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Abstract

A focused crawler is designed to traverse the Web to gather documents on a specific topic. It can be used to build
domain-specific Web search portals and online personalized search tools. To estimate the relevance of a newly seen
URL, it must use information gleaned from previously crawled page sequences.

In this paper, we present a new approach for prediction of the links leading to relevant pages based on a Hidden Mar-
kov Model (HMM). The system consists of three stages: user data collection, user modelling via sequential pattern learn-
ing, and focused crawling. In particular, we first collect the Web pages visited during a user browsing session. These pages
are clustered, and the link structure among pages from different clusters is then used to learn page sequences that are likely
to lead to target pages. The learning is performed using HMM. During crawling, the priority of links to follow is based on
a learned estimate of how likely the page is to lead to a target page. We compare the performance with Context-Graph
crawling and Best-First crawling. Our experiments demonstrate that this approach performs better than Context-Graph
crawling and Best-First crawling.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With the exponential growth of information on the World Wide Web, there is great demand for efficient
and effective approaches to organize and retrieve the information available [1–4]. The imbalance between
the rapid growth of the Web and the limited network and storage resources poses many challenges for generic
crawlers and search engines. For example, search engines may find it hard to refresh their index frequently
enough to keep up with the pace of the Web changing. As well, a topic-oriented keyword search is more
and more likely to yield thousands of relevant results only based on keywords specified in the query, which
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means that a user still needs to go through a selection and browsing process before finding the pages most
relevant to her. On the other hand, popular topical pages cannot fit every user’s interests equally well. There-
fore, the generic search engines will become less appealing to a user with specific information needs that do not
fall into the most popular categories. Hence there will be a market for topic-specific search tools such as Web
search portals that index pages on a particular topic, or personalized search tools that search the Web for
pages that fit a particular user profile.

1.1. Focused crawling

The success of topic-specific search tools depends on the ability to locate topic-specific pages on the Web
while using limited storage and network resources. This can be achieved if the Web is explored by means of a
focused crawler. A focused crawler is a crawler that is designed to traverse a subset of the Web for gathering
only documents on a specific topic, instead of searching the whole Web exhaustively.

In order to find pages of a particular type or on a particular topic, focused crawlers, which were first intro-
duced by Chakrabarti et al. [5], aim to identify links that are likely to lead to target documents, and avoid links
to off-topic branches. Regular crawlers use a Breadth-First search strategy in order to download as many
pages as possible, while focused crawlers selectively choose links that quickly lead to target pages. As a result,
with a small investment of network resources, a focused crawler is expected to collect high quality domain-
specific documents from the Web with respectable coverage at a rapid rate.

The challenge in designing a focused crawler is to predict which links lead to target pages, since the Web is
noisy and multi-topic. Sometimes, relevant pages link to other relevant ones. However, it is very common that
pages which are not on topic lead to topical pages indirectly. According to a study [6], most relevant pages are
separated by irrelevant pages, the number of which ranges from at least 1, to a maximum of 12, commonly 5.
A common approach to focused crawling is to use information gleaned from previously crawled pages to esti-
mate the relevance of a newly seen URL. The effectiveness of the crawler depends on the accuracy of this esti-
mation process.

1.2. Literature review

A variety of methods for focused crawling have been developed. The term focused crawler was first
coined by Chakrabarti in 1999, however, the concept of prioritizing unvisited URLs on the crawl frontier
for specific searching goals is not new, and Fish-Search [7] by De Bra et al. (1994) and Shark-Search [8] by
Hersovici et al. (1998) were some of the earliest algorithms for crawling for pages with keywords specified in
the query. In Fish-Search, the Web is crawled by a team of crawlers, which are viewed as a school of fish. If
the ‘‘fish’’ finds a relevant page based on keywords specified in the query, it continues looking by following
more links from that page. If the page is not relevant, its child links receive a low preferential value. Shark-
Search is a modification of Fish-search which differs in two ways: a child inherits a discounted value of the
score of its parent, and this score is combined with a value based on the anchor text that occurs around the
link in the Web page.

The focused crawler introduced in [5] uses a canonical topic taxonomy. The user specifies a number of start-
ing points, and browses from these pages. The user matches pages to the best categories while browsing. This
categorization is used to train a classifier which makes relevance judgements on a document to the topic. A
distiller then determines visit priorities based on hub-authority connectivity analysis.

