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Robotic Exploration as Graph Construction

Gregory Dudek, Michael Jenkin, Evangelos Milios, and
David Wilkes

Abstract—We address the problem of robotic exploration of a graph-
like world, where no distance or orientation metric is assumed of the
world. The robot is assumed to be able to autonomously traverse graph
edges, recognize when it has reached a vertex, and enumerate edges
incident upon the current vertex relative to the edge via which it entered
the current vertex. The robot cannot measure distances, and it does not
have a compass. We demonstrate that this exploration problem is
unsolvable in general without markers, and, to solve it, we equip the
robot with one or more distinct markers that can be put down or picked
up at will and that can be recognized by the robot if they are at the same
vertex as the robot. We develop and prove correct an exploration
algorithm, we show its performance on several example worlds, and we
discuss heuristics for improving its performance.

1. INTRODUCTION

Robotic exploration and map-based navigation using dead reckon-
ing is difficult to accomplish over large spatial scales without
reference to external features of the world due to the accumulation
of error in robot position and orientation. To address this fundamen-
tal issue, a number of approaches, e.g., [4], have been suggested in
order to more accurately track the motion of a robot in relation to
features of its environment so as to reduce positional errors.
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Motivated by the need for spatial representations other than ones
based on metric information, a four-level spatial semantic hierarchy
is proposed in [15]. The four levels, starting with the lowest, are the
sensorimotor (robot sensations and primitive actions), procedural
(robot actions to accomplish place-finding and route-following tasks),
topological (places and paths and their topological relations), and
metric (places and paths and their metric relations). In this paper,
we provide precise definitions of what correspond to the sensorimo-
tor, procedural, and topological levels associated with learning and
navigation in a graph-like world, assuming no metric information is
either sensed or stored.

The problem addressed in this work is: Given an unknown
environment modeled as a graph, formulate an exploration strategy
for the robot, so that, after carrying out the actions specified by the
strategy, the robot will have formed a representation of its environ-
ment sufficient for solving navigation tasks with the use of sensors,
i.e., a map. We begin by defining the world the robot explores, the
robot itself, and the actions and sensations with which it is equipped.
To solve the problem of determining when the robot has returned to
a previously visited location (the ‘‘am I there yet’” problem) during
map building, we use portable markers as part of the exploration
strategy. We demonstrate that this is the only feasible approach
given the lack of precise metric information and distinct landmark
features.

Past work in this area involves metric representations of space,
including metric graphs [4], [13], [16], [19], [21], and probabilistic
approaches, which typically associate probability distributions with
spatial coordinates, {31, [9], [10], [17], [18], [20]. Graph theoreti-
cians have examined the complexity required of a machine to
traverse (without building a model of) a two- or three-dimensional
space with obstacles [1], {2]. A major difference between random
walks on graphs and our approach is that we visit vertices of a graph
according to deterministic strategies as opposed to stochastic. In
[14] and [15] a topological model of the world is used. A rehearsal
procedure is used to distinguish two places with identical signatures
by exploring some of the surrounding area. Our work can be viewed
as introducing a different rehearsal procedure that includes portable
markers. Davis [5] has tried to reduce problems at the topological
level to problems involving only the geometric level, which are then
solved by trigonometric means applied to fuzzy intervals. Perma-
nent markers have been used in deterministic strategies for graph
traversal [11], where the goal is to visit all vertices of an unknown
graph. The problem of exploring an unknown directed graph with a
robot that can recognize edges and nodes, if it sees them again, has
been addressed by Deng and Papadimitriou [6].

This short paper is structured as follows. Section II defines our
model of the world and the sensorimotor capabilities of the robot.
Section III describes an exploration algorithm using k markers and
gives a correctness proof and complexity bounds. Section IV pre-
sents experimental results on typical graphs and on a complex
three-dimensional maze.

