviations of the uncertainties� With a successful matching� model parameters� as

well as the estimated pose of the robot� are updated using the Kalman �lter� In this system� the

line segments in the model are maintained and updated independently from each other� The model

can be inconsistent after several steps of updating� The approach must assume a linear world and

require segmenting the range data into lines� Some similar approaches to constructing a world

model consisting of line segments using sonar or laser sensing are reported in ��� ����

The occupancy grid model is also used for representing an environment and integrating sensor

data ��	� ��� 	� ��� A grid model is useful when a geometric interpretation of data is di
cult due

to large amounts of sensory noise� such as in the case of sonar�

In order to model a D outdoor scene� elevation maps are typically used� Asada discussed

a mapping system which extracts the heights of obstacles in the scene from range images and
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correlates local maps to update a global map ����

A method of continuously updating a map using range measurements by a neural network is

discussed in ����� Pose error in di�erent sensor locations is not considered in this work� A study

on models for cognative maps using neural networks with potential application for mobile robots

is discussed in �����

Dynamic construction of a topological model requires precise identi�cation of landmarks or

markers ���� So far we have only seen theoretical work in this direction�

����� Consistency in Dynamic World Models

The general approach to dynamic world modeling is based on aligning successive frames of sensor

data or aligning each local frame with a cumulative global model� and then integrating the new

frame of data into the global model by averaging the data or using a Kalman �lter� A major

problem with this approach is that the resulting world model eventually becomes inconsistent as

di�erent parts of the model are updated independently� Moreover� even if some inconsistency in

the model is detected in a later stage� it may not be resolved because the data in the model may

have been permanently integrated�

Clearly� the problem is that new frames of data are irreversibly integrated into the global model

at too early a stage� In order to avoid this problem� the local coordinate systems of the data frames

must be maintained and there must be some mechanism to resolve the inconsistency among the

data frames once such inconsistency is recognized�

Consider the following scenario� The model contains two frames of data which are associated

with poses �or local coordinate systems� P� and P�� respectively� Suppose that a new frame of

sensor data is collected at pose P� and geometric relationships of both P�P� and P�P� are derived

from matching the frames of data �the relationships are illustrated in Fig� 	�	�� Now if we register

frame P� to either frame P� or P�� it may be inconsistent with the other frame because the three

relationships� P�P�� P�P�� and P�P�� could be inconsistent as they are derived from di�erent sources�

Therefore� in order to register the new frame to the model� we should �rst resolve the inconsistency

among the three poses� Based on the three relationships and their uncertainties� we can update

P�� P�� and P� to make them consistent �i�e� to ensure that the composition of P�P�� P�P� and

P�P� yields an identity transformation�� Generally� if there are other frames of data in the model

which are related to P� and P�� they should also be updated at the same time to ensure consistency

within the model�
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current model
P�

P�

P�

new frame of data

Figure 	�	� Illustration of relationships between model and new data�

Chatila and Laumond studied the consistency issue in dynamic world modeling in their HILARE

robot project �	��� In their system� range signals are segmented into objects and each discovered

object is associated with a local object frame� The local frame itself is referenced in an absolute

global frame along with the uncertainty on the robot�s pose at which the object frame is constructed�

New sensor data are matched to the current model of individual object frames� If some object

which has been discovered earlier is seen again� its object frame pose is updated �by averaging�� In

circumstances that the uncertainty of some object frame in the model is less than the uncertainty

of the current robot pose �note� this happens when the object frame is created earlier� and later the

robot sees the object again�� the robot�s pose may be corrected with respect to that object frame�

After correcting the current robot pose� the correction is propagated backwards with a �fading�

e�ect to correct the previous poses� The object frames created at these poses can also be updated�

Although the HILARE system considered the issue of resolving model inconsistency� the solution

does not appear to be satisfactory in the following aspects� First of all� the system associates

local frames with �objects�� But if the results of segmenting sensor data or matching the data

with model are imperfect� the �objects� and therefore the local frames may not be de�ned or

maintained consistently� When a previously recorded object is detected again� the system only

attempts to update the poses �and the associated frames� along the path between the two instances

of detecting this object� while the global consistency among all frames in the model may not be

maintained� HILARE only uses a scalar random variable to represent the uncertainty of a three�

degree�of�freedom pose� which seems inadequate� Using a heuristic �fading� function to determine

the updates to the poses also appears to be inadequate� A statistical �lter may be applied here�
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Smith and Cheeseman ����� formulated a representation of spatial relationship and uncertainty

using mean vectors and covariance matrices� and provided compounding and merging operations to

estimate the combined spatial relationship and uncertainty from a network of uncertain relations�

By taking all the available spatial relations into account at the same time� consistency among the

estimates are ensured� However� their method of combining spatial relations has a limitation that

it can only deal with some networks which are reducible to a combination of serial and parallel

connections� but a more complicated network of relations can not be combined by their method�

Durrant�Whyte ���� discussed the representation of spatial uncertainty and the geometric and

topological constraints among uncertain measurements� In another related work ���� they studied

consistent integration and propagation of sensor information� Here the consistency among sensor

data in enforced by explicitly applying constraints on the loops of the network to update the

coordinate transformations along the network edges� The updating procedure is formulated as a

constrained optimization problem� In another approach to a similar problem� Tang and Lee �����

formulated a geometric feature relation graph for consistent sensor data fusion� They proposed

a two�step procedure for resolving the inconsistency in a network of measurements of relations�

In the �rst step� the compromise between con�icting measurements of relations is achieved by

the fusion of these measurements� Then in the second step� measurements of relations in the

network are modi�ed to be consistent with this compromise optimally based on the assumed normal

distributions of the uncertain measurements of relations� The updating procedure is based on an

optimization criterion subject to the consistency constraints on the loops in the network� It appears

that the separated fusing and updating steps may yield a suboptimal overall solution� Also the

constrained optimization formulation leads to a large and complicated non�linear system which is

computationally expensive to solve�

Kamgar�Parsi et al also addressed the issue of global consistency in registering multiple over�

lapping bathymetric range images ���� They �rst use contours of constant range as primitives to

locally match pairs of intersecting images� Then the global registration among all images is accom�

plished by solving an optimization problem based on all the local constraints� as well as energies

for penalizing image stretch or bent� The optimization problem is not formulated in the context

of statistical estimation� The con�guration of image intersections considered here is in the form of

regular lattices made up of only horizontal and vertical image strips�
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����� Our Work

We also study the consistent sensor data integration problem �in Part III of the thesis�� Similar to

some of the previous approaches� we formulate a network of measurements of relations to derive

consistent estimates of poses and relations� A highlight of our approach is that we formulate a

maximum likelihood criterion for the optimal estimation from all the relations in the network� Thus

a global optimal solution can be obtained while the whole network is ensured to be consistent� We

treat poses �which are the nodes of the network�� rather than the relations� as free variables� Thus

we can obtain a concise closed�form solution of the optimal estimation without doing constrained

optimization� We particularly focus on consistently combining laser range scans and odometry

measurements for robot pose estimation and map building� We present a uniform modeling of the

uncertain relations from these two types of measurements� The problem we address is similar to the

one studied by Smith and Cheeseman ������ But our approach has the advantage that an arbitrary

network of measurements of relations can be consistently combined� while their method can only

handle a certain type of simple network�

��� Shape Registration

In the previous section� we discussed sensor data matching techniques speci�cally for the purpose

of robot pose estimation and map building� Now we want to discuss general matching techniques

for a broader domain of applications� Besides robot navigation� other applications which involve

shape matching include inspection or modeling of a D object using range images� localization or

recognition of objects from 	D intensity images etc��

We regard that sensor data or features in sensor data describe the shape of an object or envi�

ronment being sensed� For example� a 	D range scan made by a robot describes the contour shape

of the local environment� a range image represents a D surface� and edges in an image may depict

the shape of an object� We thus consider the matching problem as one of registering the data shape

with a model shape�

The problem of shape registration �or shape matching� can be de�ned as the following� Given

sensor data �range measurements or features in an intensity image� which describe a shape� and

given a model of the same shape� determine a transformation �rotation� translation� and possibly

scaling� from the sensor coordinate system to the model coordinate system such that the trans�

formed data shape is aligned with the model shape� The alignment criteria is usually expressed in
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the sense of a least�squares metric whose residual may also give a measure of the equivalence �or

similarity� of the two shapes�

����� Model�based Recognition

Shape registration is closely related to model�based shape recognition� Essentially� shape recogni�

tion methods can be viewed as techniques for searching for a match between the shape of objects in

the image and the shape of the model� although the recognition problem also involves other di
cult

issues such as the identi�cation of an object from a possible large set of candidates� A substantial

collection of work on model�based shape recognition is reviewed by Grimson ����� The matching

problem consists of two components� One is to establish the correct correspondence between the

features in the scene and that in the model� The other is to estimate the parameters of the relative

transformation between the two shapes based on a known correspondence� These two components

are tightly coupled and each one can be solved easily assuming the other�

The search for a match can be performed either in correspondence space or in pose space� The

correspondence space search examines possible pairings of features in the image and the model�

Then it evaluates the degree of matching for each examined correspondence in order to �nd an

optimal match� The interpretation tree method ���� is a typical example in this category� The

disadvantage of this type of approach is that it requires exploring a potentially exponential subset

of all possible correspondences�

The search for a match can also be performed in the pose space where many di�erent trans�

formations between the model coordinate system and the image coordinate system are examined

in order to �nd an optimal transformation which leads to the best correspondence� Examples of

techniques searching the pose space are the generalized Hough transform methods ��� ���� and

transformation space sampling �	�� in which all possible pairings of one model feature and one

scene feature vote for the best candidate among a set of discretized transformations� The Haus�

dor� distance transformation method ���� is another example of searching the pose space� The

disadvantage with this class of methods is that a large space of discretized transformations may

have to be maintained and examined�

Some methods use a combination of correspondence space search and pose space search� Exam�

ples include the alignment method ���� which �rst determines the transformation based on a small

set of features and then veri�es it using rest of the data� and the geometric hashing method ���

which chooses transformation invariant feature representations to vote for both the object and its



���� SHAPE REGISTRATION �

pose�

The shape recognition methods we discuss here are generally aimed at �nding D objects from

	D images� The problem of planar shape registration� which we will discuss next� can be considered

as a special case which avoids the issue of D to 	D projection�

����� Matching Planar Shapes

We consider a simpler problem of matching 	D planar shapes in which the transformation only

consists of rotation� translation� and uniform scaling� The planar shape representation and match�

ing problem has been studied in the past� An overview of planar shape analysis techniques until

���� is given in ����� Various shape representation and matching methods are discussed in ������

Besides the general shape recognition methods� other techniques have been studied for matching

only planar shapes� One approach is to use rotation and translation invariant shape descriptions�

For example� the multiscale method uses scale space images to match contour curves ���� The

extended Gaussian image based method is capable of matching shapes with slight deformation ��	��

These transformation invariant shape descriptions often require the second derivatives of the shape

and therefore are less stable in the presence of noise�

The footprint method uses signatures which are obtained from an arclength�turning angle graph

to match two boundary curves under rigid motion� where a segment of image curve is matched to

the model by correlating the points along the curve ���� ����� Because arc�length sampling of curves

is used to establish correspondences� this method fails if the model and data curves are incomplete

�e�g� due to occlusion��

Some methods are capable of matching 	D shapes with partial occlusions� The HYPER system

uses the long edges in the polygonal approximation of the shape to generate hypotheses about the

pose of the shape� and then verify the transformation with other model�data correspondence pairs

���� A template matching algorithm for recognizing partially occluded parts� which uses boundary

saliency measures as weights to perform a weighted Hough transform� is described in ������

Iterative optimization methods can be used for matching shapes� For recognizing hand�written

digits� Hinton et al minimizes an energy function which includes both the deformation energy of a

spline model and the distance between the model and the data curve �����
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����� Registration of �D Shapes

In this subsection� we discuss techniques for the registration of D shapes� Commonly� D shapes

are described by range images� Purposes of D shape registration include matching a range image

of an object to a CAD surface model for inspection� matching partial views of an object for creating

a surface model etc�� There are wide industrial and medical applications for these tasks�

A typical approach from object recognition techniques is to identify and associate features� From

range images� the commonly extracted features are curvature extrema� Feature�based methods have

the potential of �nding an arbitrary registration without a priori knowledge� They also tolerate a

certain amount of occlusions in the data� But the e�ectiveness of these methods depends on the

reliability of the feature�s extraction and association procedures�

Descriptions based on global properties of the shape� such as moments� may be used for reg�

istration� This type of approach is likely to fail if the shape to be registered is incomplete or it

contains outliers� The registration method based on Spherical Attribute Image ���� can be regarded

as a global method� But a heuristically improved procedure may allow matching partial views to

some extent�

There is another type of approach to aligning shapes without explicitly interpreting features�

Typically� these methods start with an initial estimate of the geometric transformation between the

two shapes and they iteratively improve the estimate of the transformation� At each iteration� low

level primitives �such as raw data points or oriented point� are associated to targets on the model�

Then a least�squares solution of the transformation is derived by minimizing a distance measure

between the two shapes� A better estimate of the transformation leads to a better correspondence

between data and model� which in turn helps to improve the solution of the transformation� Upon

convergence of the iterative process� the overall transformation which registers the data shape to the

model is obtained� While the iterative methods avoid the di
cult feature interpretation step� they

have a disadvantage that an initial guess of the registration is required and only small errors can

be corrected during the iterative process� In some applications� an initial guess of transformation

is available from knowledge of camera locations �such as from odometry�� Iterative methods are

especially suitable for aligning free�form shapes described by range measurements because raw

measurements can be directly used for matching and the feature extraction step is not needed�

Besl and McKay described a general�purpose algorithm for shape matching called the iterative

closest point �ICP� algorithm ��	�� The algorithm is iterative� and each iteration contains the

establishment of point correspondences and the estimation of a rigid motion� First� each data point
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in the data shape is related to the closest model point in the model shape� A rigid motion is

estimated using these correspondences through a least�squares criterion� Then the data shape is

transformed according to the computed motion parameters� Finally� the correspondence is updated

between the transformed data and the model shape� Modi�ed versions of the ICP algorithm have

been proposed for registration of range images in the presence of outliers ���� ���� One disadvantage

of the ICP algorithm is that it converges slowly� It also appears to be ine�ective in solving the

rotation component of the transformation when the shape is curved�

If the shape is smooth and data are dense� it will be advantageous to use the tangent information

of the shape in the matching process� The tangent information may improve the reliability of

correspondence and the convergence speed� Chen and Medioni �	�� described such an iterative

algorithm to register range images of partial views of a D object� In each iteration of the algorithm�

a distance function is de�ned as the sum of the squared distances from the control points on one

shape to the tangent planes de�ned at the corresponding points on the other shape� The function

is minimized to derive an update to the transformation variables� Both the D rotation and

translation are treated as variables in the distance function and solved using least�squares� With

dense and smooth range images where tangent planes can be robustly de�ned� this algorithm is

very e�ective and e
cient in registering the two shapes� The algorithm requires a good initial guess

of the registration� Otherwise the iterative method may converge to a local �non�global� minimum

or fail to converge at all� Methods similar to this one have also been reported �such as ��� �����

To ensure successful convergence to global minimum in registration of range images� Blais and

Levine used a stochastic optimization method� simulated annealing� to minimize a cost function

����� One disadvantage of stochastic optimization methods is the high computational cost�

A model�based method for D localization using range image is presented in �	��� In this

approach� a model surface� which itself is constructed from a range image� is represented using

octree�spline� Then another range image is registered to the model by an iterative optimization

procedure which minimizes a least�squares distance from the image points to the model surface�

Once range images representing di�erent views of a surface are registered� the next issue is

merging multiple range images and creating a model of the surface� Some work on this issue are

reported in ����� ����
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����� Our Work

Shape registration is the theme of this thesis� We study primarily the registration of 	D range

scans which represent the contour shape of the environment� for the applications of robot pose esti�

mation and map building� Our two algorithms �presented in Part II� employ iterative optimization

techniques� In Part IV of the thesis� we examine our methods again for the registration of D range

surfaces and planar image contour curves�

Our �rst algorithm uses tangent lines or tangent planes de�ned at corresponding points on

two shapes to form a distance function and then minimizes the distance in order to align the two

shapes� It di�ers from typical iterative least�squares methods �such as the one used by Chen and

Medioni �	��� in that we do not include the rotation variable in the least�squares solution� Instead�

we search the distance function to �nd the optimal rotation while solving translation �and possibly

scaling� in an embedded least�squares procedure� Thus our algorithm is more robust in global

convergence while it also maintains the e
ciency of iterative least�squares methods� Our algorithm

also includes other enhancement over Chen and Medioni�s method in that we de�ne a distance

function which takes into account a cost for outliers and we also check for consistency in normal

directions in correspondence association�

Our second algorithm is based on iteratively associating point to point correspondences on the

two shapes and solving the transformation by a least�squares procedure� similar to the ICP al�

gorithm by Besl and McKay ��	�� However� in addition to choosing the closest point� we utilize

a second correspondence rule called the matching�range point rule to determine another corre�

spondence for a data point� By using two sets of correspondence points� our IDC �iterative dual

correspondence� algorithm can e�ectively solve for both rotation and translation� It also converges

signi�cantly faster than the ICP algorithm�



Part II

Matching Range Scans for Robot
Pose Estimation

�



�

For a mobile robot exploring an unknown environment� the only absolute reference is the one

de�ned by its initial position� When the robot moves to a new place� it can estimate its pose

either by using odometry or by comparing external measurements it obtained from its current pose

against those obtained from the initial pose� Since odometry estimate may lead to unbounded pose

error� it is important to compare sensor data for robot localization�

In this part of the thesis� we study the problem of matching 	D range scans for robot pose

estimation� Here a range scan is a set of points as detected by a range sensor which describes the

contour shape of the environment� We present two algorithms for aligning a scan with another scan

in order to derive their relative pose� This set of work has been previously reported in ���� ����

In Chapter � we introduce a matching algorithm which uses a combined strategy of solving

rotation with a linear search and solving translation with a least�squares method� We call it the

rotation search�least�squares algorithm� It uses computed tangent directions in the process of

aligning the two scans�

In Chapter �� we present another algorithm to solve the same scan matching problem� This

algorithm is based on iteratively associating correspondences between the two scans and solving

the transformation from the correspondence pairs� We call this the point correspondence based

algorithm�

In Chapter �� we present scan matching experiments using these two algorithms� Both simulated

and real examples are given�



Chapter �

A Search�Least�Squares Algorithm
for Matching Scans

��� Problem De�nition

In this chapter� we present an algorithm for matching range scans� The problem of robot self�

localization using range measurements has been studied in the past� as we reviewed in Chapter 	� A

notable example is the iterative algorithm proposed by Cox �	�� which matches range measurements

to line segments in the world model �see Section 	�	�� for a discussion of their method�� However�

our problem is di�erent from theirs in that we do not have an a priori analytical world model�

Rather than matching data to a model� we can only match one set of data to another� Moreover�

we consider a general case that the world contour may contain curves instead of being polygonal�

����� Pose Estimation by Aligning Scans

A range scan is a list of points corresponding to the intersection points of a laser beam with objects

in the robot�s environment� The laser beam rotates in a horizontal plane and emanates from a sensor

mounted on the robot� Thus a range scan describes a 	D slice of the environment� Points of the

range scan can be speci�ed in a polar coordinate system whose origin is the location of the sensor�

and the reference axis for the laser beam direction is the home orientation of the rotating range

sensor� Each scan point is represented by the laser beam direction� and the range measurement

along that direction� We refer to �O�x� y�� ��� as the scan pose� where O is the position of the sensor

in a global coordinate system and �� is the sensor home orientation�

Suppose that the robot starts at pose Pref �which is our reference pose� and takes a scan �call

it the reference scan Sref�� The robot then moves through a static environment to a new pose Pnew

�
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and takes another scan �call it the new scan Snew�� The approximate di�erence of pose Pnew from

pose Pref �i�e� the relative translation and rotation� is usually known from odometry information�

However� this information is often imperfect due to wheel slippage� Our task is to determine the

exact di�erence of pose Pnew with respect to pose Pref � by aligning the two scans�

The matching problem is formulated as the following� Initially assuming that the pose of Snew

is P �
new� �nd a rotation � and a translation T for Snew such that� after the transformation� Snew is

aligned with Sref �

����� Criterion for Matching Scans

A scan is a sequence of points which represent the contour curve of the local environment� To align

two scans� we implicitly align the two contour curves� However� due to the existence of random

sensing noise and self�occlusion� we may not be able to perfectly align the two scans even if we

know the exact relative pose between them� There exist two types of discrepancies between the

scans�

In the �rst type� there are small deviations of scan points from the true contour due to random

sensing noise� These deviations can be characterized by an error distribution function which de�

pends on the sensor� Another type of discrepancy is the gross di�erence between the scans caused

by occlusion �i�e� some area is only visible in one scan but not in the other�� We regard this kind

of discrepancy as an outlier which cannot be described by the sensing error distribution�

Naturally� one way of aligning two scans is to �nd a relative transformation which gives the best

alignment of the overlapping part in the sense of minimum least�squares error� while ignoring the

outlier parts� We can formulate this matching criterion as the minimization of a distance measure

between the two scans� as a function of the rotation and translation� To exclude outliers in de�ning

the distance measure� we can apply the concept of robust statistics ��	� ���

����� Iterative Scan Matching Algorithms

We will study scan matching algorithms which use iterative optimization� This type of algorithm is

typically based on de�ning some distance function between the two scans and iteratively minimizing

the distance function�

Two types of constraints are usually used in de�ning the distance function� One is based on

the distances of point correspondence pairs� The other is based on the normal distances from data

points to lines or tangent lines on the model� If the model is smooth and continuous� the point to
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tangent line constraint should lead to better convergence than the point to point constraint� But

if the model consists of noisy points� a �tting step is required to derive lines�

Once the distance function is de�ned� we need to determine a set of transformation variables

which minimizes the distance function� Because the distance function is generally not a smooth one�

gradient based search methods are not applicable� One possible way of searching for a minimum is to

sample the search space� Stochastic methods �such as simulated annealing� may also be applied to

minimize the non�smooth distance function� These methods are usually computationally expensive�

Another commonly used method is �xed�point iterations� It does not explicitly minimize a distance

function� Instead� it solves for a least�squares update and applies it to reduce pose error� at each

step of the iteration� This technique is very e
cient and also e�ective� But it requires a good initial

guess to ensure convergence�

In our search�least�squares method presented below� we heuristically combine search and least�

squares updates� The idea is to compromise the global convergence of a search algorithm and the

e
ciency of an iterative least�squares algorithm� The distance function is based on point to tangent

line distances� In next chapter� we present another algorithm which is based on minimizing point to

point constraints� A �xed�point iteration method will be used� Later in the experiments presented

in Chapter �� we also compare our algorithms with another method which is based on point to line

constraints�

��� Search�Least�Squares Matching Algorithm

Our approach to the scan matching problem is to de�ne a distance measure between the two scans

and search for an appropriate rigid transformation which minimizes the distance� Although the

search space is essentially a three�dimensional one �rotation and two�dimensional translation�� we

try to reduce the search problem to an e
cient one�dimensional search plus an embedded least�

squares solution� by carefully formulating the distance measure�

The idea of the matching method is brie�y described below� First� we compute the tangent

directions on the scans by �tting lines to sets of consecutive scan points� Then we associate

approximate correspondences of scan points� assuming a known rotation angle � �but not the

translation T �� From each pair of corresponding points� we formulate a linear equation about the

unknown translation T � Then� by using all correspondence pairs� we de�ne a least�squares model

for T which also represents a matching distance as a function of �� Outliers can be detected using

gates and they contribute a constant cost to the distance measure� The �nal step is to search for a
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rotation � which minimizes this distance function� The translation T is solved through the least�

squares method� We refer to this method as rotation search�least�squares method to distinguish it

from pure least�squares based �xed�point iteration type of methods�

The steps of the algorithm are summarized as the following�

�� Project the reference scan Sref to the pose P �
new so that the two scans are represented in the

same coordinate system� Discard those points on Sref which are likely not to be visible from

the new pose�

	� Compute the tangent directions on each scan by �tting lines to a neighborhood of sample

points� Discard unreliable tangent lines �such as at corners or depth discontinuities��

� Decide on a trial value of the rotation � from a global search procedure�

�� For each point on Snew� use the rotation angle � to de�ne an approximate corresponding

point on Sref and compute the point through interpolation� Check the correspondence with

some thresholds in order to reject outliers�

�� Use all the correspondence pairs to construct a least�squares model for T and �nd the least�

squares solution� De�ne a matching distance as a function of � from the least�squares residual

and the outlier penalties�

�� Update the rigid transformation by the least�squares solution of T �

�� Repeat steps �� and �nd the rotation � which minimizes the matching distance function�

Also obtain the overall translation by integrating the individual updates�

The algorithm will be explained in detail in the following sections�

��� Projection of Reference Scan

The reference scan Sref is originally de�ned at pose Pref � We would like to project it to the

�approximate� new pose P �
new to emulate the world as viewed from P �

new� This is easily done by a

change of coordinate systems for the points in Sref �

After projection� we determine whether each point in Sref is visible from P �
new based on the

bounded obstacle assumption and opaque assumption� ��� Assume that initially the points in Sref

are ordered by their polar angles �say counterclockwise�� After projecting the points to the new
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�a� �b�

occluded points

Pref P �
new

P �
new

Figure ��� Scan points are considered invisible after projection if �a� their angles are in the wrong
order or �b� there are other points blocking the rays�

pose� if the new polar angles of some points are in the wrong order �i�e� become clockwise�� then the

surface containing these points is facing away from the sensor and thus the points are not visible�

�	� Along the rays from the new origin P �
new to the points� if there are other points �either from

Sref itself or from the new scan Snew� close enough to the rays� then the points further from the

origin are considered hidden �see Fig� �� for illustration�� The points determined as nonvisible are

discarded�

Finally� we obtain a set of points in Sref which are ordered by angles� The projected scan can

be readily used as a reference for registering Snew�

��� Fitting Tangent Lines

At each sample point on a scan� we compute an approximated tangent line by �tting to a neigh�

borhood of sample points centered at that point�

�

�

O
�

Figure �	� Parameters of a line �t to a set of points�

A line �t to a set of points �xi� yi��s in neighborhood of size n is de�ned by the parameters �
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�normal distance from the origin to the line� and � �direction of a normal to the line� �see Fig� �	�

which minimize the following error�

E�t �
nX
i��

�xi cos�� yi sin�� ���� ����

A closed�form solution can be derived as the following�

� �
�

	
tan��

�	Sxy
Sy� � Sx�

� �  x cos��  y sin��

and

min
����	

�E�t� �
�

	

�
Sx� � Sy� �

q
�S�

xy � �Sy� � Sx��
�
�
�

where

 x �
�

n

nX
i��

xi

 y �
�

n

nX
i��

yi

Sx� �
nX
i��

�xi �  x��

Sy� �
nX
i��

�yi �  y��

Sxy �
nX
i��

�xi �  x��yi �  y��

Although we �t a line at every sample point� some of the lines should not be considered as

tangent lines if the world contour itself is not smooth enough near these points� Speci�cally� we

want to exclude sample points near corners or occlusion boundaries�

Two indicators can help us to recognize these non�smooth regions� First� we check the incidence

angle � � � �� is the polar angle of the sample point and � is the computed normal direction� see

Fig� �	�� A high incidence angle indicates that either the sensing direction is nearly parallel to a

surface so that the range measurements are unreliable� or there is a depth discontinuity �occlusion

boundary��

Another value we check is the �tting error min�E�t� which indicates the co�linearity of the

points or the smoothness of the local region� The error is usually small for straight lines or smooth
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Figure �� The points labeled by circles are discarded� Tangent lines are computed at all the other
points� Only some of these tangent lines are shown for clarity�

curves� but large at high�curvature points or highly noisy regions� Therefore� a large �tting error

usually means that the tangent line is poorly de�ned�

We use the above two indicators to reject unreliable �tting results� Only when both values

are within prede�ned limits� we consider the �tted line as the tangent line at the current sample

point� Otherwise� we regard the tangent line to be unde�ned� Fig� � shows an example of using

incidence angle and �tting error to detect points where tangent lines are unreliable� We compute

tangent lines at all the other scan points�

It is interesting to note that the points we discard for being unreliable in de�ning tangent

�which are likely corners and occlusion boundaries� can be considered as features� It is possible

to do feature�based matching using these points� provided that the correspondences between the

features on the two scans can be determined� As the number of identi�able features in the scan

is far less than the number of available data points� we believe that the feature�based solution is

less accurate and less robust than our method which uses all the data points where a tangent is

de�ned�

��	 Correspondence De�nition

We de�ne the correspondence of scan points and set up an equation based on the values of a pair of

corresponding points� For the convenience of analysis� we initially regard the scans as continuous
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curves rather than sets of discrete points and we also ignore sensing noise or occlusion� until we

instantiate the equation for the actual scan points�

Once we have projected Sref to the pose P �
new� we represent the two scans in the same coordinate

system �de�ned by �T�� ����� The two scans di�er only by a rotation � and a translation T �

�Tx� Ty�
t�

Let P� be a sample point on Snew and let P� be the true corresponding point on Sref �i�e� they

both represent the same physical point in the world�� The two points are related by

P� � R�P� � T� ��	�

where R� �

�
cos� � sin�
sin� cos�

�
is the rotation matrix� Consider the tangent line de�ned on Snew

at P� and another tangent line on Snew at P�� Let the normal directions of the two tangent lines

be �n� and �n�� respectively� Then we can derive from Eq� �	 that

�n� � R��n� ���

�n� � P� � �R��n�� � �R�P�� � �R��n�� � T� ����

Our strategy is to use Eq� �� to estimate the translation T � given the rotation � and the two

scans� However� we note that for a point P� on Snew� the exact correspondence point P� on Sref

also depends on T � Therefore� we want to derive an approximated version of Eq� �� which does

not use the exact correspondence point P��

We will choose a point P � on Sref which is close to P�� There are many choices of selecting P �

based on R�P� �which is P� after correcting the rotation�� such as the closest point from R�P� or

the intersection of the normal line at R�P� with Sref � For the convenience of searching� we choose

P � as the intersection of the extension of vector R�P� with scan Sref �see Fig� �� for illustration��

Let �n� be the normal direction of the tangent line at P � on Sref � If scan Sref is smooth and if P �

is not too far away from P�� we have the approximate relationships�

�R��n�� � T � �R��n�� � �P � � R�P�� ����

�n� � T � �n� � �P � � R�P��� ����

The approximation errors of the above relationships are of the order O�x�� where x is related to

jT j�jP�j �see Appendix A for derivation�� Therefore� if jT j � jP�j and if the contour curve is

smooth� the approximation error is small� We can combine the above two relationships to form a
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Figure ��� Illustration of point relationships�

more accurate approximation whose error is of the order O�x�� �see Appendix A��

�R��n� � �n�� � T � �R��n� � �n�� � �P � �R�P��� ����

Eq� �� is a linear equation about T in the form�

CxTx � CyTy � D� ����

It is established based on the point P� and the rotation angle �� Notice that� given P� and �� we

can determine P � without using T � The coe
cients Cx� Cy � D can be computed from � and the

parameters of the tangent lines�

Now if we instantiate Eq� �� for np points on Snew� we can de�ne an error function�

E��� T � �

npX
i��

�Cx
i Tx � Cy

i Ty �Di�
�� ����

This error indicates the �distance� between the two scans as a function of � and T � For a given ��

we can solve for T which minimizes the above distance� in terms of �� Moreover� the least�squares

error minT E��� T � can be considered as a matching distance function which is primarily de�ned

by the rotation �� Our �nal solution is based on searching the function for an optimal � such that

the least�squares error is minimum�
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��
 Correspondence Search

Considering the fact that Sref is a discrete set of points� we can obtain the approximate correspon�

dence point P � for P� by interpolation� Let the polar angle of P� be �� then the point P � is at

direction � � �� Note that the points in Sref are ordered by their polar angles� We can locate two

consecutive points on Sref whose angles enclose � � �� Then we linearly interpolate for both the

range and the normal direction of P � across the two points� This correspondence search is very

e
cient� We can implement the search for all correspondence pairs in linear time with respect to

the number of points in the two scans�

Correspondence points which di�er greatly in their normal directions or positions are considered

as outliers and they are not included in the least�squares solution� Typical causes of outliers are oc�

clusion or poor tangent estimation� We empirically choose thresholds 	 and Hd� A correspondence

pair is accepted only if both of the following conditions are met�

�R��n�� � �n� � cos	� jDij � Hd� �����

Otherwise� we consider the pair as outlier and discard it� We also exclude the points if they are

near a corner or a depth discontinuity �as detected by the line �tting procedure��

��� Optimization

We de�ne a total matching distance for a given rotation � based on the least�squares error �Eq� ���

and the number of outliers� Let np be the number of matching pairs of points and no be the number

of outliers� the total matching distance is de�ned as�

Ematch��� �
�

np � no
�min

T
E��� T �� noH

�
d�� �����

where H�
d is the constant cost of an outlier �note thatHd is the threshold that detects outliers�� The

e�ect of the thresholding and adding �xed cost for outliers to the least�squares error is approximately

equivalent to using a truncated quadratic robust estimator to de�ne the distance measure� The

advantage of using a robust estimator is that a small number of arbitrarily bad outliers do not lead

to an arbitrarily bad estimation ��	� ���

The matching distance in Eq� ��� is a function of �� Implicitly� it is also a function of the

translation T �because the least�squares solution T may be di�erence from the true translation��

But the variable � is dominant� We expect that the distance function should have a global minimum
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Figure ��� Matching distance measure as a function of rotation angle� in an example� The solid
curve is the distance function when translation is zero� The dashed curve is the distance function
when translation is ���	� ���� meters �comparing with dimension of the environment of �� meters��

at the true rotation angle and that the function is unimodal near the minimum� From the plot of a

typical Ematch��� �Figure ���� we can see that the distance function has a single prominent valley�

Furthermore� if there is little translation� it has a well�de�ned lowest point�

We use the search by golden section method ���� to �nd the minimum along the rotation

dimension in the distance function� We choose this method because of its e
ciency in terms

of required function evaluations �considering that the distance function is not di�erentiable and

therefore gradient�based search methods are not applicable�� The search by the golden section

method is stated as follows� Assume that the global minimum is enclosed in an interval ���� ����

The �rst trial point is set at x� � �� � �������� � ���� At every step� a new point is chosen at

x� � �� � �� � x�� Then depending on whether the function has a lower value at x� or x�� the

better point becomes the new x� and the worse one replaces �� or �� to form a new interval which

still encloses the minimum� After su
cient iterations� the �nal interval will be narrow enough to

localize the minimum point�

Due to the residue in the translation� the optimal rotation found by the one�dimensional search

may be biased� To address this problem and reduce the bias� we correct the translation by the

least�squares solution every time we evaluate the distance function� As the search narrows down

the rotation� the translation residue is also getting smaller and so is the bias�
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From the plot� we can see that the valley of the curve is within an interval of about ��� radians

�� degrees� in width� Beyond this interval� the curve is mostly �at� We require this initial interval

to start the search procedure� However� in case the initial rotation error is very large or completely

unknown� we can determine an initial interval by coarsely sampling the function at some rotation

values� For example� we can sample the function at every �� degrees �resulting in a total of 	�

samples� and choose two adjacent points which have the lowest function values to form an interval�

This e�ectively allows our method to handle arbitrarily large rotations�

The amount of translational error handled by our method depends on the thresholdHd� Usually

the algorithm is good enough to handle the residuals of the odometry estimates�

��� Discussion

The rotation search�least�squares algorithm we presented in this chapter has the following prop�

erties� First of all� the algorithm directly matches points from one scan to points on the another�

Thus it allows robot pose estimation in unknown environments� This is an improvement over

Cox�s method �	�� which requires known environments� Our algorithm does not use an explicit

linear model� Thus smooth curved shapes can be aligned in the same way as linear shapes� The

algorithm is capable of handling a certain amount of sensing noise and occlusion�

An important point of the algorithm is that it uses a search procedure to minimize the distance

function with respect to the rotation angle� An alternative approach would be to de�ne a distance

function �e�g� a sum of squared distances from point to tangent lines� with respect to both rotation

and translation� and iteratively �nd least�squares solutions to all the variables� Because the distance

function may not be smooth or convex� such an iterative algorithm may converge to wrong local

minimum or not converge at all if the initial guess is poor� By excluding the most non�linear

variable� the rotation angle� from the distance function� the convexness of the function near global

minimum is much improved� Then� by formulating it as a search problem rather than relying on

�xed�point iterations� our algorithm is more robust in �nding the global optimum �we can sample

the search space if necessary�� On the other hand� we only search for the optimal rotation but

solve for the translation in an embedded least�squares procedure� This is much more e
cient than

searching in all variables�

By including the costs for outliers in the distance function� our search procedure is able to

determine a matching based on non�overlapping� For example� in a circular environment where

part of the boundary is missing �Fig� ���� we can align two scans based on the missing region�
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Figure ��� In an incomplete circular environment� it is possible to recover the rotation by aligning
the two arcs using our search algorithm� But a least�squares method which does not use the
non�overlapping information cannot not solve this rotation because of symmetry�

However� an iterative least�square method which uses overlapping correspondence only cannot

recover the rotation component because of the rotational symmetry�

We also mention that our method directly uses low�level sensor data instead of localized features

in the matching process� Therefore� some problems with feature�based matching methods� such

as unreliable feature extraction� insu
cient number of features� or high complexity in feature

correspondence� are avoided� As a price to pay� the algorithm requires an initial estimate in the

relative translation between two scans� This initial estimate is typically available from odometry

or may be derived from some global registration procedure�

Extensive experiments of matching range scans using this algorithmwill be presented in Chapter

�� Both real range data and simulated scans will be used in the experiments�
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Point Correspondence Based
Matching Algorithm

��� General Approach

In the previous chapter� we presented an algorithm for estimating the new robot pose with respect

to a reference pose by matching the range scans taken at these two poses� We now present another

method to solve the same problem� We call this method the point correspondence based matching

algorithm as it uses point to point correspondences to align the scans� In Chapter �� we will

compare the two algorithms and combine them into a single two�staged method�

The point�based matching algorithm is iterative and is based on associating point to point

correspondence� The idea of the method is the following� For each point Pi on Snew� we use

a simple rule �independent of the actual rotation and translation� to determine a corresponding

point P �
i on Sref � Then from all the correspondence pairs of points� we compute a least�squares

solution of the relative rotation and translation� This solution is applied to reduce the pose error

between the two scans� We repeat this process until it converges�

The least�squares solution is derived by minimizing the following distance function which is

de�ned on n pairs of correspondence points�

Edist��� T � �
nX
i��

jR�Pi � T � P �
i j�� �����

We can derive a closed�form solutions for � and T as the following�

� � tan��
Sxy� � Syx�

Sxx� � Syy�

��
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T �  P � � R�
 P

where

 P �
�

n

nX
i��

Pi  P � �
�

n

nX
i��

P �
i�

Sxx� Sxy�

Syx� Syy�

�
�

nX
i��

�Pi �  P ��P �
i �  P ��t�

The central issue of the algorithm is then to de�ne a sensible rule to determine correspondences

without knowing the actual rotation and translation�

��� Rules for Correspondence

We describe the correspondence rules in the following sections� For convenience� we will regard

the reference scan Sref as a continuous curve and refer to it as the model� We will consider the

correspondence search on a discrete scan later�

����� Closest�Point Rule

A commonly used rule is to choose the closest point on the model as the correspondence for a

data point� We refer to this rule as the closest�point rule� Fig� ����a� shows an example of �nding

the correspondences for a set of points in an elliptic model� using the closest�point rule� Besl and

McKay described a general�purpose iterative closest point �ICP� algorithm for shape registration

based on this rule and they proved that the ICP algorithm always converges monotonically to a local

minimum with respect to the least�squares distance function ��	�� We observe from experiments

that� if the rotation is small� the ICP algorithm is good at solving the translation�

One disadvantage of the ICP algorithm is that it converges very slowly� Especially� when the

model is curved� the correspondences found by the closest�point rule may contain little information

about the rotation� As seen from Fig� ����a�� the vectors joining the correspondence pairs have

very inconsistent directions and they tend to cancel out each other when used together to solve for

the rotation� Moreover� regardless of the type of the model� the convergence speed of the algorithm

is always very slow when the distance function approachs a local minimum�

To accelerate the ICP algorithm� Besl and McKay used a line search method to heuristically

determine the transformation variables based on their values in two or three recent iterations�

Although this improves the convergence speed near a local minimum� the problem of obtaining a
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a b

Figure ���� Use rules to determine correspondences �which are joined by line segments in the �gure��
�a� Use the closest�point rule� �b� use the matching�range�point rule� The model is the ellipse� The
data points are labeled by small circles� The big circle in the center is the origin�

poor solution for the rotation component still exists� Therefore� the improvement in convergence

speed is limited� Moreover� in order to apply the line search method� an implicit assumption is

made about the smoothness of the least�square distance function� But this is typically not true if

the number of correspondence pairs changes during the iterations �as a result of rejecting outliers��

����� Matching�Range�Point Rule

We propose a di�erent rule which �nds the correspondences in such a way that they signi�cantly

reveal the rotation component�

Consider a data point P and its corresponding point P � � R�P�T � If we ignore the translation�

we have jP �j � jP j� On the other hand� the polar angle � of P and the polar angle !� of P � are

related by !� � � � �� This implies that the correspondence of P under a rotation is a point which

has the same polar range as that of P � and the polar angles of the corresponding points di�er by

the rotation angle �� Now in the presence of a small translation� we can still expect that the point

P � with the same range as that of P is possibly a good approximation to the true correspondence

of P � and this approximate correspondence provides rich information about the rotation angle ��

To ensure that the rule �nds a unique and reliable correspondence� we only search for the

matching�range point within a local region of the model near P � Suppose that we can estimate a

bound B� for the rotation �� i�e� j�j � B� � We have� !� 	 �� � B� � � � B� �� This means that P �

should lie within the sector bounded by � 
 B�� Therefore� we propose the matching�range�point

rule as the following� For a data point P � its corresponding point is P � on the model where P �
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� �B�

�
O

P

� �B�

P �

model

Figure ��	� Matching�range�point rule� For a point P � the corresponding point P � on the scan lies
within the sector and jOP �j is closest to jOP j�

satis�es j!� � �j � B� and jP �j is closest to jP j� The rule is illustrated in Fig� ��	�

Fig� ����b� shows an example of using the matching�range�point rule to �nd correspondences

in the elliptic model� We can clearly see that the vectors joining the correspondence pairs con�

sistently indicate the rotation direction� Therefore� the least�squares solution should be a good

approximation to the true transformation� especially in the rotation component�

Based on this new rule� we design an iterative matching�range�point �IMRP� algorithm� In this

algorithm� the parameter B� controls the size of the neighborhood to be searched for a correspon�

dence and also the maximum rotation possibly solved in one iteration� Thus it will be best to

choose B� to be close to the rotation residual at every iteration� We empirically generate B� using

an exponentially decreasing function of the form� B��t� � B����e
��t� It is also possible to use

the least�squares solution of � in the current iteration to determine the value of B� for the next

iteration�

A comparison of the performance of the ICP algorithm and the IMRP algorithm is illustrated

in Fig� ��� We notice that the IMRP algorithm converges faster than the ICP algorithm in

estimating the rotation� For the translation part� the IMRP algorithm is initially slower but it

eventually converges faster than the ICP algorithm�

The reason that the translation residuals from the IMRP algorithm are initially reduced slowly

is that the matching�range�point rule only tends to in�uence the translation component when the

sector width B� becomes small enough� In the early iteration when B� is large� the algorithm tends

to explain the displacement between the correspondence pairs by rotation rather than translation�
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This phenomenon may present a potential problem to the stability of the algorithm if we need to

dynamically reject outliers using a threshold� as good correspondences may be falsely rejected as

outliers due to the incorrect translation� We will study more about outlier detection later�

����� Combining the Two Rules

It is desirable to combine the two rules in order to achieve both the convergence speed of the

matching�range�point rule and the stability of the closest�point rule� We propose an iterative dual

correspondence �IDC� algorithm which uses both rules� as the following�

�� In each iteration do the following steps�

	� For each data point Pi�

�a� apply the closest�point rule to determine a correspondence point P �
i for Pi�

�b� apply the matching�range�point rule to determine a correspondence point P ��
i for Pi�

� Compute the least�squares solution ���� T�� from the set of correspondence pairs �Pi� P
�
i ��

i � �� � � � � n �which are obtained using the closest�point rule��

�� Compute the least�squares solution ���� T�� from the set of correspondence pairs �Pi� P
��
i ��

i � �� � � � � n �which are obtained using the matching�range point rule��

�� Form ���� T�� as the solution for the transformation in the current iteration�

The basic idea of the above algorithm is to take the translation component from the closest�point

rule solution and the rotation component from the matching�range�point rule solution to form the

current solution for the transformation�

The combination of the two rules appears to achieve signi�cantly better results than each of

the individual rules� It does not only ensure the stability of the iterations� but also increases the

convergence speed signi�cantly� In fact� the two rules reinforce each other by reducing di�erent

components of the transformation� so that each of them can be more e�ective in the following

iteration� We notice that the IDC algorithm is insensitive to the choices of parameter B� �

Fig� �� illustrates the residuals of the transformation components during the iterations of the

three algorithms� The model and the data points in this example are the ones given in Fig� ����

where the initial rotation is �� degrees� the initial translation is ���� �� units �the width of the
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elliptic model is ���� units�� Clearly� the IDC algorithm reduces the residuals much more quickly

than the other two single�rule algorithms�

We experimentally estimate the rate of convergence for each of the three algorithms using the

above example� The iterative closest point algorithm appears to have a sublinear convergence rate�

The ratio of error residuals �C � ei���ei� gets larger and larger and it approaches to �� In fact�

after � iterations� C is at ������ For both the iterative matching�range point algorithm and the

iterative dual correspondence algorithm� the rate of convergence seems to be linear� The error ratio

for the iterative matching�range point algorithm is C � ������ the error ratio for the iterative dual

correspondence algorithm is C � ������

��� Matching Scans

We will use the IDC algorithm to register a new scan Snew to the reference scan �model� Sref�

Considering that Sref is discrete� we need to interpolate in order to locate the correspondence point

for each of the two rules�

First� we consider the matching�range�point rule� Let P �r� �� be a point on Snew� We want to

�nd another point P ��!r� !�� on Sref according to the matching�range rule� Since the points in scan

Sref are parameterized in a polar coordinate system� we choose to linearly interpolate ��r from �

between two points�

Let P����� r��� P����� r�� be two adjacent points� the interpolation function !r�!�� is�

!r � �

��
�

r�
�

!� � ��
�� � ��

�
�

r�
� �

r�
�

�

�
r�r���� � ���

r��!� � ��� � r���� � !��
���	�

This interpolation scheme is approximately equivalent to connecting the two points with a line

segment if j�� � ��j is small� This can be seen by comparing Equation ��	 with the equation of a

straight line passing through P� and P��

!r �
r�r� sin��� � ���

r� sin�!� � ��� � r� sin��� � !��
� ����

The interpolation in Equation ��	 also has the advantage that the interpolated !r is a monotonic

function of !�� it is easy to inversely compute !� for a given !r�

The region where we need to search for P � consists of pairs of points whose angular intervals

overlap with �� �B� � � � B� �� Let ���� ��� be one such interval� We �nd the intersection �!��� !��� �
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Figure ��� Comparison of iterative algorithms� �a� Rotation residuals from the three algorithms
over � iterations �note the curve for the IDC algorithm is barely visible as it is almost zero after
three iterations�� The initial rotation angle is � degrees� �b� Magnitudes of translation residuals�
The magnitude of initial translation is ���� units� The model and data set are given in Figure ����
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���� ��� � �� � B� � � � B� �� Then we use Eq� ��	 to interpolate two points P �
��
!��� !r�� and P �

��
!��� !r��

at the ends of the new interval� If !r� � r and !r� � r� or !r� � r and !r� � r� one of P �
� and P �

�

�whose polar range is closer to r� is a candidate for P �� In this case� we still need to check other

intervals for a potentially better candidate� But if !r� � r � !r�� or !r� � r � !r�� we can �inversely�

interpolate for a P � which has the same range as P �

Now we consider the closest�point rule� For consistency with the matching�range rule� we

slightly modify the closest�point rule such that it chooses the closest point P � within the sector

�� � B� � � � B� � only as the correspondence of P � The interpolation here is simply connecting

two adjacent points with a line segment� In a similar way as in the search for a matching�range

correspondence� we search all the angular intervals and �nd a P � by checking the distance from P

to the line segments �or end�points��

The search required to determine all the correspondence pairs can be e
ciently implemented

in linear time with respect to the number of points on the two scans� by considering the fact that

all the points in the scans are ordered by their angles�

��� Detecting Outliers

Due to occlusion� we may not �nd appropriate correspondence points for some data points� We

need to identify these outliers and exclude them from the least�squares distance function� Assume

that we have a bound Br for the maximum displacement resulting from translation for a pair of

corresponding points P and P �� i�e� jjP �j � jP jj � Br� We use this condition to test for outliers�

For a pair of points found by one of the rules� we accept them as a correspondence pair only if the

above condition is met� The threshold Br can be selected as the kth largest distance among all the

correspondence pairs� according to a predetermined constant fraction �p�tile��

��	 Convergence of Iterative Algorithm

The iterative algorithm terminates when the change in the least�squares errors in su
ciently small�

In practice� we �nd it su
cient to �x the number of iterations to about ���	��

The iterative process in the algorithm resembles �xed�point iterations� Since the zero pose error

is a stable �xed�point for the process� we expect that once the iteration converges that the �nal

solution should be very accurate� To ensure convergence a good initial estimate �small initial pose

error� is required by the algorithm� Usually� we can use odometry to provide this initial estimate�
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Another possibility is to �rst apply the rotation search�least�squares method which we presented in

Chapter  to obtain a relatively good registration before applying the point�based method� We �nd

from experiments that this strategy usually guarantees the convergence of the point�based method

and the point�based method also usually improves the accuracy of the solution�

��
 Discussion

We have presented a new iterative dual correspondence �IDC� algorithm which uses both the

closest�point rule and the matching�range�point rule to associate correspondences for data points�

The cost of applying the matching�range�point rule is about the same as the cost of applying the

closest�point rule� Therefore the complexity of one iteration of the IDC algorithm is about twice

as that of one iteration of the ICP algorithm� However� the IDC algorithm converges much faster

than the ICP algorithm� especially in solving the rotation component�

In next chapter� we will present experiments to demonstrate that IDC algorithm is e�ective in

matching range scans� Later� in Part IV of the thesis� we will also show that the IDC algorithm

can be used for registration of range images and planar image shapes�



Chapter �

Scan Matching Experiments

	�� Combining The Two Algorithms

We have presented two algorithms� the rotation search�least�squares algorithm and the iterative

point correspondence algorithm� for matching range scans� The rotation search�least�squares is

more robust as it uses tangent information in aligning the two scans� Using a search procedure

instead of �xed�point iterations also allows the algorithm to robustly solve for the transformation

even in the presence of a large initial pose error� However� because the matching distance function is

not smooth and we only use a simple one�dimensional search procedure to do the minimization� the

solution given by this algorithm may not be highly accurate� On the other hand� the iterative point

correspondence based algorithm gives a more accurate solution through its �x�point iterations� as

long as it converges�

We choose to sequentially combine the two algorithms into a two�staged algorithm� In the �rst

stage� we apply the search�least�squares algorithm to reduce a possibly large initial pose error� In

the second stage� the estimation result from the �rst stage is used as the initial guess for the point

correspondence based algorithm� Since the result from the �rst stage is usually quite good� the

convergence in the second stage can be ensured� In the meanwhile� an improvement in estimation

accuracy can be achieved from the second stage�

In this chapter� we will present experimental results of matching scans using this two�staged

algorithm�

��
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	�� Sensing Strategy

If we have control over the sensing directions �as is the case with the ARK sensor ������ we can

choose to take a range scan in such a way that the sampling points are evenly distributed in space�

In other words� we want the distances between adjacent points to be approximately equal� This is

more e
cient than a uniform sampling of orientation where the interval width is proportional to

the ranges of the points from the sensor�

Assume that the current sample point is P ��� r�� We will decide the direction of the next shot�

� �"�� such that the new point is a �xed distance d away from P � If we approximate the contour

curve near P by its tangent line �which has parameter ��� ���� the increment in sensing direction

is�

"� � arctan
d cos�� � ��

r � d sin�� � ��
� �����

where the angle � � � can be computed by the following�

� � � � arctan�
�

r

dr

d�
�� ���	�

Note that the derivative dr
d�

can be estimated from recent range measurements� Combine the above

two equations and take a �rst order approximation �for a small d�� we get�

"� � dq
r� � �dr

d�
��
� ����

To avoid in�nitely small increments� we can prede�ne a minimum value for "�� Now ��"� is the

direction to take the next measurement�

This sensing strategy is used to generate both simulated and real scan data in our experiments�

	�� Experiments with Simulated Data

Range measurements are simulated for various environments in order to test the matching algo�

rithms� We model the environments with lines and spline curves� Sensing noises are modeled as

additive random variables� For a given environment model� we can simulate a range scan from any

robot pose�

We present a series of experiments using simulated range data� In each experiment� we choose

an environment model and two poses� Pref and Pnew� from which to take the scans Sref and Snew�

The pose error is generated randomly where � is uniformly distributed in ����	�� ��	�� radians
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�
����� and T is uniformly distributed in a disk of radius �� centimeters �comparing with the

dimension of the environment of �� meters�� Sensing noise is assumed to be uniformly distributed�

We vary the maximum sensing noise in each experiment�

In each experiment setting� the matching process was run ���� times �with randomly generated

initial pose error and sensing noise as described above�� We computed the standard deviations

�from the theoretical zero means� of the residuals of the variables ��� Tx� and Ty� resulting from

each matching process� The standard deviations of the residuals after the �rst stage �rotation search

algorithm� and after the second stage �iterative point correspondence algorithm� were recorded� In

the matching process� the number of iterations was �xed at �� in each of the two stages�

The results from six experiments are listed in Table ���� In each experiment� we list the

environment model� the maximum sensing noise� and the standard deviations of the residuals� We

also plot all the translation residuals from each of the six sets of experiments �Fig� ����� Each

translation residual is shown as a dot in the x�y plane� The dots form a cluster around the origin�

We have some observations from the statistical results� ��� The pose error residuals are very

small compared with the sensing noise� The standard deviation of translation residuals is about ��#

to 	�# of the standard deviation of sensing noise� The rotation residuals are well within one degree�

With a typical sensor accuracy of �cm� the rotation residuals are within one tenth of a degree� �	�

The algorithm behaved robustly over thousands of runs� �� The second algorithm �iterative point

correspondence algorithm� gave signi�cantly more accurate estimates of rotation than the �rst

algorithm� But the two methods are equally good in �nding the translations �the second algorithm

is slightly better when the sensing noise is relatively small or when the environment is mostly linear

�experiments �� 	� �� ��� The residuals appear to be normally distributed with approximately zero

means� ��� When the sensing noise becomes large �experiments � and ��� the algorithm degrades

gracefully� However� experiment � �where the sensing noise is set to 	�cm� appears to have reached

the limit of the algorithm� We experienced a few failure cases where the iterative algorithm did not

converge� There were about �� such cases among the ���� runs� The failure is partly caused by the

step of rejecting outliers using thresholds� Raising the threshold level may improve convergence�

But it may result in bias in the estimation because of outliers� High sensing noise also leads to bad

estimation of local contour directions� Thus the correspondence association step �which involves

interpolation� is subject to large error�

We plot three typical matching examples from the above experiments� In each example� we

show the two scans which are misplaced with respect to each other� Then the same two scans after
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alignment are shown� In the �gures� the reference scan is plotted with x�s� The big X at the center

is the actual pose Pref of the reference scan� The new scan to be registered is plotted with circles�

The big circles with arrows are the poses of the new scan before and after registration �that is�

P �
new and Pnew��

Example � �Fig� ��	� is a typical case from experiment � Here the rotation is ��	� radians

������ and the translation is �����	�� centimeters� Notice that there is a substantial portion of

the world �about one third� which is visible only in one scan but not in the other� Our algorithm is

able to ignore the unmatched parts but successfully perform the matching based on the remaining

part of the world which is visible in both scans�

Example 	 �Fig� ��� is from experiment �� in which the environment consists of mostly curves

�rotation ��� radians �	������ translation ����� ��� centimeters�� There also exist occlusions in the

scans� Our matching method is successful�

Example  �Fig� ���� is chosen from experiment �� in which the maximum sensing noise is as

large as 
	� centimeters� Rotation is ���	 radians ������ degrees� and translation is ����� ��
centimeters� The correct alignment is found by the algorithm in this example� Note this level of

sensing noise is close to the limit of algorithm capacity�

In the above experiments� the second algorithm �point correspondence based method� is not

fairly tested as its input �from the output of the �rst algorithm� is too good� Here we present

another experiment which examines the iterative point correspondence algorithm without �rst

applying the rotation search method� We use the same environment as the one in experiment 	�

but set the maximum sensing noise to 
��cm� The initial pose error is randomly generated so that

� is uniformly distributed over ������ ���� radians and T is uniformly distributed in a disk of radius

	� centimeters� We ran this experiment ���� times� The standard deviations of the residuals are

listed in Table ��	� For comparison� we also run the rotation search algorithm using the same input

set� We can see that the second algorithm is still successful despite of the relatively larger initial

pose errors� Again� the second algorithm performs signi�cantly better than the �rst one in �nding

the rotation� but only slightly better in �nding the translation�
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Table ���� Statistics of experiments in simulated environments� Maximum initial rotation and
translation are set at 
���� and ��cm� respectively�



���� EXPERIMENTS WITH SIMULATED DATA ��

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #1

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #2

a b

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #3

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #4

c d

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #5

-10

-5

0

5

10

-10 -5 0 5 10

c
m

cm

Translation Residuals in Experiment #6

e f

Figure ���� Translation residuals after apply the matching algorithm� �a� to �f� correspond to
experiments � to � in table �� There are ���� samples in each experiment� Larger spread of dots
in the plot corresponds to higher levels of sensing noise�



���� EXPERIMENTS WITH SIMULATED DATA ��
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B’
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B(B’)
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Figure ��	� Example � �from experiment � maximum sensing noise is ��cm�� The robot went from
pose A to pose B in reality� but due to odometry errors� it thinks it went to pose B�� Points on
scans from pose A and B are labeled as x�s and small circles respectively� The poses are indicated
by arrows� Part �a� shows the alignment error due to the di�erence between pose B� and true pose
B� Part �b� shows the result of aligning the two scans� The pose B� is corrected to the true pose
B by the same transformation� Notice the large occlusion in the lower right corner�
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Figure ��� Example 	 �from experiment �� maximum sensing noise is ��cm�� Part �a� shows the
pose error �indicated by the di�erence from B� to B� and the resulted alignment error of the scans�
Part �b� shows the result of correcting the pose error and aligning the two scans� The large rotation
and translation are corrected successfully� There is occlusion in the scan�
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Figure ���� Example  �from experiment �� maximum sensing noise is 	�cm�� Part �a� shows the
pose error �indicated by the di�erence from B� to B� and the resulted alignment error of the scans�
Part �b� shows the result of correcting the pose error and aligning the two scans� This level of
sensing noise is about the limit of algorithm capacity�
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Residual First Algorithm Second Algorithm

Rotation 
� ����� � ������ �

Translation x 
x �����	 cm ����	� cm

Translation y 
y ������ cm ������ cm

Table ��	� Standard deviations of the residuals from the two algorithms when they are run inde�
pendently with the same set of input� Maximum sensing noise is 
��cm� Maximum initial rotation
and translation are 
���� and 	�cm� respectively�

	�� Experiments with Real Data

����� Experiments Using The ARK Robot

The ARK project investigates techniques for robot navigation in structured indoor environments

����� The ARK robot is equipped with a laser range�nder �model Optech G���� mounted on a pan

and tilt unit on the robot platform� The accuracy of the range�nder is � centimeters� We used the

ARK robot to collect a few range scans in the Vision Lab at the Department of Computer Science�

University of Toronto� The testing environment is illustrated in Fig� ����

entrance to inner room

lamp

Vision Lab

door

wall

bookshelf

partition

partition

partition

whiteboard

bookshelf

partition

wall

bookshelf

Figure ���� Testing environment in the Vision Lab at the Department of Computer Science� Uni�
versity of Toronto�

We present two examples of matching scans from this environment �Figures ��� and ����� Rel�

atively large pose errors between the two scans were intentionally introduced� Unfortunately� the
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ground truth for this experiment is not available as the robot was driven by hand� Our matching

algorithm successfully aligned the scans in both examples� Notice that in performing the matching

the algorithm is able to ignore the cluttered areas at the right�side wall and the bottom left corner