Intelligent crawling with arbitrary predicates is described in [9]. The method involves looking for specific
features in a page to rank the candidate links. These features include page content, URL names of referred
Web page, and the nature of the parent and sibling pages. It is a generic framework in that it allows the user
to specify the relevant criteria. Also, the system has the ability of self-learning, i.e. to collect statistical infor-
mation during the crawl and adjust the weight of these features to capture the dominant individual factor at
that moment. Similar methods can be found in [10–12]. These methods have in common that they use a base-
line best-first focused crawling strategy combined with different heuristics based on local features extracted
from the parent page, such as similarity to a query, in-degree, PageRank, and relevance feedback. This reflects
the belief that in the Web graph, relevant pages are likely to link to other relevant pages.
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Other methods used to capture path information leading to targets include reinforcement learning [13],
genetic programming [14], and Context Graph algorithms [15]. In [13], an algorithm was presented for learn-
ing a mapping performed by Naive Bayes text classifiers from the text surrounding a hyperlink to a value func-
tion of sum of rewards, the estimate of the number of relevant pages that can be found as the result of
following that hyperlink.

A genetic programming algorithm is used in [14] to explore the space of potential strategies and evolve good
strategies based on the text and link structure of the referring pages. The strategies produce a rank function
which is a weighted sum of several scores such as hub, authority and SVM scores of parent pages going back k

generations.
The Context Graph method, proposed by Diligenti et al. [15] uses backlinks to estimate the link distance

from a page to target pages. Their method starts from a set of seed documents, follows backlinks to a certain
layer, and then builds up a context graph for the seed pages. A classifier is constructed for each layer using the
Naı̈ve Bayes algorithm. As a new document is found, it is classified into a layer. Documents classified into
layers closer to the target are crawled first. The experiments showed that this approach maintained a higher
level of relevance in the retrieved Web pages. However, the assumption that all pages in a certain layer from a
target document belong to the same topic described by a set of terms does not always hold.

A complete framework to evaluate different crawling strategies is described in [16–18]. An application of
extending digital libraries with a focused crawler can be found in [19].

1.3. Contribution and outline of the paper

Unlike all the systems above, our objective is to capture the hierarchical semantic linkage structure of top-
ics. Typical examples of such topical hierarchies can be found in the Open Directory (ODP) or Yahoo direc-
tory. They are built by humans, and do not reflect the actual Web. However, in the real Web, such topical
hierarchies structure do exist in a less visible way. For example, although different university Web sites
may have different style and content presentations on the surface, the Homepage! Department!
People! Faculty is a very common hierarchical semantic linkage structure underneath. In other words,
off-topic, but semantically related, pages may often reliably lead to relevant pages. For example, a
University page leads to a Department page, which leads to a People page, Faculty list page, Research and
Publications. When looking for research publications on a specific topic, the crawler may have to traverse
pages that are irrelevant to the topic, before it reaches highly relevant ones.

Our approach is to use a combination of semantic content analysis and link structure of paths leading to
targets by learning from the user’s browsing patterns and to emulate them to find more relevant pages. We
believe that sequential pattern learning from user’s browsing behavior on specific topics is beneficial because
humans are very good at discriminating between links based on a variety of clues in a page. Semantic content
analysis is performed by a clustering algorithm. Documents are grouped semantically to build a concept
graph, from which the learning and prediction are done from both content and linkage by training an
HMM to recognize sequences of topics that lead to relevant pages. The use of finite-state Markov models
helps represent useful context including not only text content, but also linkage relations. For example, in
the path p1! p2! p3! w, the prediction of the link p3! w is based on the observable text content of w

combined with features from its ancestor sequence p1, p2, and p3.
Our approach is unique in the following important ways. One is the way we use Hidden Markov Models for

focused crawling. We think of a focused crawler as a random surfer, over an underlying Markov chain of hid-
den states, defined by the number of hops away from targets, from which the actual topics of the document are
generated. When a new document is seen, the prediction is to estimate how many links this document is away
from a target. After training, our system may have learned patterns like ‘‘University pages are more likely to
lead to Research papers than Sports pages’’. Note that this is different from other systems in that we capture
semantic associative relations along paths leading to target pages rather than physical link distances to make
predictions. Another contribution is modelling the semantic structure of the Web by observing the user’s
behavior on a small training data set and application of this model to guide the actual Web crawler in order
to find the relevant documents. Experiments show that the proposed crawler outperforms Best-First and Con-
text-Graph crawling. The learned model is general, and its parameters are adapted to different users searching
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different topics, so it is broadly applicable. It can be used to build topic-specific portals and it can help indi-
vidual users perform personalized online search.