II. DEFINITIONS

In this section, we describe the environment in which our robot
explorer exists as well as the robot’s actions, perception, and goals.
It is important to remember that this representation is minimal in
nature. In reality, much more information is likely to be available at
a given location than we assume here. A sensing system that can
enumerate the exits from a given location might also give approxi-
mate relative orientations, and the addition of a compass to the robot
would make these orientations absolute.

1042-296X /91$01.00 ©1991 IEEE
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The robot’s ‘‘purpose in life”” is to use its ability to act and to
perceive in the graph domain in order to build a graph embedding
that is isomorphic [12] to the finite world it has been assigned to
explore. The robot’s inputs are its sensations, and it can interact
with the world only through its actions.

A. The World
The world is defined as an embedding of an undirected graph G:
G=(V,E) (1)

with a set of vertices V and a set of edges E. The vertices are
denoted by
LUNT- (2)

We will restrict the world model to graphs G that contain no cycles
of length <2, i.e., the graph contains no degenerate or redundant
paths. This restriction prohibits the world from having multiple
edges between two vertices or an edge incident twice at the same
vertex.

The definition of an edge is extended slightly to allow for the
explicit specification of the order of edges incident upon each vertex
of the graph embedding. This ordering is obtained by enumerating
the edges in a systematic (e.g., clockwise) manner from some
standard starting direction. An edge E; ; incident upon v; and v; is
assigned labels n and m, one for each of v, and v ;> Tespectively. n
represents the ordering of the edge E; ; with respect to the consis-
tent enumeration of edges at v;; m represents the ordering of the
edge E; ; with respect to the consistent enumeration of the edges at
v;. The labels m and n can be considered as general directions,

e.g., from vertex v; the nth exit takes edge E, ; to vertex v;.

V={v,

B. Movement and Action

The robot can move from one vertex to another by traversing an
edge (a move), it can pick up a marker that is located at the current
vertex, and it can put down a marker it holds at the current vertex (a
marker operation). The robot in general has K markers at its
disposal.

Assume the robot is at a single vertex v;, having entered the
vertex through edge E; ;. In a single move, it leaves vertex v, for
vertex v; by traversing the edge E; ;, which is r edges after E;,
according to the edge order at vertex v; (see Fig. 1). This is given
by the transition function

6(vi, E;yor) = v, 3)
We assume the following property about the transition function: if
8(v;, E;y, r)y=v; and &(v;, E;;, 5)= v, then (v, E; s
—s) = v;. This implies that a sequence of moves is invertible, and
can be retraced. We also assume that there does not exist a 1 # —s
such that 6(v;, E; x, ) = v;.

A single move is thus specified by the order r of the edge along
which the robot exits the current vertex, where r is defined with
respect to the edge along which the robot entered such vertex. Note
that in the special case of a planar embedding of a graph, enumera-
tion of edges in a clockwise fashion satisfies the above assumption.

A marker operation is fully specified by indicating for each of the
K markers whether it is being picked up, put down, or not operated
upon. This is specified by a K-tuple 8% = (op,, op,,* -+, opy),
where the element op, has a value from the set { pickup, put-
down, null}, according to the operation performed on marker k.

A simple action a is defined as a marker operation accompanied
by a move; therefore, @ = (b, 8), where b e QX. The robot per-
forms some action on the markers in the current vertex and then

Fig. 1. Transition function. Assuming that the robot started at v,, then the
transition function ¢ identifies exit r from vertex v; as being an edge to v /e

moves to a new location. A path 4 ea™ is a nonempty sequence of
actions.

C. Perception

The robot’s perception is of two kinds: marker-related and edge-
related perception.

Marker-Related Perception: Assume that the robot is at vertex
v;, having arrived via edge E, ;. The marker-related perception of
the robot is a K-tuple B, = (bs,, bs,, -, bsy), where bs, has a
value from the set { present, not-present}, according to whether
marker K is present at vertex v;.