�which are bookshelves�� The algorithm also handled the occluded area well�

����� Experiments at FAW	 Germany

The testing environment was the cafeteria and nearby corridor in FAW� Ulm� Germany� The laser

range�nder used was a Ladar 	D IBEO Lasertechnik mounted on the AMOS robot� The laser

sensor has a maximum viewing angle of 		� degrees� and an accuracy of 
	�mm� We obtained �

scans which were taken by the robot along its path at a pace of approximately 	 meters between

scan poses�� We then selected �� pairs of scans which have su
cient overlap and applied the scan

matching algorithm to each pair� Our matching algorithm successfully aligned the scans in all ��

cases� All of these scan matching results will be used by a global scan registration algorithm which

is discussed in Chapter �� An illustration of the testing environment and the a plot of all the scans

are given in Chapter ��

Three examples of the matching results are shown in Figures ��� to ����� In all examples� we

exaggerated the pose errors for testing the algorithm� The odometry error from the actual robot

is much smaller� Note that this robot samples orientation uniformly when taking the scans� as

opposed to our early strategy of making the sample points uniformly dense� But the matching

algorithm still works well with this kind of scan�

We also include another example using real range data from a hallway �Figure ������ Notice

that the constraints along the hallway direction is weak �the only reference are several shallow

doorways�� Our algorithm is able to derive the correct matching�

It appears that the real sensor data are more accurate than our typical simulated data� After

thoroughly testing our algorithm with simulations� we believe that it should also work well in

real indoor environments of this type� Moreover� in a typical indoor robot course where range

measurements are taken at short discrete steps� the pose errors are usually much smaller than the

ones we simulated� As a conclusion from the experiments� we believe that our algorithm should

work robustly in real�life robotic applications�

�The author would like to thank Ste�en Gutmann� Joerg Illmann� Thomas Kaempke� Manfred Knick� Erwin

Prassler� and Christian Schlegel from FAW� Ulm for collecting range scans and making the data available for our

experiments�
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Figure ���� Example of matching scans taken by the ARK robot at U of T�
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Figure ���� Another example of matching scans taken by the ARK robot�
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Figure ���� Example of matching real scans at FAW� Ulm� Germany� The scans are shown in dots�
Part �a� shows the pose error �indicated by the di�erence from B� to B� and the resulted alignment
error of the scans� Part �b� shows the result of correcting the pose error and aligning the two scans�
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Figure ���� Another example of matching real scans at FAW� Ulm� Germany�
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Figure ����� Another example of matching real scans at FAW� Ulm� Germany�
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Figure ����� Example using real data from a hallway� Notice that the constraints are weak along
the hallway direction� Alignment still can be made using our algorithm�



���� COMPARISON WITH OTHER METHODS ��

	�	 Comparison with Other Methods

In this section� we present experiments to demonstrate another algorithm which is based on an

extension to the method used by Cox �	��� We will comment on its performance as compared to

our algorithms�

The original Cox�s method assumes a known piecewise linear model of the environment� We

�rst summarize the algorithm as the following�

Given a set of data points and a model which consists of a set of line segments� Assume that the

data points is misplaced with respect to the model by a small pose error �consisting of a rotation

R��� and a translation T � �Tx� Ty�
t�� For every point vi� the line segment mi in the model which

is closest to vi is selected as the corresponding target� Let ui be a point on mi and let ni be the

normal direction of mi� The normal distance from a transformed point to its target line is given

by�

di � j�R���vi � T � ui� � nij� �����

For all the correspondence pairs� a �tting error is de�ned as the sum of the squared normal distances�

E �
X
i

��R���vi � T � ui� � ni��� �����

We want to solve for the variables � and T which minimize the error function� If the rotation angle

� is small� the trigonometric functions in R��� can be approximated as

sin � � �� cos � � ��

After this approximation� di becomes a linear function in �� Tx� Ty and the variables can be easily

solved using linear least�squares�

The derived transformation �R���� T � is applied to the points so that they are better aligned

with the model� This procedure is iterated until convergence�

To make it robust against outliers� the point�target correspondence pairs are checked against

a threshold� If the distance from a point to its target segment is too large� the term from this

correspondence is not included in the summation in Eq� ����

The above algorithm is not directly applicable to pose estimation in unknown environments

since we only have a scan of data points as model instead of a set of line segments� In an e�ort to

extend the algorithm for matching two scans� we �rst derive a a set of line segments by �tting to

the points in the reference scan� The following adaptive �tting procedure is used�
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�� Divide the scan of points into subsets at �breaking points� which are near �corners� or depth

discontinuities� Fit a line to each subset of points� �The detection of such breaking points

and the procedure of line �tting is discussed in Section ����

	� For each subset of points� if the �tting error is too large� split the points into two parts� The

breaking point is chosen in such a way that the sum of �tting errors in two parts is minimum

among all possible ways of dividing the set�

� Recursively apply step 	 to further subdivide the set of points until the �tting error is small

for every subset of points�

The result from the above procedure is an ordered set of line segments which can be considered

as a model of the environment� An example of line �tting to a simulated scan of points is shown in

Fig� ���	� Once this model is derived� another scan of points can be matched to the model using

Cox�s algorithm�

Figure ���	� Fitting line segments to a set of points�

Note that the derived line segments are oriented as we know their directions based on the

ordering of the original points� Some line segments which represent edges facing away from the

sensor should not be visible from the current position� They should be deleted from consideration in

correspondence association� We can distinguish this type of lines by checking if the polar angles of



���� COMPARISON WITH OTHER METHODS ��

the starting and the end points of a line segment is out of order �with respect to the center of current

scan�� Thus we can avoid associating points on a wall to a line representing the opposite side of the

wall� Also note that we can use the information about the ordering sequence of the line segments

to speed up the correspondence search� Instead of the normal O�nl� time� we can determine all

correspondences in O�n� l� time �n� l being the number of points and lines� respectively��

To test the extended Cox�s method� we run experiments using simulated range scans �similar to

what we did in Section ���� Experimental results show that this algorithm is very e�ective� First�

the �tting procedure generates a good linear approximation of the environment� Although the

derived line segments contain errors in position and orientation �because of error in the points�� the

set of lines as a whole provides adequate constraints to register the new scan points� The iterative

algorithm appears to converge very quickly� It typically takes no more than �� iterations to achieve

su
cient accuracy�

A typical example of matching a scan of points to a set of line segments �derived from another

scan of points� is shown in Fig ���� We repeatedly test the algorithm with random initial pose

error and random sensing noise� Several simulated environments are tested� For the environment

as in Fig ���� we run the matching experiment ���� times and compute the standard deviations of

the residuals in the rotation and translation components �as shown in Table ���� The maximum

sensing noise is set at 
��cm� Initial rotation error is uniformly distributed over ������ ���� radians

and initial translation error is uniformly distributed in a disk of radius 	� cm �note� the width of

the simulated environment is �� meters��

The standard deviations of residuals indicate a high accuracy in the matching results� The

rotation error residual is well under one degree� The translation error residual is about 	�# of the

maximum sensing noise� Also note that the two scans only partially overlap because of occlusion�

The algorithms is able to ignore the non�overlapping regions �outliers��

For comparison� we run our point correspondence based algorithm �discussed in Chapter ��

with the same set of input� The standard deviations of residuals are also computed and listed in

Table ��� It appears that the two algorithms have very similar accuracy� The computational costs

for the two algorithms are also similar �Cox�s method is slightly simpler in correspondence search

but it requires an extra step of model �tting�� This leads us to believe that the two algorithms can

be used interchangeably for matching a pair of scans�

It should be noted that the Cox�s method requires a good initial estimate to ensure convergence

�so does the point correspondence based algorithm�� We notice that the Cox�s algorithm tolerates
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Residual Point�Line Algo� Point�Point Algo�

Rotation 
� ��		�� � �����	 �

Translation x 
x ���	�� cm ����� cm

Translation y 
y ��	� cm ���	� cm

Table ��� Standard deviations of the residuals from the extended Cox�s algorithm �Point�Line� and
point correspondence based algorithm �Point�Point� when they are run with the same set of input
����� samples�� Maximum sensing noise is 
��cm� Maximum initial rotation and translation are

���� and 	�cm� respectively�

about ��� of rotation error �for the testing environment in Fig� ����� but a larger rotation error

sometimes leads to divergence� The threshold for detecting outliers in correspondence seems to

in�uence the amount of rotation and translation error the algorithm can handle� If larger initial

rotation error is possible� our rotation search algorithm �discussed in Chapter �� which is more

robust against large rotation error� can be employed� This algorithm is formulated as a search for

the minimum of a distance function rather than �xed�point iterations� A good initial guess can be

obtained by sampling the search space� Thus large �unlimited� rotation errors can be handled�

To summarize� the extended Cox�s algorithm is very e�ective in matching two scans of points�

Our point correspondence based algorithm is an equally good alternative� If large initial rotation

error is present� the rotation search algorithm can be �rst applied to �nd a good starting point�
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a

b

Figure ���� Matching a scan of points to line segments which are derived from another scan� �a�
Before matching� �b� after matching and correcting pose error�
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Consistent Registration of Multiple
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A robot exploring an unknown environment may need to build a world model from sensor

measurements for its navigation task� In order to integrate all the frames of sensor data� it is

essential to align the data properly according to the poses of the robot at which the data are

collected� In other words� all the data must be consistently registered in a common reference

frame� Note that the robot poses �at which the data are collected� are not known exactly and have

to be estimated from odometry information and the sensor measurements�

In this part of the thesis� we study the problem of consistent registration of multiple frames of

range measurements� Also to be addressed are the related issues of global pose estimation and the

representation and manipulation of spatial uncertainties�

In Chapter �� we formulate a procedure for consistent data registration based on the optimal

estimation from a network of measurements in the sense of maximum likelihood criterion� We

uniformly model pose constraints from both matching range scans and odometry measurements�

In Chapter �� we present experiments of consistent data registration with both simulated and

real examples� We also discuss some alternative approaches to this problem�

A condensed version of this work has been previously reported in �����



Chapter �

Consistent Registration Procedure


�� Problem Description and Approach

The general problem we want to solve is to let a mobile robot explore an unknown environment by

collecting range measurements and building a map of the environment from sensor data�

Assume that the robot takes scans of range measurements� each representing a partial view of

the world� at various locations along its exploration trajectory� The major issue of map building

is the registration and integration of all these partial views in a global reference frame �i�e� to

place all the scans in the same coordinate system so that they can be merged�� This is a di
cult

problem because it is usually inadequate to use odometry information alone to register scans taken

at di�erent locations �as accumulated odometry error grows without bound�� On the other hand�

we are unable to use pre�mapped external landmarks to correct pose error since the environment

is unknown�

A generally employed approach to solving the registration problem is to align the overlapping

parts of two adjacent scans to estimate their relative pose� and then use the relative pose to

transform scans into the same coordinate system� But this brings up the consistency issue� If

one scan can be registered relative to two �or more� previous scans� which registration should

be trusted� Furthermore� if one particular registration �or an average of several registrations� is

selected� how do we updated the previously estimated poses accordingly�

Consider an example as shown in Fig� ���� The robot starts at A and returns to a nearby

location G after visiting several other places� Now the scan at G can be registered either according

to scan F or scan A� Here it will be better to match scan G against scan A as it gives smaller

cumulative registration error� But once the pose G is derived from the relative pose GA� the pose

�
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Figure ���� The robot starts at A and returns to a nearby location G after visiting other places�
By matching the scan taken at G against the scan at A� the error at pose G can be reduced� But
the estimates of F�D� � � � should also be updated to maintain consistency�

F should also be updated as otherwise the relative pose FG will be inconsistent with the result of

matching scan F and G� The same argument applies to pose E�D�C�B� In general� the result of

matching pairwise scans is a complex� and possibly con�icting� network of pose relations� We need

a uniform framework to integrate all these relations and resolve the con�icts�

In this chapter� we present such a framework for consistently registering multiple range scans�

The idea of our approach is to maintain all the local frames of data as well as a network of spatial

relations among the local frames� These spatial relations �or pose constraits� are derived from

matching pairs of scans or from odometry measurements� Then our goal is to estimate all the

global pose variables from this network of constraints� Consistency among the local frames are

ensured as all the spatial relations are taken into account simultaneously�


���� Pairwise Scan Matching

A procedure for aligning a pair of scans is needed to derive a constraint about their relative pose�

We have already studied this problem in previous chapters� In this application� our algorithm

takes two scans and a rough initial estimate of their relative pose �from odometry� as input� The

output is a much improved estimate of the relative pose� After aligning the two scans� we record

a set of corresponding points on the two scans �which is derived in the �nal iteration of the point

correspondence based algorithm�� This correspondence set will form a constraint between the two

poses�
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���� Constructing a Network of Pose Constraints

Given the pairwise scan matching algorithm� we can form a network of pose constraints by matching

all possible scan pairs� In addition� we include odometry measurements in the network� Formally�

the network of constraint is de�ned as a set of nodes and a set of links between pairs of nodes� A

node of the network is a pose of the robot on its trajectory at which a range scan is taken� Here

a pose is de�ned as a three dimensional vector �x� y� ��t consisting of a 	D robot position and the

home orientation of the rotating range sensor� We then de�ne two types of links between a pair

of nodes� First� if two poses are adjacent along the robot path� we say that there is a weak link

between the two nodes which is the odometry measurement of the relative pose� Second� if the

range scans taken at two poses have a su
cient overlap� we say that there is a strong link between

the two nodes� For each strong link� a constraint on the relative pose of the two nodes is determined

by the set of corresponding points on the two scans given by the matching algorithm�

A network of constraints is constructed as the robot travels along a prede�ned path� First�

the robot takes a scan S� at its initial pose V�� Then for each step of movement from pose Vi��

to pose Vi� ��� add a weak link to the network connecting Vi�� and Vi to store the odometry

measurement of the relative pose� �	� take a scan Si at the new pose Vi� �� match each previous

scan Sj � j � �� � � � � i� �� with the current scan Si and possibly obtain a set of corresponding pairs

of points from Si and Sj to create a strong link between Vi and Vj�

When we match a previous scan Sj to Si� we �rst project Sj to the current pose Vi �by changing

the coordinate system of the scan points� and discard the points which are likely not visible from

Vi �see Section ��� The amount of overlap between Si and Sj is estimated from the spatial extent

of the matching pairs of points on the two scans� A �xed threshold is used to decide if the overlap

is signi�cant enough�


���� Combining Pose Constraints in a Network

The pose constraints in a network is potentially con�icting because the relations are derived inde�

pendently with possible errors� Our task is to combine all the pose relations and resolve inconsis�

tency among the relations� Smith and Cheeseman ����� addressed a similar problem of combining

uncertain relations in a network� Their approach is to de�ne a compounding operation and a

merging operation to simplify serially or parallelly connected relations� However� their approach

has a serious limitation as not every network can be reduced to a combination of serial or parallel

connections� the complex networks can be simpli�ed using their method�
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We formulate this problem of combining pose constraints as one of optimally estimating the

global poses in the network� We do not deal with the relations directly� Rather� we estimate the

poses �which correspond to the nodes in the network� based on all the available constraints� The

derived estimation of the nodes de�nes a consistent set of relations�

An optimization problem is formulated as the following� We de�ne an objective function from

the network with all the pose coordinates as variables �except V� which de�nes our reference coor�

dinate system�� Every link in the network is translated into a term in the objective function which

can be conceived as a spring connecting two nodes� The spring achieves minimum energy when the

relative pose between the two nodes equals to the measured value �either from matching two scans

or from odometry�� Then the objective function represents the total energy in the network� We

�nally solve for all the pose variables at once by minimizing this total energy function�

In the following sections� we go through the details of forming the energy terms corresponding

to the two types of links� But �rst of all� we formulate the optimization criterion by considering a

generic optimal estimation problem� We derive a closed�form solution for the optimal estimates in

a linear special case� Later� the robot pose estimation problem will be reduced to the linear case

and then the closed�form solution can be applied�


�� Optimal Estimation from a Network of Constraints


���� Problem De�nition

We consider the following generic optimal estimation problem� Assume that we are given a network

of uncertain measurements about n � � nodes X�� X�� � � � � Xn� Here each node Xi represents a d�

dimensional position vector� A link Dij between two nodes Xi and Xj represents a measurable

di�erence of the two positions� Generally� Dij is a �possibly nonlinear� function of Xi and Xj and

we refer to this function as the measurement equation� Especially interesting to us is the simple

linear case where the measurement equation is Dij � Xi �Xj �

We model an observation of Dij as  Dij � Dij �"Dij where "Dij is a random Gaussian error

with zero mean and known covariance matrix Cij � Given a set of measurements  Dij between pairs

of nodes and the covariance Cij � our goal is to derive the optimal estimate of the position Xi�s

by combining all the measurements� Moreover� we want to derive the covariance matrices of the

estimated Xi�s based on the covariance matrices of the measurements�

Our criterion of optimal estimation is based on the maximum likelihood or minimum variance
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concept� The node position Xi�s �and hence the position di�erence Dij �s� are determined in such

a way that the conditional joint probability of the derived Dij �s� given their observations  Dij �s� is

maximized� If we assume that all the observation errors are Gaussian and mutually independent�

the criterion is equivalent to minimizing the following Mahalanobis distance �where the summation

is over all the given measurements��

W �
X
�i�j	

�Dij �  Dij�
tC��

ij �Dij �  Dij�� �����

Note that this optimal estimation problem is similar to the one addressed by the Kalman �lter�

However� we speci�cally deal with a network of measurements with a special type of measurement

equation� In our problem� we keep all the poses as state variables� while a typical Kalman �lter

application only estimates the current pose and �forgets� about the history of poses�

A typical application of the optimal estimation problem is in mobile robot navigation� where

we want to estimate the robot pose and its uncertainty in three degrees of freedom �x� y� ��� As the

robot moves from one place to another� its uncertainty about its pose with respect to its initial pose

grows� On the other hand� the robot may use sensors �odometry� range sensor etc�� to make relative

measurements between its current pose and other poses� We then want to utilize all the available

measurements to derive the optimal estimate of the robot poses� Note that in this application� the

measurement equation is non�linear because of the � component in the robot pose�

Next� we study the case when the measurement equation is linear and we derive closed�form

solutions for the optimal estimates of the nodes and their covariances� Later� we will solve the

non�linear robot pose estimation problem by approximately forming linear measurement equations�


���� Solution of Optimal Linear Estimation

We consider the special case where the measurement equation is in the simple linear form� Dij �

Xi�Xj � Here Xi� i � �� �� � � � � n are the nodes in the network which are d�dimensional vectors and

the Dij �s are the links of the network� Without loss of generality� we assume that there is a link Dij

between every pair of nodes Xi� Xj� For each Dij� we have an observation  Dij which is assumed to

have Gaussian distribution with mean value Dij and known covariance Cij � In case the actual link

Dij is missing� we can simply let the corresponding C��
ij be �� Then the criterion for the optimal

estimation is to minimize the following Mahalanobis distance�

W �
X

��i�j�n

�Xi �Xj �  Dij�
tC��

ij �Xi �Xj �  Dij�� ���	�
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Note that W is a function of all the position Xi�s� Since we can only solve for relative positions

given the relative measurements� we choose one node X� as a reference and consider its coordinate

as constant� Without loss of generality� we can let X� � � and then X�� X�� � � � � Xn will be the

relative positions from X��

We can express the measurement equations in a matrix form as

D � HX ����

where X is the nd�dimensional vector which is the concatenation of X�� X�� � � � � Xn� D is the

concatenation of all the position di�erences of the form Dij � Xi � Xj� and H is the incidence

matrix with all entries being �� ��� or �� Then the function W can be represented in a matrix form

as�

W � �D�HX�tC���D�HX� �����

where D is the concatenation of all the observations  Dij for the corresponding Dij and C is the

covariance of D which is a square matrix with Cij �s in the diagonal and zeros elsewhere �assuming

that the observation errors are independent��

Then the solution for X which minimizes W is given by

X � �HtC��H���HtC�� D� �����

The covariance of X is

CX � �HtC��H���� �����

Denote the nd � nd matrix HtC��H by G and expand the matrix multiplications� We can

obtain the d� d submatrices of G as

Gii �
nX
j��

C��
ij �����

Gij � �Cij � �i � j�

Denote the nd�dimensional vector HtC�� D by B� Its d�dimensional subvectors are the following

�let  Dij � �  Dji��

Bi �
nX

j��
 j ��i

C��
ij

 Dij � �����

Then the position estimates and covariance can be written as

X � G��B� CX � G��� �����
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���� Special Networks

X�X�
X�X�X�

D��

�b�

D�

D��D��

�a�

Figure ��	� �a� Serial connection� �b� parallel connection�

We will apply the formula in Eq� ��� to two interesting simple cases as in Figure ��	� First� if the

network consists of two serially connected links� D�� and D��� The derived estimate of X� and its

covariance matrix are

X� � D�� �D�� ������

C � C�� � C�� ������

Another case to consider is the network which consists of two parallel links D� and D�� between

two nodes X� and X�� If the covariance of the two links are C� and C ��� the estimate of X� and its

covariance are given by

X� � �C��� � C��������C���D� � C ����D��� ����	�

C � �C��� � C������� �����

The solution is equivalent to the Kalman �lter formulation� The above two cases correspond to the

compounding and merging operations as described by Smith and Cheeseman ������

X�

X�

X�

X�

D��

D��

D�� D��

D��

Figure ��� A Wheatstone bridge network�

In the next example� we consider a network in the form of a Wheatstone bridge �Fig� ���� Note

that the estimate of X� can not be obtained through compounding and merging operations� There�
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fore� the method by Smith and Cheeseman can not be directly applied to simplify this network��

While in our method� the variables X�� X�� X� can be solved from the linear system GX � B

where

G �

�
B� C��

�� � C��
�� � C��

�� �C��
�� �C��

��

�C��
�� C��

�� � C��
�� � C��

�� �C��
��

�C��
�� �C��

�� C��
�� � C��

��

�
CA ������

B �

�
B� C��

��
 D�� � C��

��
 D�� � C��

��
 D��

C��
��

 D�� � C��
��

 D�� � C��
��

 D��

�C��
��

 D�� � C��
��

 D��

�
CA � ������

The covariance matrix for the estimated position X� has a nice symmetric form �derived by ex�

panding G����

C��
� �

�
C��
�� C��

��

�� C��
�� � C��

�� � C��
�� �C��

��

�C��
�� C��

�� � C��
�� � C��

��

��� �
C��
��

C��
��

�
������


���� Analogy to Electrical Circuits

In this section� we make an interesting analogy between a network of measurements and an electrical

circuit� We use this analogy to derive the covariance matrix for the estimate of a node state vector�

Although the discussion in this section may give us some insight in analyzing a network� its result

is already contained in our previous solution in Section ��	�	�

Consider a network with nodes X�� X�� � � � � Xn� We have linear measurements  Dij about Dij �

Xi � Xj on all pairs of nodes Xi� Xj� By using all these measurements� optimal estimates of the

state vectors X�� � � � � Xn can be derived by minimizing the energy function W �

W �
X

��i�j�n

�Xi �Xj �  Dij�
tC��

ij �Xi �Xj �  Dij�� ������

Let these optimal estimates be  X�� � � � �  Xn� Here we are interested in �nding the covariance matrix

of each  Xi� Without loss of generality� let us only consider  Xn�

In order to study the error distribution of  Xn� we introduce a small disturbance "Xn to Xn�

Then we �x the state vector Xn with value  Xn � "Xn while minimizing W again with respect

to X�� � � � � Xn�� �call them intermediate nodes�� After the minimization� there will be some error

�It is possible to �rst convert a triangle in the network to an equivalent Y�shaped connection and then the network

becomes one with serial and parallel links� However� this Delta�to�Y conversion still can not turn every network into

a combination of serial and parallel connections�
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"Xi at each intermediate node Xi added to its original value  Xi� By manipulating the partial

derivatives of W � we can derive the relationship between the "Xi�s as the following�

nX
j��� j ��i

C��
ij �"Xi �"Xj� � �� i � �� � � � � n� �� ������

We regard fij � C��
ij �"Xi�"Xj� as some kind of �ow �call it error �ow� from Xi to Xj � Eq� ����

tells us that the total net outgoing �or incoming� error �ow from�into an intermediate node is

zero� Therefore� the total net �ow passing through any cut which separates X� and Xn must be a

constant �independent of the place of the cut�� We denote this constant by F and de�ne it as the

total error �ow from Xn to X� caused by disturbance "Xn�

We can now make the analogy between a measurement network and an electrical circuit� The

error �ow corresponds to electric current� the covariance matrix of a link is analogue to a resistor�

the error "Xi at a node is the counterpart of voltage� and the introduced error "Xn resembles a

power source� Also Eq� ���� has the same form as the Kirchho��s Law of Current�

Our goal is to combine all the measurements in the network into a single link from X� to Xn so

as to derive a total covariance Cn of  Xn� This is similar to computing the total resistance between

two nodes in a circuit� Let us consider the reduced network which consists of a single link from X�

to Xn� This network is equivalent to the original network �in the sense that the two  Xn�s have the

same distribution� when the two networks have the same total energy as resulted from the same

disturbance "Xn� It can be proved that this happens when the error �ow in the reduced network

equals to the total error �ow in the original network� That is�

F � C��
n �"Xn �"X�� � C��

n "Xn� ������

Note that the above Cn is the total covariance matrix of  Xn� To determine Cn� we �rst compute the

�voltage� "Xi at each node after adding the �power source� "Xn� From the equations in Eq� �����

we can solve "Xi in terms of "Xn� Let an �n� ��d�dimensional vector � be the concatenation of

"X�� � � � �"X t
n��� Then

� � G��
n S"Xn� ���	��

where Gn is a �n� ��d� �n� ��d matrix� S is a �n� ��d� d matrix� Their d� d submatrices are�

Gii �
nX

j���j ��i

C��
ij ���	��

Gij � �C��
ij i � j ���		�

Si � C��
in ���	�
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We can choose any cut of the network to compute the total error �ow F � If we use the cut

which separates X� from the rest of the network� we have

F �
nX
i��

C��
�i "Xi � C��

�n "Xn � Tt�� ���	��

where T is a �n� ��d� d matrix whose d� d submatrices are

Ti � C��
�i � ���	��

Substitute Eq� ��	� and ��	� into Eq� ����� we have�
C��
�n � TtG��

n S
�
"Xn � C��

n "Xn� ���	��

Since "Xn is an arbitrary vector� Cn must satisfy�

Cn �
�
C��
�n � TtG��

n S
���

� ���	��

Note that we previously derived the covariance matrix CX � G�� for X �concatenation of all the

state vectors�� Cn is a d � d submatrix of CX and the same result of Cn can be obtained from

expanding G�� using a formula of block matrix inverse�


�� Formulation of Constraints for Robot Pose Estimation

Now we come back to the robot pose estimation problem� We would like to formulate it into the

generic form of maximum likelihood optimal estimation as in Section ��	� We would also like to

linearize the measurement equation so as to apply the closed�form linear solution to solve for the

optimal robot poses�

In the following subsections� we study a constraint of pose di�erence given by matched scans

or odometry measurements� For each constraint� we formulate a term in the form of Mahalanobis

distance� For the convenience in discussions of pose measurements� we will �rst de�ne a pose

compounding operation�


���� Pose Compounding Operation

Assume that the robot starts at a pose Vb � �xb� yb� �b�t and it then changes its pose byD � �x� y� ��t

relative to Vb� ending up at a new pose Va � �xa� ya� �a�t� Then we say that pose Va is the

compounding of Vb and D� We denote it as�

Va � Vb �D� ���	��
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The coordinates of the poses are related by�

xa � xb � x cos �b � y sin �b ���	��

ya � yb � x sin�b � y cos �b �����

�a � �b � �� �����

If we regard that an absolution pose de�nes a coordinate system �the xy coordinates of the origin and

the direction of one axis�� and a relative pose de�nes a change of coordinate system �a translation

followed by a rotation�� then the compounding operation gives the pose which de�nes the new

coordinate system after the transformation� The compounding operation is not commutative� but

it is associative� We can thus de�ne the compounding of a series of poses�

It is also useful to de�ne the inverse of compounding which takes two poses and gives the relative

pose�

D � Va � Vb� ���	�

The coordinates are related by the following equations�

x � �xa � xb� cos�b � �ya � yb� sin �b ����

y � ��xa � xb� sin �b � �ya � yb� cos�b �����

� � �a � �b� �����

If Dab is the relative pose Va � Vb� the reversed relative pose Dba � Vb � Va can be obtained

from Dab by a unary operation�

Dba � �Dab � ��� �� ��t�Dab� �����

We can verify that ��D�� V � V �D�

We also want to de�ne a compounding operation between a full D pose Vb � �xb� yb� �b� and

a 	D position vector u � �x� y�t� The result is another 	D vector u� � �x�� y��t� We denote the

operation as

u� � Vb �� u� �����

The coordinates for u� are given by the �rst two equations of the full D pose compounding

�Eq� ��	������� This 	D compounding operation is useful for transforming an non�oriented point

�typically from a range sensor� from its local sensor coordinate system to the global coordinate

system�
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���� Pose Constraint from Matched Scans

Let Va and Vb be two nodes in the network and assume there is a strong link connecting the two

poses� From the pairwise scan matching algorithm� we get a set of pairs of corresponding points�

uak� u
b
k� k � �� � � � � m� where the 	D non�oriented points uak� u

b
k are from scan Sa and Sb� respectively�

Each pair �uak� u
b
k� corresponds to the same physical point in the robot�s environment while they

are represented in di�erent local coordinate systems� If we ignore any sensing or matching errors�

a pair of corresponding points are related by�

"Zk � Va �� u
a
k � Vb �� u

b
k � �� �����

Then if we take the random observation errors into account� we can regard "Zk as a random

variable with zero mean and some unknown covariance CZ
k � From the correspondence pairs� we can

form a constraint on the pose di�erence by minimizing the following distance function�

Fab�Va� Vb� �
mX
k��

k�Va �� u
a
k�� �Vb �� u

b
k�k�� �����

If we notice that a pose change is a rigid transformation under which the squared Euclidean distance

k � k� is invariant� we can rewrite the function in an equivalent form�

Fab�Va� Vb� �
mX
k��

k��Va� Vb��� u
a
k�� ubkk�� ������

Thus Fab is a function of D� � Va � Vb� The solution of D� which minimizes Fab can be derived in

closed�form �see Section ����� The relation D� � Va � Vb is the measurement equation�

In order to reduce Fab into the Mahalanobis distance form� we linearize each term "Zk� Let

 Va � � xa�  ya�  �a�t�  Vb � � xb�  yb�  �b�t be some close estimates of Va and Vb� Denote "Va �  Va � Va

and "Vb �  Vb � Vb� Let uk � �xk� yk�t � Va �� u
a
k � Vb �� u

b
k �the global coordinates of a pair of

matching points�� Then for small "Va and "Vb� we can derive from Taylor expansion�

"Zk � Va �� u
a
k � Vb �� u

b
k � � Va �"Va��� u

a
k � �  Vb �"Vb��� u

b
k

� �  Va �� u
a
k �  Vb �� u

b
k��

��
� �  ya � yk
� � � xa � xk

�
"Va �

�
� �  yb � yk
� � � xb � xk

�
"Vb

�

� � Va �� u
a
k �  Vb �� u

b
k��

�
� � �yk
� � xk

�
�  Ha"Va �  Hb"Vb� ������

where

 Ha �

�
B� � �  ya

� � � xa
� � �

�
CA �  Hb �

�
B� � �  yb

� � � xb
� � �

�
CA � ����	�
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We can rewrite Eq� ���� as

"Zk �  Zk �MkD �����

where

 Zk �  Va �� u
a
k �  Vb �� u

b
k ������

Mk �

�
� � �yk
� � xk

�
������

D � �  Ha"Va �  Hb"Vb�� ������

Thus we can now regard D in Eq� ���� as the pose di�erence measurement equation to replace

D� � Va � Vb� For the m correspondence pairs� we can form m equations as in Eq� ���� If we

concatenate the  Zk �s to form a 	m� � vector Z� and stack the Mk�s to form a 	m�  matrix M�

then Fab can be rewritten as a quadratic function of D�

Fab�D� �
mX
k��

�"Zk�
t�"Zk� ������

� �Z�MD�t�Z�MD�� ������

We can then solve for the D �  D which minimizes Fab as

 D � �MtM���MtZ� ������

The criterion of minimizing Fab�D� constitutes a least�squares linear regression� In Eq� ����

Mk is known and  Zk is observed with an error "Zk having zero mean and unknown covariance CZ
k �

If we assume that all the errors are independent variables having the same Gaussian distribution�

and further assume that the error covariance matrices have the form�

CZ
k �

�

� �
� 
�

�
� ������

then the least squares solution  D has the Gaussian distribution whose mean value is the true

underlying value and whose estimated covariance matrix is given by CD � s��MtM���� where s�

is the unbiased estimate of 
��

s� � �Z�M  D�t�Z�M  D���	m� � �
Fab�  D�

	m� 
� ������

Moreover� we notice that Eq� ���� can be rewritten as

Fab�D� � �  D �D�t�MtM��  D�D� � Fab�  D�� ����	�
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Then we can de�ne the energy term Wab corresponding to the pose constraint and it is equivalent

to a Mahalanobis distance�

Wab � �Fab�D�� Fab�  D���s� �����

� �  D �D�tC��
D �  D �D� ������

where

CD � s��MtM��� ������

is the estimated covariance of  D� Note that D �as given in Eq� ����� is the linearized pose di�erence

measurement equation�


���� Pose Constraints from Odometry

We also form an energy term in the objective function for each weak link� Suppose odometry

gives a measurement  D� of the relative pose D� as the robot travels from pose Vb to pose Va� The

measurement equation is�

D� � Va � Vb� ������

We de�ne the energy term in the objective function as the following�

Wab � �  D� �D��tC����  D� �D�� ������

where C� is the covariance of the odometry error in the measurement  D��

The covariance of measurement error is estimated as the following� Consider that a cycle of

pose change consists of� ��� the robot platform rotation by an angle 	 to face towards the new

target position� �	� the robot translation by a distance L to arrive at the new position� �� the

sensor rotation by a total cumulative angle � �usually ���� to take a scan of measurements while

the platform is stationary� We model the deviations 
�� 
L� 
	� of the errors in the variables 	�

L� and � as proportional to their corresponding values� while the constant ratios are determined

empirically� The D pose change D� � �x� y� ��t is derived as�

x � L cos	� y � L sin	� � � 	� �� ������

Then the covariance C� of the pose change D� can be approximated as�

C� � J

�
B� 
�� � �

� 
�L �
� � 
�	

�
CA J t ������
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where J is the Jacobian matrix consisting of the partial derivatives of �x� y� ��t with respect to

�	� L� ��t�

J �

�
B� �L sin	 cos	 �

L cos	 sin	 �
� � �

�
CA � ������

We would also like to linearize and transform the measurement equation of D� to make the pose

di�erence representation for odometry measurements consistent with that for matched sensing data�

Consider the observation error "D� �  D��D� of odometry� Let  Va � � xa�  ya�  �a�
t�  Vb � � xb�  yb�  �b�

t

be some close estimates of Va and Vb� Denote "Va �  Va � Va and "Vb �  Vb � Vb� Then through

Taylor expansion� the observation error "D� becomes�

"D� �  D� �D� �  D� � �Va � Vb� ������

�  D� � ��  Va�"Va�� �  Vb �"Vb�� ����	�

�  D� � �  Va �  Vb� �  K��
b �"Va �  Hab"Vb� �����

where

 K��
b �

�
B� cos  �b sin  �b �
� sin  �b cos  �b �

� � �

�
CA �  Hab �

�
B� � � � ya �  yb

� �  xa �  xb
� � �

�
CA � ������

Notice that  Hab �  H��
a

 Hb where  Ha and  Hb are de�ned in Eq� ���	� If we de�ne a new observation

error "D � �  Ha
 Kb"D�� then we can rewrite Eq� ��� as

"D �  D � �  Ha"Va �  Hb"Vb� �  D �D ������

where we denote

 D �  Ha
 Kb��  Va �  Vb��  D�� ������

D �  Ha"Va �  Hb"Vb� ������

Notice that now we are dealing with the measurement equation for D which is consistent with that

for matched sensing data�  D can be considered as an observation of D� The covariance C of  D can

be computed from the covariance C� of  D� as�

C �  Ha
 KbC

�  Kt
b
 H t
a� ������

The energy term in the objective function now becomes�

Wab � �  D �D�tC���  D �D�� ������
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�� Optimal Pose Estimation

Once we have uniformly formulated the two types of measurements� we can form the total energy

function for all the measurements�

W �
X
�i�j	

�  Dij �Dij�
tC��

ij �  Dij �Dij� ������

where Dij is the linearized pose di�erence between Vj and Vi�

Dij �  Hi"Vi �  Hj"Vj ������

and  Dij is an observation of Dij �  Dij is derived from the true observations� either range data or

odometry measurements�� The covariance Cij is also known�

By regarding Xi �  Hi"Vi as the state vector corresponding to a node of the network as in

Section ��	�	� we can directly apply the closed�form linear solution to solve for the Xi�s as well as

their covariance CX
i � The formulas are in Eq� ��� to Eq� ���� Then the pose Vi and its covariance

Ci can be updated as�

Vi �  Vi �  H��
i Xi� Ci � �  H��

i �CX
i �  H��

i �t� ����	�

Note that the pose estimate Vi and the covariance Ci is given based on the assumption that the

reference pose V� � �� If� in fact� V� � �x�� y�� ���
t is non�zero� the solution should be transformed

to

V �
i � V� � Vi� C�

i � K�CiK
t
� �����

where

K� �

�
B� cos �� � sin �� �

sin �� cos �� �
� � �

�
CA � ������

Also note that when we derive the solution of linear estimation� we have an assumption that

the errors on di�erent links are all independent� Here we need to assume that the errors from the

scan matching procedure or odometry measurements are independent�


�	 Algorithm Implementation


���� Estimation Procedure

The implementation of the estimation algorithm is straightforward� After building the network� we

obtain the initial pose estimates  V�� � � � �  Vn by compounding the odometry measurements� Then
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for each link� we compute a measurement vector  Dij and a covariance matrix Cij according to

Eq� ����� ���� or Eq� ����� ����� Finally� we form a large linear system GX � B as explained in

Section ��	�	 and solve for the pose variables X�

The components needed to build G and B are C��
ij and C��

ij
 Dij � In the case of a strong link

�from matching a pair of scans�� these components can be readily computed as C��
ij � �MtM��s��

C��
ij

 Dij � �MtZ��s� which can be expanded into simple summations by noting the regularity in

the matrixM� In the case of a weak link �from odometry�� these components can be computed by

small matrix multiplications� The most expensive operation in the estimation process is to compute

the inverse of a n� n matrix G which gives the covariance of X�

The network is stored as a list of links and a list of nodes� Each link contains the following

information� type of link� labels of the two nodes� the computed measurement �relative pose�� and

the covariance matrix of the measurement� Each node contains a range scan�


���� Iterative Process

We made linear approximations in the measurement equations in formulating the optimization

criterion� The �rst order approximation error is proportional to the error in the initial pose estimate�

Clearly� if we employ the newly derived pose estimate to formulate the linear algorithm again� a

even more accurate pose estimate can be obtained� In fact� we can iterate the entire process to

remove the approximation errors�

This strategy turns out to be very successful� We learned from experiments that the iterative

process converges very fast� Typically� the �rst iteration corrects well over ��# of the total pose

error correctable by iterating the process� It usually takes four or �ve iterations to converge to the

limit of machine accuracy�


�
 Discussion

We have formulated the problem of consistent range data registration as one of optimal estimation

from a network of constraints� The main idea is to treat the history of robot poses as state variables

and consider sensor measurements as observations about these variables� By solving the system

using all the constraints at the same time� global consistency among the poses is enforced� It

appears that this is a much more convenient way of maintaining consistency than Durrant�Whyte�s

approach of explicitly updating the estimates along each loop of the network ����
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Smith and Cheeseman also formulated spatial uncertainty in three degrees of freedom �x� y� ��

using mean vectors and covariance matrices ������ They proposed compounding and merging

operations for combining uncertainties in a network of measurements� However� their method has

a limitation that only a certain type of network can be handled �i�e� the ones which are reducible

to a combination of serial and parallel connections�� Our method has a signi�cant advantage over

their work that we can estimate uncertain spatial relations from an arbitrary network�

Another contribution of our work is that we studied two types of sensor measurements� range

scans and odometry readings� and uniformly represented pose uncertainties from each type of

measurement using covariance matrices�



Chapter �

Experiments and Alternative
Approaches

��� Introduction

In the previous chapter we proposed a procedure of optimal estimation of global robot poses from

a network of measurements� for consistent alignment of multiple range scans� We now present

experiments applying this algorithm in registering simulated and real range scan data� We �rst

show experiments using simulated environments and measurements� Then an example using real

data is presented� Later in the chapter� we discuss an alternative formulation of the algorithm that

does not require a linear approximation step� Finally� we discuss how this method can be adapted

as a sequential estimation procedure to continuously register new sensor data�

��� Experiments with Simulated Measurements

In the �rst example� we simulate a rectangular environment with a width of �� units� The robot

travels around a central object and forms a loop in the path� There are � poses along the path at

which simulated range scans are generated �with random measurement errors�� We also simulate a

random odometry error �which is the di�erence between a pose change the robot thinks it made and

the actual pose change� at each leg of the trajectory� The magnitude of the accumulated odometry

error is typically in the range of ��� units�

We apply our global pose estimation algorithm to correct the pose errors� In Fig� ��	�a�� we show

all the scans recorded in the initial coordinate system where the pose of each scan is obtained by

compounding odometry measurements� Due to the accumulation of odometry error the scan data