One possible application of our focused crawler is as part of a personalized search tool. Current search
engines are highly effective in a keyword search for a specific, well-defined type of Web page. However, in
many instances a user will have an information need that is less easily expressed with a keyword search. In
this case, the user often needs to follow two or three levels of hyperlinks before finding the pages she is looking
for. Our focused crawler will be able to help for such search instances. From observing the user’s browsing
behavior, the focused crawler will learn the nature of the relevant target pages, and recognize the pathways
leading to such pages. The crawler will then go online to find more pages of this kind, and can present the
URL’s of such pages whenever the user next opens her browser.

Another application is the construction of topic-specific Web portals. Often such portals are maintained by
professional societies and other not-for-profit organizations, who usually have limited resources at their dis-
posal. Using a focused crawler will lead to faster updates and more complete coverage of the topic. The results
of our experiments demonstrate that our browsing-based focused crawler gives results superior to focused
crawlers based on other principles. To obtain the power of our approach, the cooperation of a number of
experts is required, who will donate some of their time to participate in a focused browsing session for pages
on the required topic in order to train the crawler. Alternatively, our crawler could learn from a general craw-
ler’s history, or from the general linked neighborhood of a number of pre-identified target pages.

A third application is to have the focused crawler interact with a regular search engine in an iterative man-
ner. Once the focused crawler has been learned, more starting pages can be identified by querying a search
engine using the most common keywords in the cluster, to find pages similar to the pages in each cluster. Paths
from the new starting pages that are found leading to pages of interest are then added to the training set and
the focused crawler is retrained.

The rest of the paper is organized as follows. Section 2 describes the overview of our focused crawling sys-
tem and how to collect page sequences user browsed to build a concept graph. Pattern learning and the use of
HMM for focused crawling are described in Section 3. Section 4 describes the detailed crawling algorithm.
Experimental results are shown in Section 5. Conclusions and discussion are in Section 6.

2. System overview

Consider the way a user searches for information on the Web. Usually the surfer has an idea (topic) in mind
before starting search. Then she will search for relevant pages by entering topic keywords into a search engine
like Google or Yahoo. Keyword search typically results in thousands of hits. She will then select some results
returned by the search engine and start browsing there. While browsing, she selectively follows links from page
to page to identify what she really wants. If she reaches a page she is interested in, she may take time to read,
print or save it. The process continues by choosing another link, or going back to the list of search engine
results to follow other returned results, or typing new keywords to start a refined topic search. In short,
the user refines keyword-based search by combining searches with further browsing to fulfill her topic-specific
information need. What the user really seeks goes beyond lexical keyword search.

The Web graph is noisy and multi-topic. Off-topic pages often reliably lead to highly relevant pages. Due to
the small world nature of the Web [16], links may lead to unrelated topics within an extremely short radius. At
the same time, there exist long paths and large topical subgraphs where topical coherence persists. Webmasters
usually follow some general rules to organize the pages of a Web site semantically. For example, university
pages point to department pages, then to pages of faculty members; they rarely point to sports canoeing pages.
In other words, dominant semantic topic hierarchies exist. User surfing behavior is likely to follow an intuitive
understanding of such semantic topic hierarchies. The decision by the user to follow or ignore a specific link is
based on a variety of clues on the page and humans are very good at making such decisions.

The above observations suggest that the context of the hyperlinks the user follows reveals the user’s infor-
mation need. If we can detect such sequential patterns hidden in the surfer’s topic-specific browsing, we may
be able to build an effective focused crawler.

Focused crawlers can only use information from previously crawled page sequences to estimate the rele-
vance of a newly seen URL. Therefore, good performance relies on powerful modelling of context as well



Fig. 1. System architecture: User Data Collection, User Modelling via Pattern Learning, and Focused Crawling.
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as the current observable document. Probabilistic models, such as HMM, offer a good balance between sim-
plicity and expressiveness of context.

The system consists of three components: User Data Collection, User Modelling via Pattern Learning, and
Focused Crawling, as shown in Fig. 1. The following sections describe each of the components.