Edge-Related Perception: The robot can determine the relative
positions of edges incident on the vertex v; in a consistent manner,
e.g., by a clockwise enumeration starting with E,; ;. As a result, it
can assign an integer label to each edge incident on v;, representing
the order of that edge with respect to the edge enumeration at v;.
The label 0 is assigned arbitrarily to the edge E; ; through which the
robot entered vertex v;. The ordering is local because it depends on
the edge E; ;. Entering the same vertex from two different edges
will lead to two local orderings, one of which is a permutation of
the other. Note that if the graph is planar and a spatially consistent
(e.g., clockwise) enumeration of edges is used, then two permuta-
tions will be simple circular translations of each other. But, this will
not hold in general, and in this work we only assume that the edges
can be ordered consistently.

The sensory information that the robot acquires while at vertex v,
is the pair consisting of the marker-related perception at that vertex
and the order of edges incident on that vertex, with respect to the
edge along which the robot entered the vertex. If the robot visits the
same vertex twice, it must relate the two different local orderings
produced and unify them into a single global ordering, for example,
by finding the label of the zeroth edge of the second ordering with
respect to the first ordering. Determining when the same vertex has
been visited twice and generating a global ordering for each vertex
is part of the task of the exploration algorithm.

D. The Zero-Marker Case

Can an autonomous robot (as described above) explore an arbi-
trary finite environment without any markers? The answer is no. As
an example, regular graphs of the same degree (i.e., graphs in
which each vertex has a number of incident edges equal to the
degree) are indistinguishable from each other without markers be-
cause each vertex appears identical to every other vertex.

ITI. THE EXPLORATION ALGORITHM

This section describes an algorithm for exploring a given graph
using k markers. The algorithm will be shown to have polynomial
running time in terms of the size of the graph. The basis of the
algorithm is the maintenance of an explored graph. As new vertices
are encountered, they are added to the explored graph, which is a
subgraph of the full graph, and their outgoing edges are added to the
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set of edges that lead to unknown places and therefore must be
explored.

More formally, the algorithm maintains an explored subgraph S
and a set of unexplored edges U, which emanate from vertices of
the explored subgraph. A step of the algorithm consists of selecting
a set E of k unexplored edges from U and ‘‘ validating’’ the vertex
v, at the unexplored end of each edge e = (v, vy) in the set E.
Validating a vertex v, means making sure that it is not identical to
any other vertex in the explored subgraph. This is carried out by
placing one of the k markers at v, and visiting all vertices of the
known subgraph S along edges of S, looking for the marker (and
each of the other k — 1 markers dropped at this step). Note that the
other vertex v, incident upon e is already in the subgraph S.

If the marker is found at vertex v; of the explored subgraph S,
then vertex v, (where the marker was dropped) is identical to the
already known v; (where the marker was found). In this case, edge
e = (v,, v,) must be assigned an index with respect to the edge
ordering of vertex v,. To determine this, the robot drops the marker
at v, and goes back to v, along the shortest path in the explored
graph S. At v,, it tries going out of the vertex along each of its
incident edges. One of them will take the robot back to vy, which
the robot will immediately recognize by the existence of the marker.
Note that the index of e with respect to the edge ordering of v, is
known by construction. Edge e is then added to the subgraph S and
removed from U.

If the marker is not found at one of the vertices of S, then vertex
v, is not in the subgraph S and therefore must be added to it. The
unexplored edge e is also added to S, which has now been
augmented by one edge and one vertex. Adding the vertex v, to the
subgraph causes all edges incident upon it to be assigned an index
with respect to the edge e by which the robot entered the vertex
(edge e is assigned index 0) and the new edges are added to the set
of unexplored edges U. Note that no other edge of the new vertex
v, has been previously added to the subgraph because otherwise v,
would have already been in the explored subgraph. This index
assignment establishes the edge ordering local to v,.

The algorithm terminates when the set of unexplored edges Uis
empty. A version of the algorithm incorporating the above charac-
teristics is shown in the appendix. A formal proof of the correctness
of the algorithm is presented in [8].