���
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Figure ���� Pose errors along the path� before correction� after local correction� and after global
correction� �a� Orientational errors� �b� positional errors�

are aligned poorly� In Fig� ��	�b�� we show the result of correcting the pose errors and realigning the

scan data� Each line segment �either dashed or solid� in the �gure represents a strong link obtained

from matching two scans� In addition� the solid lines show the robot path which corresponds to the

weak links� A plot of orientational and positional errors of the poses along the path� both before and

after the global correction� is given in Fig� ���� Pose errors are accumulated along the path while

the corrected pose errors are bounded� For comparison� we also apply a local registration procedure

which matches one scan only to the previous scan� The pose errors along the path after this local

correction is also shown in Fig� ���� Although pose errors are also signi�cantly reduced after local

corrections� they can still potentially grow without bound� In this example� global registration

produces more accurate results than local correction�

In the second example� the environment is a rectangle containing two blocks in the center� The

robot goes around the blocks and forms a couple of loops in its path� There are 	� poses along the

path� Between pairwise poses� �� pose constraints are obtained from matching the scans� Fig� ��

shows the simulated range scans before registration and after registration� The pose constraints

and the robot path are also shown�

The environment in the third example contains three objects of di�erent shapes� Range scans

are simulated at the �� poses along the path� Fig� ��� shows the scans before and after global

registration using the pose estimation algorithm�

Our simulated examples demonstrate that the pose estimation algorithm is e�ective in consis�
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a

b

Figure ��	� Global registration of multiple scans using simulated scan data� �a� scans recorded in
a global coordinate system where the pose of each scan is obtained from compounding odometry
measurements� The scans align poorly because of accumulation of odometry error� �b� the result
of correcting pose errors� Both the dashed lines and solid lines show the constraints from matching
scan pairs� The solid lines also give the robot path and odometry constraints�
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a

b

Figure ��� Global registration of multiple scans using simulated scan data� �a� scans before
registration� �b� scans after registration� Both the dashed lines and solid lines show the constraints
from matching scan pairs� The solid lines also give the robot path� There are 	� poses and ��
constraint links�
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a

b

Figure ���� Another example of global registration of multiple scans using simulated scan data� �a�
scans before registration� �b� scans after registration�
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Figure ���� Testing environment in the cafeteria at FAW� Ulm� Germany�

tently aligning range scans� Another notable thing is that our pairwise scan matching procedure�

which has been called numerous times in constructing the network of constraints� appears to be

very e�ective and reliable�

��� Experiments with Real Data

We present another experiment with real range scans and odometry data� The testing environment

is the cafeteria and nearby corridor in FAW� Ulm� Germany� An illustration of the environment is

given in Fig� ���� The robot travels through the environment according to a given path� A sequence

of � scans which were taken by the robot with an interval of about 	 meters between scan poses

were obtained�� The laser senor is a Ladar 	D IBEO Lasertechnik which is mounted on the AMOS

robot� This laser sensor has a maximum viewing angle of 		� degrees� Thus having only the 	D

�The author would like to thank Ste�en Gutmann� Joerg Illmann� Thomas Kaempke� Manfred Knick� Erwin

Prassler� and Christian Schlegel from FAW� Ulm for collecting the range scans for our experiments�
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a

b

Figure ���� Consistent global registration of � real range scans which are collected by a robot at
FAW� Ulm� Germany� �a� unregistered scans whose poses are subject to large odometry errors�
�b� registered scans after correcting the pose errors� The robot path estimated from odometry is
shown in dashed lines� The corrected path is shown in solid lines�
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positions of two poses close together does not necessarily ensure a su
cient overlap between the

scans taken at the two poses� we also need the sensor heading directions to be similar� Among

the � scans� �� links from matching overlapping scan pairs are constructed� Our scan matching

algorithm is successful in �nding the relative poses in all �� calls� Some of these pairwise scan

matching results have been shown in Chapter �� After constructing the network� the estimation

algorithm successfully derived the global poses of the scans� In Fig� ���� we show the unregistered

scans �where the odometry errors were exaggerated� in part �a� and the globally registered scans

in part �b�� It is apparent that scans align much better after the registration�

��� An Alternative Solution without Linear Approximation

Note that linear approximations for the measurement equations are of theoretical interests as they

help to formulate the maximum likelihood criterion and to derive the covariance of the estimations�

But to just solve for the optimal estimates� the linear approximation step is unnecessary� Here we

propose an alternative method to solve the same pose estimation problem by directly minimizing

a non�quadratic objective function without explicitly linearizing the measurement equations�

The objective function W is a sum of the terms corresponding to the links of the network� The

term for a strong link is the following�

Wab � �Fab�D
��� Fab�  D

����s� �����

where Fab�D
�� is de�ned in Eq� ����� D� is the original pose di�erence D� � Va� Vb� Fab�  D

�� is the

minimum residual of Fab �can be omitted without a�ecting optimization result�� The term for a

weak link is�

Wab � �D� �  D��tC����D� �  D�� ���	�

where  D� is the direct pose di�erence measured by odometry and C� is the covariance matrix given

in Eq� ����� The objective function is the same as the one in the Mahalanobis distance form except

we undo the linear approximations to the measurement equations�

We minimizeW using a non�linear optimization procedure which implements Newton�s method

coupled with a line search to ensure convergence� We provide the �rst and second derivatives of

W in closed�form� Since the objective function is a well�conditioned smooth function �which is

near quadratic�� the optimization process converges very easily� Typically� it takes about �ve to six

iterations to converge to the limit of machine accuracy�




��� SEQUENTIAL ESTIMATION ���

Another interesting result is that the covariance matrix of the pose variables can be obtained

from the Hessian matrix �second derivative of W � evaluated at the minimum point of W � Let V

be the n � � vector containing the solutions of all the variables in V�� V�� � � � � Vn� The covariance

matrix CV is�

CV � 	

�
��W

�V�

���

� ����

This can be quickly derived by observing the objective function in matrix form �Eq� ���� and the

closed�form covariance matrix �Eq� �����

Comparing our two optimization methods� we notice that the �linear measurement method�

converges slightly faster than the alternative optimization method �with Newton�s iterations�� Es�

pecially in the �rst one or two iterations� the solution of the �linear measurement method� is

considerably more accurate than the corresponding solution from the Newton�s iterations� But if

we allow both methods to run until convergence� the two solutions are essentially identical�

��	 Sequential Estimation

The estimation algorithm we previously discussed is a one�step procedure which solves all the pose

variables at the same time� The algorithm is to be applied only after collecting all the measurements�

Yet it will be more practically useful if we have a sequential algorithm which continuously provides

estimates about the current or past pose variables after getting each new measurement� Here we

will derive such a sequential procedure�

Our sequential algorithm maintains the current best estimate about the poses of previously

visited places� At each step� a new location is visited and measurements about the new location

as well as the previous locations are gathered� By using these new measurements� the current pose

can be estimated while the previous poses can be updated�

Let X�� � � � � Xn�� be the pose vectors which we have previously estimated and letXn be the cur�

rent new pose which we are about to measure� Let X represent the concatenation of X�� � � � � Xn���

Xn� Assume that we currently have an estimate X� of X whose inverse covariance matrix is C��
X�

�

Because we have no knowledge about Xn yet� the Xn component in X� contains arbitrary value

and the matrix C��
X�

has all zeros in the last d rows and d columns �here d � �� Now consider

the addition of a set of new measurements relating Xn to some of the past pose variables� Let the

measurement equation� in matrix form� be D � HX �H is a constant matrix�� Assume that the set

of measurements is D which is an unbiased observation of D whose error has Gaussian distribution




��� SEQUENTIAL ESTIMATION ���

with covariance matrix CD� Now the updated estimate of X after using the new measurements is

the one which minimizes the following function �using the maximum likelihood criterion� assuming

independent errors��

W � �X�X��
tC��

X�
�X�X�� � �D�HX�tCD

���D�HX�� �����

The solution can be derived as

X � �C��
X�

�HtCD
��H����C��

X�
X� �HtCD

�� D� �����

and the new covariance of X is

CX � �C��
X�

�HtCD
��H���� �����

A convenient way of updating X and CX is to maintain a matrix G �
P
HtCD

��H and a

vector B �
P
HtCD

�� D �the summation is over di�erent sets of measurements�� Then at each

step� the updating algorithm is the following� First increase the dimensions of G and B to make

room for the new pose Xn� Update G and B as

G � G�HtCD
��H �����

B � B�HtCD
�� D� �����

Then the new X and CX are given by

X � G��B� CX � G��� �����

There is one potential problem with the above sequential updating procedure that the state

variable X keeps expanding as it is augmented by a new state at each step� In case the robot path

is very long� the variable size may become too large� causing storage or performance problems� A

possible solution is to delete some of the old variables while adding the new ones�

We propose a strategy of reducing the size of the state variables as the following� In order to

choose a pose to be deleted� we check all pairs of poses and �nd a pair �Xi� Xj� where the correlation

between the two poses is the strongest� We then force the relative pose between Xi and Xj to be

�xed as a constant� Then Xi can be deleted from the state variables as it can be obtained from Xj �

When deleting the node Xi from the network� we transform any link �Xi� Xk� into a link from Xj

to Xk� Note that the covariance matrix CX contains all the pairwise covariance between any two

poses� A correlation ratio between two poses can be computed from the covariance and variance�




�	� DISCUSSION ���

By only �xing some relative poses� the basic structure in the network is still maintained� Thus

we are still able to consistently update all the pose variables once given new measurements� This

strategy is more �exible than the simple strategy of �xing selected absolute poses as constants�

��
 Discussion

The experiments demonstrated that our estimation procedure is e�ective in maintaining consistency

among multiple range scans� provided that there are enough overlap in the robot path to form

loops in the network of constraints� We have shown that the optimal estimation procedure can be

conveniently implemented� The most expensive operation� besides pairwise scan matching� is to

compute the inverse of an n� n matrix� Although the number of poses n may be large for a long

robot path� we may heuristically limit it to speed up the computation� The sequential procedure

enables the robot to continuously maintain the optimal registration result�



Part IV

Other Shape Registration
Applications

��	



��

In Part II of the thesis� we proposed two algorithms for matching range scans for robot pose

estimation� If we regard that a range scan describes a shape of the environment contour� the

registration algorithms can be essentially considered as techniques for aligning shapes� In fact� these

techniques can also be applied to other types of sensor data or application domains� Especially�

they are suitable for matching free�form curved shapes� In this part of the thesis� we will examine

our algorithms as well as other methods for shape registration in various other domains� Part of

this work has been previously reported in ��	��

In Chapter �� we consider the registration of range image which describe a D surface�

In Chapter �� we study the registration of planar image shapes�



Chapter �

Registration of Range Images

��� Introduction

The problem of range image registration is to determine a D rigid transformation �including a

D rotation and a D translation� to apply to the surface described by the range image such that�

after the transformation� the data surface aligns with a model surface� The degree of alignment or

similarity between the two surfaces is usually expressed in terms of a least�squares error measure�

Some of the methods for D shape registration have been reviewed in Section 	���� Here we are

particularly interested in the type of approach based on iterative optimization which are suitable for

matching free�form curved shapes� Typically� these methods iteratively establish correspondences

of low level primitives �usually raw data points or oriented points� to targets on the model and

then solve a least�squares problem to minimize the distance between the data shape and the model�

The advantage of this approach is that it does not require the extraction or association of localized

high level features� while the disadvantage is that these methods require a good initial estimate of

the transformation to converge to the optimal solution�

We study several iterative registration methods in the following sections� These methods can

be categorized into two types according to whether tangent information is used�

��� Point Correspondence Based Methods

We �rst discuss registrations methods which only use a set of correspondence points� but not

tangent information� to solve for the relative transformation� The methods in this category are the

ICP algorithm and IDC algorithm we discussed in chapter �� Here we consider the D versions of

these algorithms�

���



���� POINT CORRESPONDENCE BASED METHODS ���

����� Least�Squares Solution

Assume that we have n pairs of D correspondence points �Pi� P
�
i�� In each pair� Pi and P �

i di�er

from each other by a D rigid motion� Let R be the D rotation matrix and T be the D translation

vector� The relationship between a pair of points is�

P �
i � RPi � T� �����

The variables R and T can be solve in least�squares sense by minimizing the following distance

function�

E��R� T � �
nX
i��

jRPi � T � P �
i j�� ���	�

The solution ofR using quaternions is given in ��	�� This formulation requires to solve the eigenvec�

tor corresponding to the maximum eigenvalue of a �x� matrix� The solution of T can be obtained

in terms of R� Another solution to this problem is based on singular value decomposition �����

We derive the solution again as the following� Let M be the cross�covariance matrix�

M �
nX
i��

P �
iP

t
i � n  P �  P t� ����

By using Lagrange multipliers for the constraint RRt � I in minimizing E��R� T �� we can derive

that

RS �M �����

for some symmetric matrix S� Then R can be obtained from factorizingM into a rotation matrix

R and a symmetric matrix S� This type of factorization is called polar decomposition ���	�� It can

be solved using the result of singular value decomposition of M� Let

M � U�VT �����

where U� V are orthogonal matrices� $ is a diagonal matrix� Then the rotation matrix R is given

by

R � UVT � �����

We provide an alternative method to solve for the rotation matrix R� It is based on iteratively

symmetrizing the matrix M� Let M� � M� We make a series of updates to the matrix as Mk �

QkMk��� where each Qk is a rotation matrix� At step k� we select a pair of o��diagonal elements

mij and mji of Mk�� such that the value �mij � mji���mii � mjj� is largest among all possible



���� POINT CORRESPONDENCE BASED METHODS ���

choices of �i� j�� The matrixQk� which represents a rotation along an axis of the coordinate system�

is formed by replacing four entries of an identity matrix with the following�

qii � qjj � cos �k � �����

qji � �qij � sin �k � �����

We will determine the rotation angle �k such that in the updated matrix Mk� the ij element is

equal to the ji element� The angle �k can be solved as�

�k � tan��
�
mij �mji

mii �mjj

�
� �����

Note that the two o��diagonal elements made equal at one step may become non�equal after another

step� But the total �asymmetricalness� of the matrix is decreasing� After some steps� the resulting

matrixMk is an approximation to S and the total rotationQ � QkQk�� � � �Q� is an approximation

to R���

The convergence rate of the above algorithm appears to be quadratic� Experiments show that

it typically takes about � iterations � rounds of sweeps of the o��diagonal elements� to reduce

the relative error to within ����� This algorithm is �exible in that it can easily trade running

time �number of iterations� for accuracy� The algorithm can also be easily extended to higher

dimensions�

Once we determine the rotation matrix R� the translation vector T is given as�

T �  P � �R  P � ������

����� Iterative Algorithms

We discussed the 	D versions of the iterative closest point �ICP� algorithm and iterative dual

correspondence �IDC� algorithm in Chapter �� We now discuss possible adaptation of the algorithms

to the D case�

The ICP algorithm �nds the closest point on the model as the correspondence for a data point�

This is still the same in the D case�

In the IDC algorithm� in addition to �nding the closest point for a data point� it requires an�

other correspondence point which has a similar range as that of the data point� A straightforward

extension of the matching�range�point rule to D is the following� For a data point P � its corre�

sponding point is P � on the model such that� arccos P ��P
jP �jjP j � BR and jP �j is closest to jP j� In other
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words� the search region is the part of the surface model within a cone centered at vector P � The

maximum angle between a pair of corresponding points is given by a bound BR of the rotation�

There is a disadvantage of the above D matching�range�point rule in that there may be many

choices of P � satisfying the rule for one data point P � In fact� these points form a segment of the

curve �within the cone� which is the intersection of the model surface with a sphere� To avoid the

ambiguity� we state the rule in the following form� The correspondence P � for a data point P is

the point on the model surface which minimizes the objective function �jP �j � jP j�� �W ��� BR��

Here the penalty function W is monotonical in � � arccos P ��P
jP �jjP j � The function value is small when

� � BR and becomes very large otherwise� A typical choice of W is a power function�

For the iterative algorithm� we need to select the parameter value BR for every iteration� In

the same way as we did for the 	D algorithm� we choose a series of exponentially decreasing values

for BR�

If the model surface is in analytical form� the correspondence points can be easily determined by

minimizing the objective functions using a standard optimization procedure �such as the Newton�s

algorithm��

We present some experiments to compare the D IDC algorithm with the ICP algorithm� In

the �rst example� the D surface model is an ellipsoid� �x�a�� � �y�b�� � �z�c�� � �� where

a � �� b � �� c � � We randomly choose ��� points on the surface as data points which are initially

rotated and translated with respect to the model� The rotation axis is ��� ���
� �

�
��� Rotation angle

is ��� Translation is ��������������� No noise is assumed in this example� We use both the IDC

algorithm and the ICP algorithm to correct the rotation and translation errors� The magnitude of

rotation and translation residuals from the two algorithms are plotted in Fig� ���� It can be seen

that� with such a curved model� the ICP algorithm converges very slowly in solving the rotation�

Our IDC algorithm signi�cantly improves the convergence speed� The IDC algorithm also converges

faster in solving the translation�

In the second example� the surface model consists of the six faces of a rectangular block� jxj �
a� jyj � b� jzj � c� The choice of points and the initial transformation is the same as in the �rst

example� We again apply both the IDC algorithm and the ICP algorithm to correct the rotation

and translation� The magnitude of the residuals are plotted in Fig� ��	� As now the model is linear�

both algorithms perform better than the case of a curved model� While the IDC algorithm still

converges much faster than the ICP algorithm in solving the rotation� The two algorithms perform

similarly well in solving the translation�
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Figure ���� Comparison of rotation and translation residuals from ICP and IDC algorithms� �a�
Rotation residuals� �b� translation residuals� The model is the surface of an ellipsoid� Notice that
the IDC algorithm reduces the rotation residuals much more quickly than the ICP algorithm� The
IDC algorithm also reduces the translation residuals more quickly after �� iterations�
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Figure ��	� Comparison of rotation and translation residuals from ICP and IDC algorithms� �a�
Rotation residuals� �b� translation residuals� The model is the surface of a rectangular block� The
IDC algorithm still reduces the rotation residuals more quickly than the ICP algorithm� But the
translation residuals are reduced in about the same rate in two algorithms�
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To summerize� the IDC algorithm solves rotation much more quickly than the ICP algorithm�

especially when the model is curved�

If the model surface is not in analytical form� such as in the case of merging partial views

where the model itself is a range image� we will be unable to directly use an optimization procedure

to locate the correspondence points� To avoid a brute�force search� several approaches can be

considered� It has been suggested �in ������ that a multi�dimensional binary search �proposed by

Bentley ����� may be used to speed up the correspondence search in the ICP algorithm� We believe

that it is also possible to represent the range surface in a multi�resolution tree structure to allow

a quick reduction in search space during a search for correspondence� Another simple but less

e
cient way is to sample some directions within the cone and choose an appropriate intersection

point of a sample direction with the model as the correspondence point for a data point�

��� Methods Using Tangent Information

If the sampling of the range image is dense and if the underlying surface is smooth� surface normal

directions may be computed from the data which are very useful to the registration process� Gen�

erally� registration algorithms which make use of normal directions are more robust and e
cient�

Chen and Medioni �	�� described an e�ective method for matching range images of object partial

views� The method is based on iteratively minimizing a distance function which is de�ned from

pairs of correspondence points and the surface normal directions at these points� We implemented a

similar but slightly improved algorithm and tested on matching real range images� In the following

sections� we will discuss this algorithm in detail�

����� Algorithm Description

Given two views �in terms of range images� of the same surface� the task for the algorithm is to

determine a D rigid transformation which brings one image into alignment with the other� Let Sp

and Sq be the two views of the surface� Let R and T be the rotation matrix and translation vector

of the transformation� Then the problem can be de�ned as �nding R and T such that

�p 	 Sp� �q 	 Sq j q � Rp� T� ������

The algorithm is summarized as the following�

� Select a set of points �call them control points� pi� i � �� � � � � N � from Sp� These points are

chosen from smooth areas of the surface� Compute the normal directions npi of Sp at pi�
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Transform Sp along with all the control points pi and the normal directions npi by an initial

transformation �R�� T���

� Iterate this step until the process converges� At each iteration k� perform the following

operations�

� For each point pi� �nd the intersection of the normal line de�ned by pi and n
p
i with the

surface Sq� Call this intersection point qi� Compute the normal direction nqi of surface