2.1. User Data Collection

In the User Data Collection stage, we collect the sequences of pages visited by the user during her topic-
specific browsing. The user starts browsing with a given topic in mind and is intended to stay on the topic.
If the user considers the current page relevant, she can click the Useful button which is added to each page
(Fig. 2a), and the page will become an annotated target page. In order to represent the user browsing pattern,
we construct a Web graph (Fig. 2b). A Web graph is a directed graph whose nodes correspond to pages on the
Web, and whose arcs correspond to links between these pages. To construct a Web graph, each browsed page
is represented by a node, and all hyperlinks between pages are added as edges between the nodes (Fig. 2b).
When a user requests a Web page by typing a URL in the location bar, choosing a URL from a bookmark,
or following a link to reach a new Web page, a new node will be created and all the hyperlinks between it and
existing nodes will be added into the Web graph as edges. For example, if the user follows the hyperlink in
page 2 to access page 3 in Fig. 2, node 3 is created and edges from 2! 3 is added. Each node is associated
with a browsed HTML page with a unique URL, and an edge is established if a referring document has a
hyperlink pointing to a referred document. Nodes corresponding to targets are marked as double-bordered
white nodes in the Web graph, for instance nodes 4 and 5. In the case of Web pages with frames, when a frame
page is being requested, all of its children pages will be automatically downloaded by the browser. Therefore,
instead of recording the frame page, all of its pages will be recorded in the Web graph.

Sometimes, the user may not make the best decision and follow a longer path to reach a target page. In this
case, we store other possible links between nodes. Continuing the example above, if the user follows a hyper-
link in page 2 to access page 3, and if page 1 links to page 3, then a link from node 1 to node 3 will be added to
the Web graph as well.

The Web graph thus captures the link structure of the pages visited by the user. The way the user browses
reflects the content and linkage structure leading to her targets, which is the information we try to capture. For
example, path 1! 2! 4 in Fig. 2(b). Sometimes, the user may follow some links to unrelated pages and go
‘back’ from them, for example, using the ‘‘Back’’ button on the Web browser. In this case, the page informa-
tion, but not path information, is still stored in the graph. For example, the user follows the path 1! 2! 3 in
Fig. 2(b), then finds that page 3 is totally unrelated, so she goes ‘back’ to page 2. In this case, page 3 is still
saved as part of the training data, but the move from page 3 to page 2 does not translate into a link between
these pages. In other words, the Web graph records the actual hyperlinks between pages user followed, rather
than user click streams. The reasoning is that the focused crawler will eventually crawl the real Web, so the
Web graph should reflect the actual Web linkage structure. If the user follows some hyperlinks that eventually



Fig. 2. User data collection. Double-bordered white nodes represent target pages: (a) Useful and Submit buttons, (b) user visited pages
form Web graph.
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leading to targets, these pages are considered as positive linkage examples. On the contrary, if the user follows
hyperlinks that could not reach any targets, normally the user will go ‘back’, in this case, the pages will be
treated as negative examples. However, the action of user going back is not stored, because it is not part
of the linkage structure between pages.

The reasons for considering only visited pages in defining a Web graph is to reject noisy hyperlinks that
may mislead the focused crawler, and to extract the dominant structure the user follows towards her topic.
Furthermore, in addition to sequences of pages which the user visited, recording links between nodes
in the Web graph reflects linkage structures in the real world, where focused crawling will take place.
We argue that the behaviors of the user during topic-specific browsing reveal the user’s real information
needs.

After completing the browsing session, the user can then submit the entire session by clicking the Submit
button on each browsed page (Fig. 2a). The entire Web graph consisting of all user visited pages, together with
the user’s annotated target information, will be saved as training data.

In our implementation, we use the Algorithmic Solutions Software LEDA package [20] to save the graph
with a hash table for URLs and their corresponding document ID numbers.

2.2. Concept graph

To capture the semantic relations from the user’s browsing session, we first categorize the Web pages visited
by the user into different types. To do this, we first use Latent Semantic Indexing (LSI) [21,22] to identify
semantic content, then apply a clustering algorithm, then use the cluster information and the user Web graph
to build a concept graph. Finally a HMM is built to learn sequential patterns leading to targets from the con-
cept graph.