A different way of using the available k markers is to employ two
distinct markers in the exploration of a single unexplored edge
e = (v;, v,). Then we can combine the validation and ordering
steps by placing the markers at v, and v,. If v, is found in S, then
ordering of e with respect to v, is accomplished by going out of v,
along each of its incident edges, without having to drop the marker
at v, and to return to v, along the shortest path in S. This variation
resulted in poorer performance on our test cases, with asymptotic
worst case complexity that differs only by a constant factor. There is
a tradeoff between easier vertex validation, with the modified algo-
rithm, and fewer edges added per marker drop.

Complexity of the Algorithm

Certain steps of the algorithm are executed mechanically (edge
traversals or marker pickup or drop) in the world G, while others
are executed only electronically as the robot reasons about the
model S (i.e., performs operations on the data structures maintained
by the algorithm). The time constants for some simple operation,
such as following an edge in a graph, may differ between the two
cases by many orders of magnitude. Consequently, algorithms of
higher asymptotic complexity may be tolerable for the electronic
operations but not for the mechanical operations. For example, we
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may run a shortest-path algorithm electronically many times in
order to save a few mechanical steps for the robot.

1) Mechanical Complexity: Let m be the number of edges and
n the number of vertices. We will count the steps that may be taken
by the robot while executing the algorithm in the worst case, using
simplifying bounds on some subexpressions. We assume that k is
small enough that the algorithm does not frequently exhaust the set
U of unknown edges at the step in which it chooses k elements
from U. If this is not the case, then the advantage of the extra
markers is reduced, since the excess markers are not used and hence
provide absolutely no advantage. By counting the number of me-
chanical steps resulting from each call to a relevant routine as shown
in Table I, we obtain a bound on the number of mechanical steps of

2
(5 + ;) mn — 3n® + lower order terms (4)

where n, is the number of nodes in the explored subgraph, and
d,., is the maximum degree of a node in the world, both bounded
by n. A similar analysis of the worst case asymptotic complexity of
the modified algorithm, which places markers at each end of each
unknown edge, gives a similar expression bounding the number of
mechanical steps:

4
(3 + ;) mn — n* + lower order terms. (5)

2) Electronic Complexity: The asymptotic electronic complexity
of the algorithm is O(n*m + m” log m) if a shortest path algo-
rithm is used in the routine search (), or o(m? log m) otherwise.
For planar graphs, this becomes O(n?) and O(n? log n), respec-
tively. If the robot is aware that it has at least n markers, then some
simplification is afforded because the robot need not pick up any
markers that it drops.

IV. EXPERIMENTS

Experiments were carried out by running the algorithm on vari-
ous input graphs. These graphs were generated manually in order to
exemplify performance characteristics of the technique and confirm
the theoretical predictions. Equation (4) provides a theoretical upper
limit on the number of robot steps required for the graph explo-
ration. In practice, however, the actual number of steps for many
operations may be substantially lower. In order to informally evalu-
ate some of these issues, the behavior of a robot using this explo-
ration strategy was simulated on a variety of input graphs. The
actual number of mechanical steps taken varied between about 25
and 65% of the theoretical complexity bound.

An interesting example is provided by Daedalus’ labyrinth, as
described in [7]. We reproduce this maze in Fig. 2. Note that this
maze is three dimensional with the entrance and exit located at the
top level of the maze (Level 1). In order to test the ability of a robot
equipped with a single marker, this maze was first reduced to a
graph-based world model, with vertices in the graph representing
intersections of paths or features (such as corners in the labyrinth).
Two additional vertices were added for the entrance and exit rooms.
The robot was then placed in the entrance room and allowed to start
exploring. The robot knows which way is vertical, i.e., it has a
sense of gravity but no sense of global orientation. The edge
ordering follows the clockwise order for the horizontal edges,
followed by the vertical up and vertical down edges, if any exist at
the current vertex. It should be noted that this graph, as all graphs
discussed in this paper, is undirected because vertical edges can be
traversed both ways.

Internally the robot has no knowledge of the physical position of
locations in the environment. It can only measure the exits from a
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Fig. 2. Daedalus’ labyrinth. This maze is constructed within a 6 X 6 X 6
cube. The entrance and exit are on the top level (Level 1).