Sq at qi�

� De�ne a distance function �which is the sum of the squared distances from the �trans�

formed� control points to the tangent planes of Sq��

E�Rk� Tk� �
NX
i��

e�i �
NX
i��

��Rkpi � Tk � qi� � nqi ��� ����	�

� Find Rk� Tk which minimizes the function E�Rk� Tk��

� Transform Sp along with all the control points pi and the normal directions npi by the

solved transformation �Rk� Tk��

� The overall transformation �R� T � is the composition of all the transformation �Rk� Tk�� k �

�� � � � � � found in each iteration�

����� Solution from Minimizing Distance Function

The above algorithm requires minimizing a distance function of the form

E�R� T � �
NX
i��

e�i �
NX
i��

��Rpi � T � qi� � ni�� �����

in order to solve for rotation matrix R and translation vector T in an iteration step� The rotation

matrix has three degrees of freedom and it can represented by the three rotation angles� �x� �y� �z�

around the coordinate axes� as the following�

R �

�
B� cos �y cos �z sin �x sin �y cos �z � cos �x sin �z cos �x sin �y cos �z � sin �x sin �z

cos �y sin �z sin �x sin �y sin �z � cos �x cos �z cos �x sin �y sin �z � sin �x cos �z
� sin �y sin �x cos �y cos �x cos �y

�
CA � ������

The translation vector T has three coordinate components�

T � �tx� ty � tz�
t� ������
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Chen and Medioni did not explain how the distance function is minimized in �	��� Since the

function is continuous and di�erentiable in the six variables ��x� �y� �z� tx� ty� tz�� it is possible to use

a standard iterative optimization algorithm such as the Newton�s method to search for the values of

the variables which minimize the distance function� The di
culty is that it is too tedious to obtain

the analytical forms of the second derivatives of the distance function� Search methods which

only use �rst derivatives� such as the conjugate gradient method� can also be used to minimize

the function� But they require more iterations� In fact� it is not necessary to accurately �nd the

minimizer because the distance function itself is inaccurate �it is based on a set of approximate

correspondence points�� We choose to derive a closed�form solution of the variables which only

approximately minimize the distance function� This solution should be very e
cient to compute

while it is as good as the exact solution for improving the correspondence in the next iteration�

Thus we only need one level of iteration in the algorithm�

We provide two methods to compute the approximate solution� The �rst method is based on

linearizing each normal distance

ei � �Rpi � T � qi� � ni ������

in the rotation variables �it is already linear in the translation variables�� A �rst order approxima�

tion to the rotation matrix �around �x � �� �y � �� �z � �� can be written as�

R �
�
B� � ��z �y

�z � ��x
��y �x �

�
CA � ������

Substituting the approximated rotation matrix into Eq� ����� the normal distance can be rewritten

in a linear equation of ��x� �y� �z� tx� ty� tz��

ei � �pyinzi � pzinyi��x � �pzinxi � pxinzi��y � �pxinyi � pyinxi��z � nxitx � nyity � nzitz

� ��qxi � pxi�nxi � �qyi � pyi�nyi � �qzi � pzi�nzi�� ������

Then by minimizing
PN

i�� e
�
i using the least�squares method� the variables ��x� �y� �z � tx� ty � tz� can

be solved from a system of linear equations�

��x� �y� �z � tx� ty � tz�
t � A��b ������

where

Ajk �
NX
i��

cjicki� � � j� k � �
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bj �
NX
i��

cjidi� � � j � �

c�i � pyinzi � pzinyi

c�i � pzinxi � pxinzi

c�i � pxinyi � pyinxi

c�i � nxi

ci � nyi

c�i � nzi

di � �qxi � pxi�nxi � �qyi � pyi�nyi � �qzi � pzi�nzi�

Although the approximated matrix R in Eq� ���� is not a true rotation matrix� we use the true

rotation matrix in the form of Eq����� as de�ned by the �x� �y � �z to correct the pose error�

We also have a second method of �nding a closed�form approximate solution to the transfor�

mation variables� It is derived by applying one iteration of the Newton�s method to the distance

function E as in Eq� ���� Let x be the vector containing the six variables� The initial value x�

of the variables is a zero vector �identity transformation�� From the Newton�s iteration� a new

estimate of the transformation variables is given by�

x � x� �
�
��E

�x�

��� 	
�E

�x



���	��

where the �rst derivative is a ��dimensional vector and the second derivative is a ��� matrix� both

evaluated at x� � �� After computing and evaluating the derivatives� the solution vector x can be

expressed in the following form�

x � �A�A����b ���	��

where matrix A and vector b are the same as the ones in the least�squares solution� There is an

additional �� � matrix A� in the solution whose entries are�

A�
�� �

NX
i��

�ei�pyinyi � pzinzi�

A�
�� �

NX
i��

�ei�pxinxi � pzinzi�

A�
�� �

NX
i��

�ei�pxinxi � pyinyi�
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A�
�� � A�

�� �
NX
i��

eipyinxi

A�
�� � A�

�� �
NX
i��

eipzinxi

A�
�� � A�

�� �
NX
i��

eipzinyi

A�
jk � �� for j   or k  �

That is� only the �rst �  submatrix of A� is non�zero�

The new solution is very similar in form to the least�squares solution except the additional

coe
cient matrix A� whose values are contributed by the second derivatives with respect to the

rotation variables� while this part is ignored in the least�squares solution�

We have described two methods for solving an update to the transformation variables� When

used with the iterative matching algorithm� both methods lead to very quick convergence �typically

less than 	� iterations to converge to machine accuracy�� The second method is slightly better as

it typically saves about one third of the iterations required by the �rst method�

����� Experiments

We apply the algorithm described in the last two sections to register pairs of range images of human

face� These range data are obtained from a database provided by the National Research Council

of Canada� Each pair of images consist of a front view and a side view of a human face� The size

of each image is ���x	���

Because there is a large di�erence in viewing angles �approximately ���� between a pair of

images� the overlapping area from the two images is relatively small� The registration task is thus

harder than the examples in �	�� where a pair of images only di�er by a small viewing angle �about

����� One particular problem is that a region of the surface orthogonal to the viewing direction in

one image becomes almost parallel to the viewing direction in another image� introducing depth

discontinuities� Normally we connect adjacent grid points in a range image by triangles to form a

continuous surface� But this triangle interpolation will be very inaccurate at the depth discontinu�

ities� We try to avoid this problem by leaving the depth discontinuities as �holes� in the surface

rather than interpolating across them�

In the algorithm� control points are �rst selected from the smooth regions in one image� In our

experiments� we typically have about ������ control points� By using the transformation derived
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in the previous iteration� correspondences for the control points can be located by �nding the

intersection points of the normal lines �de�ned at the control point on the transformed �rst image�

with the surface in the second image� Finding the intersection point of a line with a range surface

is achieved by �rst searching for a triangle that contains the intersection point and then solving

the intersection in closed�form� The correspondence points are tested for outliers by two criteria�

the distance between a pair of point and the di�erence in surface normal directions at the two

points� We choose a �xed percentile p �which is ��# in our experiments� and we accept a pair of

correspondence points only when both criteria for the pair are among the best p percentile among all

correspondence pairs� Otherwise� the pair is discarded� Finally� a correction to the transformation

is solved by using the formula in the previous section and the transformation is updated� This

process repeats until the correction is small enough� It typically takes about ����� iterations for

the correction to reach ������

The results of two experiments are presented in Figure �� and ���� In each �gure� part �a� and

�b� are the two views of the surface �rendered with shades�� Part �c� is the result of merging two

images� as seen from the middle direction between the two views� Part �d� and �e� are the same as

part �a� and �b� except that they are seen from the same direction as part �c�� Thus part �d� and

�e� contain the contributions of the two images to the merged view�

����� Rotation Search Method

The iterative algorithm we described early is e
cient in correcting small registration errors� The

derived answer is usually also very accurate� But one limitation of the algorithm is that a good

initial estimate of the transformation must be provided to ensure that the algorithm converges� We

experimented with the face range images and noticed that the maximum acceptable rotation error is

about  to � degrees� If the initial estimate of transformation has a rotational error larger than that

amount� the algorithm usually fails to converge� We explain this failure by the algorithm�s inability

to provide a correction to the transformation error from slightly inexact correspondences� which

are partly due to the facts that the surface is not smooth enough and the linear approximation to

the rotation matrix is inadequate�

In Chapter � we introduced a rotation search algorithm for matching range scans� In that

algorithm� the 	D rotation angle is solved in a search procedure rather than iteratively updated by

least�squares solutions� Thus the algorithm has an advantage that it works even without a good

initial estimation of the rotation� We naturally hope to extend this algorithm to the D case for
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a b c

d e

Figure ��� Merging two views of a face range surface� �a� Front view� �b� side view� �c� merge of
the two views �as seen from a ��� angle�� �d� the front view image seen from the same angle as in
�c�� �e� the side view image seen from the same angle as in �c��
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a b c

d e

Figure ���� Merging two views of a face range surface� �a� Front view� �b� side view� �c� merge of
the two views �as seen from a ��� angle�� �d� the front view image seen from the same angle as in
�c�� �e� the side view image seen from the same angle as in �c��
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matching range images to lessen the strict requirement of good initial estimate�

If there is a systematic way of searching �guessing� for the D rotation� the extension of the al�

gorithm to the D case is straightforward� Similar to the 	D case� we can associate correspondences

based on a guessed rotation while outliers in correspondences are detected using �xed thresholds�

We then set up a linear system to solve for the D translation vector� At the same time� a distance

measure between the two images can be de�ned using the least�squares error and the penalty for the

outliers� This distance will be used to control the search procedure� However� the major di
culty

in the D case is that a D rotation has three degrees of freedom� Thus the searching procedure

will be less e
cient comparing with the 	D case where the rotation has only one degree of freedom�

The rotation search method will be readily applicable� however� if the axis of the D rotation is

known in advance� In this case� the only degree of freedom in the rotation is the rotation magnitude

around the known axis and it can be solved easily in the search procedure just like the 	D case� In

fact� in many applications� the rotation axis is approximately available as the object �or sensor� is

often placed in a turntable �with known con�guration� for taking images of partial views� In our face

image examples� we know that the rotation between a front view and a side view is approximately

around the vertical axis� Then we can apply the search method to determine the rotation angle�

We tested the rotation search algorithm with the face images� Assuming a vertical rotation

axis� we try an initial rotation error of 	��� The initial translation is automatically determined

by the algorithm by aligning the center of mass of the two images� In the experiments with both

pairs of images as in Fig� �� and Fig� ���� the search algorithm successfully located the rotation

angle in about �� iterations� The remaining rotation errors are less than � �mostly because the

rotation axis is not exactly vertical�� When the search results are used as initial estimations for

the least�squares iterations� the algorithm converges in both examples�

In fact� the search procedure is capable of �nding an arbitrarily large initial rotation angle by

�rst sampling all possible rotation angles to determine a starting point� as explained in Chapter �

When the trial rotation is far away from the true rotation� the distance function must have a very

large value because of the incorrect correspondences and the penalties for outliers�

In conclusion� if the axis of the D rotation is known �which is often the case in many appli�

cations�� the rotation search algorithm may be �rst used to �nd an approximate registration of

two images even if no other knowledge about the relative transformation is available� Then the

least�squares iterations may be used to �ne tune the solution� The combination gives a �exible�

inexpensive� and e�ective way for registering range images of object partial views�



Chapter 	

Registration of Planar Image Shapes

�� Introduction

In the previous chapters� we studied the problem of matching 	D or D shapes which are described

by range measurements� Here we continue our study on shape registration� But we now focus on

planar shapes �curves� from intensity images� The new issues involved in dealing with image shapes

are the preprocessing step of extracting features �representing the shape contour� and the scaling

factor in the transformation�

The planar image shape registration problem can be stated as one of determining a similarity

transformation �consisting of 	D rotation� 	D translation� and uniform scaling� for the data shape

such that� after the transformation� the data shape aligns with a model shape� Here the data shape

is typically represented by points or lines on the contour curve of the shape as extracted from

the image� We have reviewed some of the techniques for 	D shape registration in Section 	���	�

One common approach is based on searching for correspondences to interpret the features� But

if the shape consists of smooth but noisy free�form curve� it can be di
cult to interpret features

�such as lines� segmented from the curve� Approachs that use arc�length as a reference to associate

correspondence will also have problems if the shape is incomplete due to noise or occlusion� Here� we

are again interested in the iterative optimization based approach which avoids the use of localized

features�

In Part II of the thesis� we presented two such algorithms for matching range scans� We now

present new versions of the two algorithms for matching planar image shapes� Here we consider

that a model shape is available which is in the form of an analytical curve �splines�� The data shape

consists of edge points in the image extracted by an edge detector� First� we study the rotation

�	�
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search�least�squares algorithm where edge points together with their gradient directions are used

in de�ning a distance function� Next� we consider the iterative point to point correspondence

algorithm which only requires unoriented edge points in the data shape� Experiments with both

algorithms will be presented�

�� Rotation Search�Least�Squares Method

����� Problem Formulation

Given an image of a planar shape and a model of the same shape� the problem is to determine

the pose of the shape in the image� Assuming that the shape contour is depicted by the change in

image intensity� we can extract the contour points using an edge detector �such as the Canny edge

detector�� At each extracted edge point� we can also estimate the contour normal direction from

the gradient of intensity� Thus the data shape is represented by a set of oriented points�

Assume that we also have an accurate model of the shape which is represented as a parameterized

continuous curve� If the extracted edge points indeed belong to the contour curve� then for some

similarity transformation �consisting of a rotation of angle �� a scaling factor s� and a translation

vector T �� the edge points should be transformed into their corresponding positions on the model�

Formally� for each edge point Pi � �xi� yi�
t with normal direction �ni� there is a point P �u� �

�x�u�� y�u��t on the model such that

P �u� � sR�Pi � T �����

�n�u� � R��ni� ���	�

where R� is the rotation matrix� u is the parameter of the model� �n�u� is the curve normal vector

at P �u��

Now we can formulate the matching problem as to determine the transformation ��� s� T �� such

that the above equations hold for all the edge points�

The algorithm is essentially the same as the one presented in Chapter � The least�squares

error is slightly di�erent because of the additional scaling factor� We also used a di�erent method

in deriving approximate correspondence� although the resulting form of correspondence is still the

same� We will discuss the correspondence de�nition and least�squares formulation next�
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����� Correspondence De�nition and Least�Squares Matching Distance

We will de�ne the least�squares matching distance between the data set and the model� as a function

of the rotation� scaling� and translation variables�

Assume that the model is a closed� continuous curve represented in a local coordinate system

whose origin is at the center of the area enclosed by the curve model� We represent the set of data

points� Pi� i � �� � � � � n� in an object coordinate system with the origin at the center of the shape�

Note that� from the set of data points� if we can exactly locate the same center of shape as that in

the model� the translation component in the relative coordinate transformation between the two

shapes will be zero� But since we usually do not have a complete set of contour points of the shape

and there may be outliers� we can only obtain a rough estimate of the shape center� In this case�

there will be a �hopefully small� translation T in Equation ��� It is also possible that a better

estimate of the transformation is available from another procedure or from a priori knowledge�

For a point P � �x� y�t on a curve shape �either data or model�� let the normal vector of the

curve at P be �n � �cos�� sin��t where � is the normal angle� De�ne � � �n �P which is the distance

from origin to the tangent line at P �see Fig� ����a� for illustration�� Note that � is invariant when

the curve shape rotates around the origin� The pair ��� �� de�nes the tangent line at P � We also

represent a point P on the curve in polar coordinate system as ��� r�� Thus both the point P and

the tangent line parameters ��� �� at P can be considered as functions of the polar angle �� For the

curve model� we assume that it uses � as its parameter�

Now consider an oriented data point �Pi � �xi� yi�
t� �ni�� It is related to its corresponding point

�P ���� �n���� on the model curve by�

P ��� � sR�Pi � T ����

�n��� � R��ni� �����

We can derive the relationship in terms of � and � from the above equations as �note �i � Pi � �ni��

���� � �i � �� �����

���� � s�i � �R��ni� � T� �����

From Equation ��� we can also derive the relationship of � and �i �the polar angles of P and

Pi� as the following �see Fig� ����b� for illustration��

� � �i � � �"�T � �����
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Figure ���� �a� The tangent parameters de�ned at a data point P on the shape contour� �b� Point
Pi is mapped to P ��� on the model by a similarity transformation�

where "�T is a term introduced by the translation T � which is small when jT j � jP j�
With � being the reference parameter� Equation ��� indicates that the corresponding point for

Pi is a point on the model which has polar angle �� This relationship depends on many variables ���

T � and also implicitly s�� which is inconvenient for the correspondence search� We plan to combine

equation ��� and ��� to cancel out "�T � so that the correspondence depends on � only�

Considering that "�T is small� we expand ���� � ���i� ��"�T �� and ���� � ���i���"�T �

by Taylor series to the �rst order at �i � � in Equation ��� and ����

	
def
� �i � �

��	� � "�T�
��	� � �i � � �����

��	� � "�T�
��	� � s�i � �R��ni� � T� �����

Then we combine Equation ��� and ��� to cancel the derivatives ���	� and ���	�� by using the

following identity �derived in Appendix B��

���	� � ���	���	� tan�	� ��	��� ������

Let � � ��	� tan�	 � ��	��� The linear combination �Eq������� �Eq����� should cancel out the

terms involving ���	� and ���	�� The �nal equation can be rearranged into the form�

Cs
i s� Cx

i Tx � Cy
i Ty � Di ������
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with the coe
cients

Cs
i � �i ����	�

Cx
i � cos��i � �� �����

Cy
i � sin��i � �� ������

Di � ��	�� � ���	�� ��i � ���� ������

where

� � ��	� tan�	� ��	��

	 � �i � ��

Now we have an equation �Eq� ����� which relates the data point Pi �which de�nes ��i� �i� �i���

to a point P ��i � �� on the model� This correspondence is given by �i � � which is determined by

the rotation angle � only�

Equation ���� also de�nes a linear equation with respect to s and T � since all the coe
cients

Ci� Di only involve � and the correspondence pair� For many such equations de�ned on n corre�

spondence pairs� we can form a distance function as the following�

E��� s� T � �
nX
i��

�Cs
i s � Cx

i Tx � Cy
i Ty �Di�

�� ������

We can then solve for s� T in terms of � and also obtain a least�squares error min�s�T 	 E��� s� T ��

����� Curve Model and Correspondence

We represent the model shape as a closed curve in the form of piecewise splines� A cubic B�spline

is used to represent each segment� The whole curve is de�ned on a paramenter u for � � u � Ns

�where Ns is the number of segments�� The spline model is derived from an image which contains

a clean contour of the shape� We �t a spline curve to a list of contour pixels using an optimal�

adaptive �tting procedure �which is described in our previous work �����

For a given oriented data point Pi which de�nes ��i� �i� �i�� we need to determine a corresponding

point on the model which has a polar angle 	 � �i � �� as we derived in the previous section� The

problem of correspondence search is therefore to �nd a curve point �x�u�� y�u�� such that�

y�u�

x�u�
� tan	� ������
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We can easily search the spline segments to �nd the ones which intersect with the ray of angle 	�

The parameter u at the intersection points can be computed by solving a cubic equation�

Once we �nd the correspondence point P �	� � �x�u�� y�u��t� the parameters of the tangent line

at that point can be computed as�

��	� � � tan��
x��u�

y��u�
������

��	� � x�u� cos��	� � y�u� sin��	�� ������

In case that the model is not a convex curve� there may be more than one point on the curve

which has the same angle 	� We also need to consider the case of outlier where Pi does not have

a corresponding point on the model� We use the following conditions �for some thresholds H� and

H�� to check all the points at direction 	�

j��	�� ��i � ��j � H�� and jDi � �ij � H�� ���	��

If more than one point satis�es the conditions� we select the one with the smallest jDi � �ij value
as the correspondence of Pi� If none of them satisfy the conditions� we consider Pi as an outlier

and we do not include it in the summation in Equation ����� By doing this� we e�ectively reject

outliers in the set of data points�

Note that Di � ��	�� � ���	�� ��i � ��� can be considered as an adjusted value of ��	� to

approximate �i when the orientation �i is slightly biased� Although we derived it as a result of

canceling out the derivatives �� and ��� this adjusted value also has the potential of reducing noises

in the orientations of the data points�

Also note that we are assuming the scaling factor s � � when we test for outliers� Therefore�

we need either the actual scaling factor to be close to � or the outliers to be far from the model

�either in space or in orientation� in order for the outlier detection procedure to work� Similarly�

we also require that the translation residual T be relatively small� Sometimes it is also possible to

use some global methods �such as moment�based� to estimate the center and the size of the shape�

����� Search Algorithm

Once we �nd the correspondences and form the least�squares error �Equation ������ we can apply

a search routine to solve for the rotation� The rest of the algorithm is the same as in Chapter �

We �rst form a total matching distance function for a given rotation angle � based on the

least�squares error and the number of outliers� Here an outlier is a data point which does not have
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a correspondence point on the curve �the conditions in ��	� are not met�� Let no be the number of

outliers� the total matching distance is de�ned as�

Ematch��� � min
�s�T 	

E��� s� T �� noH
�
� � ���	��

where H�
� is the constant cost of an outlier�

We then search the distance function for a minimum along the rotation dimension� At the

same time� we also correct the scaling and translation components with the least�squares solution�

As the transformation is updated� the distance function is in fact rede�ned with less signi�cant

scaling and translation� and therefore its minimum along the rotation dimension can be more easily

determined�

It may be useful to run the matching procedure two or more times with gradually decreasing

values in the thresholds H� and H�� At �rst� we choose relatively large thresholds to obtain an

approximate transformation� which is derived from a larger set of points including some of the

outliers� As the solution approaches the correct transformation� we can reduce the thresholds to

exclude more outliers� and in turn we obtain a more accurate estimate of the transformation�

����� Experimental Results

We present experiments of matching planar shapes which are segmented from synthesized or real

images� First� we describe the preprocessing steps in order to extract oriented edge points from an

image�

We use a modi�ed Canny edge detector which outputs both the gradient magnitude and ori�

entation at the edge points �whose gradient magnitudes are local maxima�� We then threshold

the magnitude image to keep only those strong edge points� In the binary image of the remaining

edge points� we apply a thinning algorithm to extract a pixel�wide skeleton� Next� we trace each

connected segment of the skeleton and smooth the gradient orientation of the points along the seg�

ment� We also discard points at which the gradient orientation changes rapidly along the segment

�typically these are the corner points on the contour�� The resulting set of oriented edge points

�xi� yi� �i� are the data set to be matched to the curve model�

Note that since we do not require a complete or connected contour of the shape for matching�

we can a�ord to set a relatively high threshold on the magnitude image to reduce the number of

outlier points� Our algorithm is capable of matching a fragmented contour to the model�

We �rst present an example using a synthesized image� The image is designed to contain a
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a

b c

Figure ��	� �a� A planar shape in a synthesized image whose contour is only partially visible�
�b� The extracted contour points superimposed on the model� The set of points di�er from the
model by a similarity transformation� �c� The points are registered to the model as the matching
algorithm recovers the relative transformation�
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shape whose contour is fragmented and only partially visible �Figure ��	�a��� We derive a model of

the shape from another image� This model consists of �� spline segments� The initial pose of the

image points with respect to the model is shown in �b�� where the two shapes di�er by a similarity

transformation� As shown in �c�� the edge points are successfully registered to the model using

our matching algorithm� The correctly recovered transformation is� rotation � � �	���� scaling

s � ����� translation T � ��������	� pixels �the width of the contour is about �	� pixels��

Next� we show two examples with real images� In example 	� we match the contour curve of a

shampoo bottle �Figure ���� First� we derive a curve model of the contour from a clean image of

the bottle� The derived model consists of �� spline segments� Then we take another image of the

same bottle whose shape is to be registered to the model� The image has a cluttered background

�containing another bottle and some blocks�� The edge points of the shape� together with many

outliers� are then extracted from the image� The images points are initially registered to the model

with some pose and scaling error� The �nal matching result shows that the points are aligned with

the model after correcting the pose error�

In example � we show the result of matching the shape of a maple leaf �Figure ����� Again� we

derive a spline model of the shape from a clean image� The model consists of � segments of splines�

The shape to be registered is extracted from an image of the leaf in a very noisy background� This

time we try to register the points to the model using a global procedure based on the �rst and

second order moments which are de�ned on both the set of points and on the curve of the model�

Because of the large number of outliers� this global registration is quite inaccurate� However� it is

good enough to be a starting point for our matching algorithm�

�� Iterative Point Correspondence Based Algorithm

In Chapter �� we discussed a shape registration method based on iteratively associating point

correspondences to derive updates to the transformation� We discussed two rules for associating

correspondence� namely the closest point rule and the matching range point rule� and the algorithms

based on these rules� Here we apply this method for matching planar image shapes�

����� Iterative Least�Squares Procedure

Our task is to determine a relative 	D similarity transformation between a data shape and its

model� The data shape is represented by a set of �unoriented� points on the shape contour� while
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e f

Figure ��� �a� An image of a shampoo bottle� used for constructing a curve model� �b� An image
of the same bottle� whose contour shape is to be matched to the model� in a scene together with
other objects� �c� Spline curve model derived from the image in �a�� �d� Edge points extracted from
image �b�� �e� Initial pose of the points with respect to the model� �f� The points are registered to
the model as the matching algorithm recovers the relative transformation�
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e f

Figure ���� �a� An image of a leaf shape from which a contour curve model is derived� �b� An image
of the same leaf shape in a cluttered background� �c� The derived curve model from the image in
�a�� �d� The edge points extracted from the image in �b�� �e� The points are initially registered to
the model by a moment�based global procedure� �f� The points are matched to the model as the
matching algorithm recovers the geometric transformation�
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the contour model is assumed to have an analytical curve representation� The transformation

consists of a rotation of angle �� a scaling factor s� and a translation vector T � �Tx� Ty�
t�

The algorithm is based on iteratively minimizing the distance from the data points to their

corresponding points on the model� Each step of the iterative algorithm consists of the following

operations� ��� For each point Pi in the data set� use a rule to determine a corresponding point P �
i on

the model� �	� compute a least�squares solution of the relative transformation �rotation� translation�

and scaling� based on all the correspondence pairs of points� �� apply the least�squared solution

to transform the data set with respect to the model�

Based on n pairs of corresponding points �Pi�xi� yi�� P
�
i�x

�
i� y

�
i��� i � �� � � � � n� the least�squared

solution for the transformation variables ��� s� Tx� Ty� can be derived by minimizing the following

distance function�

E��� s� T � �
nX
i��

jsR�Pi � T � P �
i j�� ���		�

where R� �

�
cos� � sin�
sin� cos�

�
is the rotation matrix� Closed�form solutions for �� s� and T can

be derived as the following�

� � tan��
Sxy� � Syx�

Sxx� � Syy�

s �

q
�Sxy� � Syx��� � �Sxx� � Syy� ��

Sx� � Sy�

T �  P � � sR�
 P

where

 P �
�

n

nX
i��

Pi  P � �
�

n

nX
i��

P �
i�

Sxx� Sxy�

Syx� Syy�

�
�

nX
i��

�Pi �  P ��P �
i �  P ��t

�
Sx� Sxy
Sxy Sy�

�
�

nX
i��

�Pi �  P ��Pi �  P �t�

We will revisit the two rules and the related algorithms below�

����� Correspondence Rules and Algorithms

First� we apply the closest point rule� For each data point� its corresponding point is determined as

the one on the model which is closest to the data point� We also propose a matching�range point
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rule as the following� For a data point P � its corresponding point is P � on the model where P �

satis�es� j argP�argP �j � B� and jP �j is closest to jP j� The parameter B� controls the search area

to ensure a reliable correspondence point� Based on the two rules� we have two iterative algorithms

�ICP and IMRP��

A better algorithm can be devised by using both the closest point rule and the matching�range

point rule� We call it the iterative dual correspondence �IDC� algorithm and it works by obtaining

two correspondence points for each data point and solving two sets of transformation variables from

the two correspondence sets� Then� the translation and scaling components from the closest�point

rule solution and the rotation component from the matching�range�point rule solution are used to

form the current solution for the transformation�

The IDC algorithm appears to converge much faster than the ICP algorithm and the IMRP

algorithm� We compare the three iterative algorithms using an example� The curve model is an

ellipse of width ���� units� The data points and the model are similar to the ones in Fig� ��� in

Chapter �� The initial rotation is ���� initial scaling factor is ���� and the initial translation is ����

�� units� Fig� ��� illustrates the residuals of the transformation components during the iterations

of the three algorithms� Clearly� the IDC algorithm reduces the residuals much more quickly than

the other two single�rule algorithms�

To exclude outliers� we use a threshold Br for the maximum displacement of a data point caused

by translation and scaling� i�e� jjP �j� jP jj � Br for a correct correspondence pair P and P �� A pair

of points is accepted as a correspondence pair only if the above condition is met� The threshold

Br can be selected as the kth largest distance among all the correspondence pairs� according to a

predetermined constant fraction�

����� Experiments of Planar Shapes Registration

We apply the IDC algorithm to match a planar image shape to a curve model� The data points

on the shape contour are extracted from the image using an edge detector� The model for the

shape contour is a closed curve represented in piecewise splines� We derive the curve model from

a clean set of contour pixels of the shape using an optimal spline �tting procedure �the spline

�tting procedure is reported in our previous work ����� The extraction of image shape and the

prepation of curve model are similar to our experiments in Section ��	�� except that we do not

need the orientation of the points here� The two shapes are initially registered by an approximate

transformation which is either given or estimated using a global procedure�
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Figure ���� Comparison of iterative algorithms in an example� �a� Rotation residuals from the
three algorithms over � iterations� The initial rotation angle is ��� �b� Magnitudes of translation
residuals� The magnitude of initial translation is ���� units� �c� Scaling factor residuals �relative
errors of the derived scaling factors�� The initial scaling factor is ����
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The correspondence between the data set and the model shape is computed as the following�

For a data point P � its correspondence point P � according to either rule is determined by searching

the curve model and minimizing a distance function d�P ��� where d�P �� � jP � � P j� in the case of

closest�point rule and d�P �� � �jP �j � jP j�� in the case of matching�range point rule� We apply a

standard one�dimensional search procedure to minimize the distance function �by considering it as

a function of the polar angle of P ��� We then update the transformation using the least�squares

solutions� This process is repeated as described in the IDC algorithm�

Two examples of registering planar shapes are given below� In the �rst example� a synthesized

image containing a shape with an incomplete contour� is shown in Fig� ����a�� The extracted data

points are shown in part �b�� Part �c� shows an initial registration of the shape to a curve model�

where noticeable pose error is present� Part �d� shows the result of registering the shape to the

model� A threshold of ��# is used to remove outliers �i�e�� ��# of the points which are furthest

to model are discarded during the matching process�� The recovered transformation variables are�

rotation angle ���	�� scaling factor ����� translation ����	�� ���	� pixels�

In the second example� we register the shape of a maple leaf� The original image containing the

leaf is shown in Fig� ����a�� The extracted points on the leaf contour are shown in part �b�� Part

�c� shows an initial registration of the leaf shape to a curve model� Part �d� shows the �nal result

after registration� The recovered transformation variables are� rotation angle ����� scaling factor

����� translation ���	��� ����� pixels� We applied the registration process twice with two di�erent

outlier thresholds� First� we used a low threshold ��#� to derive an approximate registration�

Then we used a higher threshold �	�#� to exclude more outliers and derive a more accurate �nal

registration�

�� Discussion

We demonstrated that the two algorithms we initially introduced for matching range scans� the

rotation search�least�squares algorithm and the iterative dual correspondence algorithm� can also

be used for matching free�form curves obtained from intensity images� The adapted algorithms are

able to solve for an scaling factor in addition to the rotation and translation in the transformation�

The rotation search�least�squares algorithm makes use of the tangent �or normal� directions in

the shapes and thus it is more robust in associating correspondences and rejecting outliers� This

algorithm also has a nice feature that it solves the rotation by a search procedure rather than

�x�point iterations� Thus our algorithm would still work even if there is a large initial error in
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a b

c d

Figure ���� Registration of a synthesized shape� �a� Image containing the shape� �b� Extracted
data points on the shape contour� �c� Initial registration of the shape to the curve model� �d� Final
result of registration�
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a b

c d

Figure ���� Registration of the shape of a maple leaf� �a� Image containing the leaf shape� �b�
Extracted data points on the shape contour� �c� Initial registration of the leaf shape to the curve
model� �d� Final result of registration�
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rotation� A small disadvantage is that the search procedure we use only has a linear convergence

rate� while an iterative least�squares method �such as the one described in Section ����� appears

to have a superlinear rate� This is usually not a problem since the accuracy of our solution after a

few iterations is already quite good considering that the data are noisy� If necessary� we can apply

an iterative least�squares procedure after initially using our search algorithm�

The IDC algorithm based on point to point correspondences appears to be less robust because it

does not use tangent information� But this algorithm is still useful if it is inconvenient to obtain the

tangent information in the data shape or model� Comparing with the commonly used ICP �iterative

closest point� algorithm� our IDC algorithm is more e
cient� From the previous discussion about

these algorithms in various applications� we can conclude that the IDC algorithm is essentially

capable of replacing the ICP algorithm�

One advantage of our algorithms is that they can align curves without distinctive features�

However� like any algorithm which is based on iterative optimization rather than feature corre�

spondence� the two algorithms we discussed here all have the limitation that they require an initial

estimation of the registration� If the amount of outliers and missing data is relatively small� the

initial registration can be estimated from a global procedure� Otherwise� a good initial estimate

must be given for these iterative algorithms to work�
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Conclusion

���� Summary of Major Results

The theme of the thesis has been shape registration using optimization techniques� We �rst focused

on the shape matching problem for mobile robot applications� namely robot pose estimation and

map building� Then we extended our discussion to the registration of D surfaces and planar image

shapes�

The major contributions of this thesis are summarized as the following�

� We studied the problem of robot navigation in unknown structured environments using laser

range sensing� Previously� laser range sensing has mostly been employed for robot localization

with respect to a known world model� However� we examined the feasibility of dynamically

building a contour model from range scans as well as using this data�made�model for robot

pose estimation� Through our experiments� we concluded that using laser range sensing as

well as odometry for navigating an unknown structured environment is a feasible approach�

� We comprehensively studied the techniques for matching a range scan with respect to another

reference scan �which is the data�made�model� for deriving the relative position and heading

of the robot� The di
cult issues in this problem are that the scans are noisy� discontinuous�

not necessarily linear� and two scans taken at di�erent positions may not completely overlap

because of occlusion� We examined several optimization�based scan matching algorithms

including two new algorithms that we proposed as well as one that we adapted from an

existing method� Extensive experiments with simulated and real data con�rmed that these

techniques e�ectively solve the 	D scan matching problem�

���
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� In the study of optimal registration of multiple range scans for mapping an unknown envi�

ronment� we raised the issue of maintaining spatial consistency in the integrated model� In

most previous approaches to dynamic modeling� new sensor data are merged to a cumulative

model only based on local registrations� and this may cause inconsistency in the model� We

solved this problem by maintaining individual local frames of data as well as a network of

spatial relations among data frames� and then optimally combining all available relations to

resolve possible con�icts� The algorithm we propose to combine uncertain spatial relations is

superior to a previous method by Smith and Cheeseman ����� in that we avoided a restric�

tion on the type of connections of the spatial relations and our formulation is more elegant�

We also derived and formulated uncertain pose constraints from two types of sensing data

which are commonly used in mobile robot systems� odometry measurements and laser range

measurements�

� We proposed two new algorithms for shape registration� These algorithms are based on it�

erative optimization and they do not require feature extraction or segmentation� The �rst

algorithm is formulated as a search for minimizing a distance function� It is more robust

in global optimality than a least�squares iterative algorithm� It is also more e
cient than a

full three degree�of�freedom search as our algorithm only searches in the nonlinear rotation

dimension while it solves for translation in an embedded least�squares procedure� The second

algorithm is based on iteratively minimizing a distance de�ned by point to point correspon�

dences� It is more e�ective and e
cient than the Iterative Closest Point algorithm ��	�� Our

algorithms are demonstrated to be very e�ective in matching 	D range scans� We also suc�

cessfully extended our algorithms to other applications such as matching D range surfaces

and planar image shapes�

���� Directions for Future Research

To conclude our thesis� we point out several possible directions for future research�

� We have proven that it is su
cient to use 	D laser range scans for robot localization in

structured indoor environments where the world contour is typically formed by long smooth

walls� However� it will be much more di
cult to do this in a cluttered industrial workshop

where the nice wall structures are hidden by irregular� three�dimensional objects such as

pipes� racks� machines� etc� �One such environment is the AECL bay where the ARK robot is
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tested ������ It will be interesting to examine if laser range sensing is still capable of providing

localization for the robot� A possible approach is to use D range scans �i�e� to allow both pan

and tilt of the sensor� to reveal more structures in the environment� Note that this kind of D

range scan is very di�erent from dense� shallow�depth range images� Registration of D scans

is considerably more di
cult than registration of 	D scans because the range measurements

are sparse in the D space� One possibility is to use an active approach in collecting the

measurements �i�e� to point the laser beam in the directions where objects are observed from

previous scans��

� For a mobile robot mapping an unknown environment� once all the scans of range data are

registered into a common reference frame� the next task is to extract a concise representation

from the data� Although it is an easy problem if the environment is simple� the best way of

modeling a more complicated environment from sensor data is unclear� especially considering

that there are sensing and registration errors in the data�

� We treat exploration and mapping as separate steps� In fact� the robot may determine where

to go or look next based on the currently explored world� The best strategy for the robot

depends on the task and the purpose of the exploration mission� The criteria can be to obtain

a complete model� to minimize uncertainty in the model� to �nd an exit as quickly as possible

etc�� The best strategy based on each criterion can be studied� Whaite and Ferrie have

reported some results of autonomous exploration based on minimizing uncertainty ������

� An objective function is formed and minimized in each step of an optimization�basedmatching

algorithm� However� this objective function is only de�ned heuristically� We may study more

carefully what the �best� way is in order to de�ne the objective functions�

� It may be interesting to extend the optimization�based matching methods to handle slight

deformation in the shape� For example� the surface of a human face may slightly change

in di�erent views� A possible approach is to divide the surface into smaller regions and

allow slightly di�erent transformations for each region� Some study on this problem based on

curvature and motion consistency has been reported in ������
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Error from Approximate Point
Correspondence

�
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P �

O

rotated Snew

Sref

Figure A��� Illustration of approximate point correspondence�

In Section ��� we choose an approximate correspondence P � to replace P� as the corresponding

point for P� �see Fig A���� The pair P�� P � is used to form a constraint on the translation vector

T as �assuming the rotation is already corrected out��

�n� � T � �n� � �P � � P��� �A���

���



��	

The error in the above approximation is derived as the following� We regard that the reference

scan Sref is parameterized with the angle � as the index parameter� Let P� � �x���� y����� P � �

�x���� y����� Then the approximation error is�

�P � � P� � T � � �n�
� �P � � P�� � �n�
� �x���� x���� y���� y���� � ��y����� x������

q
x����� � y�����

� ��x���� � O����� �y���� �O����� � ��y����� x������
q
x������ y�����

� O�����

Notice that � � jT j�jP�j� The above error is bounded by O��jT j�jP�j���� which is small when

jT j � jP�j�
Similarly� we can show that

�n� � T � �n� � �P � � P�� �A�	�

with an approximation error of O��jT j�jP�j����
Furthermore� we can combine Eq� A�� and Eq� A�	 and yield a better approximated constraint�

��n� � �n�� � T � ��n� � �n�� � �P � � P�� �A��

whose approximation error can be similarly derived as

�P � � P�� � ��n� � �n��

� O���� � O��jT j�jP�j����

Note that in the above derivation� we assume that the curve �reference scan� is smooth�
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Derivation of Identity

In this section� we derive the identity in Eq� ���� which we rewrite below�

�� � ��� tan�� � ��� �B���

Let r��� denote a smooth curve in a polar coordinate system� A tangent line r � �� cos�� � ��

is de�ned at point ��� r����� where � is the orientation of the normal and � is the distance from the

origin� In the following discussion� all the derivatives are with respect to ��

First from the fact that r � �� cos��� �� is a tangent line to r � r���� both the function values

of the curve and the line and their �rst derivatives should agree�

r��� �
�

cos�� � ��
�B�	�

r���� �

	
�

cos�� � ��


�

�
� sin�� � ��

cos��� � ��
� �B��

It follows that

tan�� � �� �
r�

r
� �B���

The parameters � and � can then be solved as�

� � � � tan��
r�

r
�B���

� � r cos�� � �� �
r�p

r� � r��
� �B���

We now regard � and � as functions of �� Their derivatives can be evaluated directly from the

above two equations�

����� � ��
r��

r
� r��

r�

� � � r
�

r
��

�
r� � 	r�� � rr��

r� � r��
�B���

��



���

����� �
	rr�p
r� � r��

� r��	rr� � 	r�r���

	
p
�r� � r����

�
rr��r� � 	r�� � rr���p

�r� � r����
� �B���

Now from Equation B��� B��� B�� and B�� we can easily see that

�� � ��� tan�� � ��� �B���

This is the identity we want�
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