276 H. Liu et al. / Data & Knowledge Engineering 59 (2006) 270–291
2.2.1. LSI—identification of semantic content

A topic the user browses on can be characterized by the keywords contained in Web pages on the topic.
Different words may be used to describe the same concepts in different pages, so we bring context into con-
sideration by representing documents using LSI. The documents in the Web graph are processed to extract
the semantic relationships among words in the collection. Latent Semantic Indexing (LSI) [21,22] captures
the semantic relationships among different words on the basis of co-occurrences in the document collection.
It uses the singular value decomposition (SVD) to reduce the dimensions of the term-document space. Its effec-
tiveness has been demonstrated empirically in many information retrieval applications leading to increased
average retrieval precision. The main drawback of LSI is that the computation cost for large document
collections is high. However, in our system, the user visited pages form a small collection with limited topic
categories, thus LSI performance limitations are less of an issue.

In detail, we implement document representation using the following steps:

(1) Form the dictionary of the collection by extracting all meaningful content words; We perform stemming,
convert all characters to lower case, and truncate words with more than 20 characters.

(2) For each document and term from the dictionary, calculate its normalized TF–IDF (Term Frequency,
Inverse Document Frequency) score.

(3) Construct the term-document matrix using the TF–IDF scores as entries.
(4) Apply the SVD algorithm to obtain a low dimensional LSI space representation for the document

collection.

The normalization in the weighting step 2 is a scaling step designed to keep large documents with many
keywords from overwhelming smaller documents. The normalized term weight for term i in document k is
W ik ¼
tf ik log2

N
dfi
þ 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k¼1
ðtf ikÞ

2 log2

N
dfi
þ 1

� �2
s ; ð1Þ
where tfik is the frequency of term i in document k; N is the number of documents in the collection; dfi is the
number of documents in which term i appears and T is the number of terms in the collection.

In step 4, singular value decomposition breaks the term-document matrix A down into the product of three
matrices,
A ¼ URV T; ð2Þ

where the columns of matrices U and V are the left and right singular vectors, respectively, and R is a diagonal
matrix of the singular values of A sorted in decreasing order. The closest rank-k approximation to the original
matrix A is constructed from the k-largest singular values. The number of reduced dimensions k and the asso-
ciated singular values and matrices Uk and Vk are determined by means of an iterative process using Lanczos
algorithm [23,24] with tolerance of the approximation 10�6. The implementation provided in [21] is used.
Within the reduced space, semantically related terms and documents presumably lie near each other so that
clusters of terms and documents are more readily identified.
2.2.2. Clustering

After obtaining the low-dimensional LSI representation, pages are grouped together form semantically
coherent clusters and a concept graph is created. In order to do this, a clustering algorithm is applied.

An important question is how to find the right number of clusters in the data. Therefore, we apply the X-
means algorithm [25], which extends k-means with efficient estimation of the number of clusters within a given
interval. We first normalize the reduced LSI document vectors, then we cluster all documents, except the pages
marked as target by the user, using the X-means algorithm, where the number of clusters is in the interval [3,8].
We felt that the interval [3,8] is a good compromise between flexibility in the number of clusters and constrain-
ing that number to a range that is neither trivially small (under 3) or excessively fragmented (over 8). All user
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Fig. 3. User modelling via sequential pattern learning. Ci is the label of cluster i, Tj is the estimated hidden state.
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marked target pages form a separate target cluster (cluster 0). They are not part of the clustering process. By
clustering documents we try to capture the semantic relation between different Web pages (clusters) leading to
the target pages (cluster 0).

We might use topic categorization instead of clustering based on pre-existing categories available online in
the Open Directory Project (ODP)1 or Yahoo!2 However, compared to user visited pages produced by topic-
specific browsing, the categories in the ODP are too general. Furthermore, the ODP hierarchy does not reflect
real-life Web linkage structure, and standard categorization in this way lacks page context information. There-
fore, applying clustering within the context of user’s browsing is reasonable than using standard categoriza-
tion. In fact, our goal is to be able to capture the concept associative relation between different types of
documents, i.e., document type A is more likely to lead to targets than document type B, rather than what
exact categories they belong to.

After clustering, the associative relationships between groups are captured into a concept graph G = (V,E),
where each node is assigned to Ci, the label of the cluster it belongs to, as shown in Fig. 3(b). In the concept
graph, we do not merge different nodes with the same cluster number, since doing that would cause linkage
information between nodes to become lost.