TABLE 1
NUMBER OF MECHANICAL STEPS ASSOCIATED WITH THE ALGORITHM LISTED IN THE APPENDIX

# of mechanical
steps per call

# of calls in
the algorithm

pickup(marker;)
> marker distribution phase
Walk ($(Voyrren), $(v)))

JollowEdge(¢(e;)) v to ¢(vy)

drop(marker,)

JfollowEdge(é(e))) © 10 ¢(v;)
search(-)

breadth-first traversal

pickup(marker,)
> validation for found marker
Walk ($(Voyrren)s 0(v)))
drop(marker;)
walk(¢(v,), ¢(v,))
SollowEdge(¢(f)) v to v
pickup(marker;)
SfollowEdge(¢(f)) > to vy
> marker not found, new vertex
Walk($(Veyrrent)s $(vy))
JfollowEdge(¢(e,)) > to é(vy)
pickup(marker;)
pickup(marker i)

unknown

1 k
=n; -1 m
1 m
1 m
1 m
m

s?.(ns—l) ’7
1 m (x)
<ng; -1 m-n+1
1 m-n+1
<n; -1 m-—n+1
1 (m—n+ 1d,,,
1 m-n+1
1 (m—n+ 1)d,,,
=n; -1 n-—1
1 n-1
1 n-1
1 included in

(*) above

node and the presence (or absence) of a marker. For display
purposes only, we have attached to each node a physical location so
that the resulting explored labyrinth can be compared with the
original, shown in Fig. 2.

Two intermediate results with eight markers (after 1200 and 2400
mechanical steps) are shown in Fig. 3. The robot’s perception of the
maze after completing the exploration is identical to the original.
Note that in Fig. 2 lines represent walls, while in Fig. 3 the lines
represent valid movement paths for the robot.

The Advantages of Multiple Markers

As we have already mentioned, the use of multiple markers can
improve the performance of the robot on a given environment. To

confirm our previous observations on the effect of the number of
markers on the robot’s performance, we have plotted the total
number of steps required to fully explore the maze with a number of
markers ranging from 1 to 14, as shown in Fig. 4. The dots and
crosses correspond to two different starting points in the maze.

It can be seen that adding more markers does not result in a
significant decrease in the total number of steps after a certain
number of markers. We conjecture that this is due to the fact that
the number of unexplored edges at any one time are generally few,
and that it may be the case that there are actually markers that
cannot be used at a given step of the algorithm. Even if all the
markers can be used, it may be the case that the robot must traverse
much of the explored graph just to deposit the markers, and that the
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Fig. 3. Partial exploration results with eight markers.
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Fig. 4. Total number of steps as a function of the number of markers.

robot ends up taking a large number of steps when it would be more
useful to simply explore the graph with the markers already dropped.
Developing heuristics for improving the performance of the algo-
rithm with multiple markers is an interesting area for future
research.
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V. DiSCUSSION

In this work, we proposed strategies that a mobile robot can use
in exploring unknown graph-like environments. Contrary to most
current approaches, our algorithms do not make use of distance
metrics, but they use one or more markers that can be perceived by
the robot and be put down or picked up at will. We show that one
marker is sufficient to allow the robot to build a graph isomorphic to
the environment in low-order polynomial time in both mechanical
and computational complexity. The required perceptual abilities of
the robot are well defined, and they amount to the ability to traverse
an edge and to enumerate the edges incident upon the current
vertex. The theoretically derived upper bounds on the complexity of
the algorithm are confirmed by a computer simulation. By defining a
minimal model for mobile robotic exploration, we point to interest-
ing extensions for when the world is richer than our model.

The abstraction used here presents a particularly impoverished
world. Only the number of exits from each location and one’s own
markers can actually be sensed. In practice, most real robotic
systems can be expected to have richer perceptual inputs than these.
The simple model used here, however, serves as a lowest common
denominator for the capabilities of robotic systems. By showing that
the map acquisition problem can be solved with acceptable complex-
ity bounds under these circumstances, we demonstrate that such
tasks are solvable within at least these bounds by more sophisticated
systems. Furthermore, although more sophisticated perceptual
mechanisms may be available, they are rarely completely depend-
able (not only must one account for sensor errors, but the sensed
data is also domain dependent). Hence, even robots with powerful
sensing systems may occasionally find themselves reduced to the
level of the model described here. Finally, an abstraction of the
robot exploration problem based on using more powerful but
domain-dependent and error-prone sensors would make solid com-
plexity bounds for the problem almost unobtainable.

It should be emphasized that the robotic exploration problem
described here cannot be solved simply using a depth or breadth-first
search. The identity of individual vertices of the graph cannot be
established without first solving the mapping problem. Once the
graph has been explored, it can then be searched efficiently by
standard techniques (and the algorithm, in fact, does this within the
portion of the graph that has already been mapped out).

APPENDIX
STATEMENT OF THE ALGORITHM

The following is one version of the algorithm incorporating these
assumptions. We denote the mapping from model S to world G by
¢; ¢ of a vertex in S is the real-world vertex to which the robot’s
label corresponds. Definitions of the subroutines used by the algo-
rithm are given following the statement of the top-level algorithm.
In the top-level algorithm, mechanical steps are in italics, and
electronic steps are in roman. Comments are preceded by the
symbol ©.

>
> Initially the robot starts at some vertex v;,;, with
> the markers on the floor
>
for i from 1 to k
pickup(marker;)
= ({vinm}> { D
= {¢1(e)| e is incident with ¢(v;na)}
> U is indexed by the known vertex incident with
each edge e
for each e in U
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index(e, v;,,) = consistent ordering of ¢(e)
with respect to an arbitrary edge

end for
Y,

current = Vinitial

loop

exit when U = {}
>
> Select a subset of the unexplored edges in U
> of up to k elements and call this E
>
choose( E)
>
> For each new edge, move the robot there (v,)
> Move along the new edge, drop the marker there (vy)
> and return to the known graph (v,).
>
for each e; € E, with known vertex v,
walk (( Ucurrem) 4 ¢( vy ))
SfollowEdge(¢(e))) > to ¢(v,)
drop(marker;)
SollowEdge(¢(e,)) > to ¢(v,)
end for
>
>Search through the graph looking for the dropped
>markers
>
search(S, markerFound, markerLocation)

> and set v, ..

> markerFound is now a k-vector of Boolean flags
> markerLocation is a k-vector of vertex numbers
for each i from k down to 1
if markerFound, then
>
> Found a marker.
>determine index of e,
with respect to its unknown end v,:
>
walk(é(vcunem)’ ¢(UI))
drop(marker;)
walk(d(v,), ¢(v,))
for each edge f leaving v,
SfollowEdge(d(f)) v 10 vypmomn
if marker; at v, .. then
index(e;, v,) := index(f, v,)
remove f from U

> i.e., no unexplored edge remains

pickup(marker,)
Veurrent = vy
exit for
end if
SfollowEdge (¢(f)) v back to v,
end for
else
>
> Didn’t find the marker. This is a new vertex
>

Wa[k(d)(vcurrem)’ ¢(v1))

JollowEdge(d(e;)) > to &(v,)

pickup(marker;)

add v, to S

add e; to S

index(e;, v,) =0

for each other edge f leaving ¢(v,)
index(¢~'(f), vy) =

consistent ordering with respect to e;

add ¢~ '(f)to U

end for

for each other marker; at ¢(v,)
pickup(marker )
markerFound; = true
markerLocation; = v,

end for

end if
end for
end loop

subroutines:

choose(E)

> choose up to k edges e, e,, - -
such that the known

> incident vertex of e, is closest to Veurrent» @Nd

>fori=1,2,--- k — 1 we have that the known
incident vertex of

> e, is closest to the known incident vertex of e,

run shortestPath & times to find edges satisfying the
above description.