3. User modelling

We model focused crawling in the following way: we assume that there is an underlying Markov chain of
hidden states, from which the actual topics of the documents are generated. Each state is defined by the
distance, in number of hops, of the current page to a target page. In other words, hidden states represent
the closeness of a page to a target, and the actual document is the observation that is probabilistically gen-
erated. Given a sequence of observations, we predict the next state the page will be in based on the obser-
vations so far. During the crawling, those pages with lower state subscript such as T1 will be assigned higher
visit priorities than those with higher state subscript such as T2, and those pages with the same state are
then sorted by the prediction scores, as shown in Fig. 3(c). The pattern learning procedure involves the esti-
mation of the parameters of the underlying probabilistic model (HMM), and details on HMM will be dis-
cussed in Section 3.2.

A HMM [26] is defined by a finite set of states S = {s1, s2, . . . , sn} and a finite set of observations
O = {o1,o2, . . . ,om} associated with two conditional probability distributions P(sjjsi) and P(okjsj). There is also
an initial state distribution P0(s). HMMs, widely used in speech-recognition and information extraction, pro-
vide superior pattern recognition capabilities for sequential patterns. HMMs are useful when one can think of
underlying unobservable events probabilistically generating surface events, that are observable.

3.1. Structure of the HMM for focused crawling

In the HMM used for focused crawling, the hidden states reflect the topology of the Web graph with respect
to the target pages, while the observations reflect the content of the Web pages. The model aims to estimate the
1 http://dmoz.org.
2 http://www.yahoo.com.

http://dmoz.org
http://www.yahoo.com
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Observations: cluster 1, 2, 3, 4, ..
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Fig. 4. The structure of a Hidden Markov Model with four hidden states.
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likelihood of topics leading to a target topic directly or indirectly. The structure of the Hidden Markov Model
is shown in Fig. 4.

Let n be the number of hidden states. The key quantities associated with the model are the hidden states,
observations, and the parameters (initial probability distribution, transition and emission probabilities).

• Hidden states: S = {Tn�1,Tn�2, . . . ,T1,T0}
– The focused crawler is assigned to be in state Ti if the current page is i hops away from a target. The state

Tn�1 represent ‘‘n � 1’’ or more hops to a target page. The number of hidden states n is a parameter of
the model.
• Observations: O = {1, 2,3,4, . . . ,x}
– Cluster number (1 . . . ,x) of an observed Web page. The number of clusters x is determined by the X-

means algorithm.

• Set of HMM parameters h:

– Initial probability distribution
p ¼ fP ðT 0Þ; PðT 1Þ; P ðT 2Þ; . . . ; P ðT n�1Þg.

The probabilities of being 0,1, . . . ,n � 1 hops away from a target page at the start of the process. Due to
lack of prior information, we use the uniform distribution p = {1/n, 1/n, . . . , 1/n}.

– Matrix of transition probabilities: A = [aij]n·n, where aij = probability of being in state Tj at time t + 1
given that the system is in state Ti at time t.

– Matrix of emission probabilities: B = [bij]n·x, where bij = probability that the current page belongs to
cluster j if the system is in state Ti.
3.2. Parameter estimation

Once the state-transition structure is defined, the model parameters are the state transition and the emission
probabilities. We use annotated training data, i.e. the concept graph with the identified target pages (see Sec-
tion 2.2). We ‘‘label’’ all nodes in the concept graph as T0,T1,T2, . . . ,Tn�1 in a Breadth-First search out of the
set of target pages (T0) as shown in Fig. 5.
Fig. 5. Parameter estimation of HMM.
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Probabilities are estimated by maximum likelihood as ratios of counts, as follows:
aij ¼
jLijjXn�1

k¼0
jLkjj

; ð3Þ
where Lij = {v 2 Ti,w 2 Tj : (v,w) 2 E}
bij ¼
jNijjXx

k¼1
jN kjj

; ð4Þ
where Nij = {Ci : Ci 2 Tj}.
3.3. Efficient inference

The task during the crawling phase is to associate a priority value with each URL that is being
added to the queue. Inference using the HMM model is performed for this task. Given a downloaded
Web page wt, the URLs associated with its outgoing links are inserted into the queue and they all
receive the same priority value, computed on the basis of the prediction of the state of the children of
wt.