e, from U

Walk(vﬁom’ vto)
run shortestPath to get shortest path (e, e,, -+ ¢;)
from vg, to v, through S.
for i from 1 to k
JollowEdge(¢(e;))
end for
search(S, markerFound, markerLocation)
> a breadth-first approximation
> to a traveling salesman problem solution seems
> appropriate
> since markers are likely to be close to current vertex
>in S
> Do traversal of S, stopping when k markers have
> been encountered
> or all vertices have been visited
run Kruskal’s algorithm to get min spanning tree of S
for i from 1 to k set markerFound,; to false
do breadth-first traversal,
taking ‘‘short cuts’” across non-tree
edges to next vertex where possible.
We consider two versions here:
a) only take single-edge short cuts (check if current
and next vertex in traversal are adjacent).
b) run shortestPath to find shortest path from
current to next vertex at each step.
whenever a marker / is encountered,
set markerFound, to true, and
set markerLocation; to the vertex number in S, and
execute pickup(marker;).
shortestPath(source)
> do a breadth-first labeling of vertices starting from
> vertex “‘source’’
> where labels indicate previous vertex in path back
> to sink. This
> is inspired by the Ford-Fulkerson labeling algorithm.
> It suffices for finding shortest paths in an
> unweighted graph,
> taking O(n) time. Use Dijkstra’s algorithm if there
> are weights on the edges (0O(n?)).
label source
loop
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for each newly labeled vertex v
(i.e., from last loop pass)
label all vertices adjacent to v
end for
end loop
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Polynomial Time Collision Detection for Manipulator
Paths Specified by Joint Motions

Achim Schweikard

Abstract—An exact collision detection algorithm is described and
analyzed. The time bound considers the complexity of the solids, the
number of joints, and the number of distinct collision configurations. A
bound for the number of collision configurations can be taken directly
from the input data. The algorithm is based on an exact treatment of
trig tric expr The representation of trigonometric con-
stants is di d in an dix

PP

1. INTRODUCTION

The detection of intersections and collisions between objects is
related to many geometric planning tasks. For example, collision
detection methods are used as the basis of standard motion planning
techniques. Clearly, in order to derive exact collision detection
methods and asymptotic time bounds for collision detection, it is
necessary to describe the complexity of given motions. The follow-
ing problems are distinguished in this context.

1) Intersection detection: Given two objects in fixed configura-
tion, test whether the objects have a point in common.

2) Intersection computation: Given two fixed objects, compute
the intersection, i.e., the set of points common to the two
objects.

3) Collision detection: Given objects and motions, decide
whether an intersection will occur during the motions.

The problem considered here is an extension of the third problem:
Given solids and motions, compute the time intervals in which an
intersection will occur. Thus, common points are not computed. In
what follows we will refer to a single motion of several objects,
i.e., simultaneous motions of several objects are specified with
respect to a single common time parameter f.

The problem of collision detection has been studied in many
contributions [2], [4]-[6], [8], [91, [11]. Boyse [2] considers two
polyhedra, one of which is fixed while the other polyhedron is either
translated or rotated; this case is useful in motion planning applica-
tions [13]. In [5] and [9], arbitrary motions of polyhedra are
considered and fast collision detection methods are derived using a
discretization of the given motion; a discretization of a motion is a
finite set of sample configurations that will occur during the motion.
An intersection detection method is then applied to each sample
configuration. Gilbert and Hong [8] describe an iterative collision
detection method. With this method, it can be decided whether or
not a collision will occur, but iterative root finding subalgorithms
and a resolution parameter have to be used and time bounds
considering the complexity of the motion cannot be derived. A fast
method for computing the distance between polyhedra is given by
Lin and Canny [11]. This method finds the closest pair of features
(i.e., vertices, faces, edges) for fixed polyhedra and can be applied
to collision detection using discrete sample configurations. In gen-
eral, criteria for the choice of the sample configurations are not
available. A method in [5], and [6] reduces collision detection for
three-dimensional moving solids to intersection testing in higher
dimensions. Here, extrusions of moving solids into an additional
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