The estimated distribution of the state of wt, P(StjO1,. . .,t), is a probability distribution over all possible state
values T0,T1,T2, . . . ,Tn�1, given observations O1,. . .,t and the distribution at step t � 1, corresponding to the
parent wt�1 of wt. This estimation problem is known as filtering. Parent wt�1 of wt is the Web page containing
the URL of wt, which was inserted earlier into the queue. The sequence 1, . . . , t refers to the visited pages along
the shortest path from the seed page to the current page. The sequence does not necessarily reflect the tempo-
ral order in which pages have been visited.

Based on P(StjO1,. . .,t), a prediction step is carried out to estimate the distribution of the state of the children
t + 1, which have not been seen yet, and therefore there is no observation Ot+1 associated with them.

The probability distribution P(St+1jO1,. . .,t) of the state at the next step t + 1 given observations O1,. . .,t can
be calculated using the following equations:
P ðStþ1jO1;...;tÞ ¼ P ðStþ1jStÞP ðStjO1;...;tÞ; ð5Þ
P ðStjO1;...;tÞ ¼ PðOtjStÞP ðStjSt�1ÞP ðSt�1jO1;...;t�1Þ; ð6Þ
where P(St+1jSt) are the transition probabilities, and P(OtjSt) are the emission probabilities of the model.
For the prediction step, we associate values a(sj, t), j = 1, . . . ,n, with each visited page. Forward value a(sj, t)

is the probability that the system is in state sj at time t, based on all observations made thus far. Hence the
values a(sj, t) are the calculated values of P(StjO1,. . .,t). Given the values a(sj, t � 1), j = 1, . . . ,n of the parent
page, we can calculate the values a(sj, t) using the following recursion, derived from Eq. (6):
aðsj; tÞ ¼ bjkt

X
si

aðsi; t � 1Þaij; ð7Þ
where aij is the transition probability of state Ti to Tj from matrix A and bjkt
is the emission probability of Okt

from state Tj from matrix B. All the a(sj, t) values for all j = 1, . . . ,n are stored for each item of the priority
queue.

From a(sj, t), we can calculate the prediction for the future state St+1 using Eq. (5). Let a 0(sj, t + 1) be the
probability that the system will be in state sj at the next time step, given the observations thus far.
a0ðsj; t þ 1Þ ¼
X

si

aðsi; tÞaij ð8Þ
The prediction for the next step involves only the transition probabilities because there is no additional
evidence.
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4. Focused crawling

After the learning phase, the system is ready to start focused crawling. An overview of the crawling algo-
rithm is shown in Fig. 6. The crawler utilizes a queue, which is initialized with the starting URL of the crawl,
and keeps all candidate URLs ordered by their visit priority value. We use a timeout of 10 s for Web down-
loads and filter out all but pages with text/html content. The crawler downloads the page pointed to by the
URL at the head of the queue, calculates its reduced dimensionality (LSI) representation, and extracts all
the outlinks. Then all child pages are downloaded and classified using the K-Nearest Neighbor algorithm into
one of the clusters. The prediction of future state is calculated for each parent–child pair based on the current
observations and corresponding HMM parameters, and the visit priority values are assigned accordingly. The
crawling algorithm with efficient inference using HMM is described in detail in Section 4.3.

Since the queue is always sorted according to the visit priority value associated with each URL, we expect
that URLs at the head of the queue will locate targets more rapidly.

We also set a relevance threshold c for determining if a Web page is relevant to the user’s interests. If its
maximal Cosine similarity to the target set is greater than c, the URL is stored and presented to the user as a
relevant page.

4.1. Calculation of the priority

The visit priority is determined based on the estimated future state distribution P(St+1jO1,. . .,t), defining a
vector key (P(T0),P(T1),P(T2), . . . ,P(Tn�1)), where n is the number of hidden states.

If there are two or more items of approximately equal value in the first key, the key data items are ordered
in decreasing order according to the second data item to break the tie. In our system, we use a threshold
e = 0.001 to define the equality of two key data items, i.e., for two state distributions X[P(T0), P(T1),P(T2), . . . ,
P(Tn)] and Y[P(T0), P(T1), P(T2), . . . ,P(Tn)], if jX[P(T0)] � Y[P(T0)]j < e, the sorting process would use the sec-
ond key data items pair X[P(T1)] and Y[P(T1)].

4.2. Priority queue data structure

The priority queue contains the URLs of pages wt to be visited sorted by the priority of the parent page
wt�1 of page wt, defined as the page through which the URL of wt was placed on the queue.

Each queue element consists of

• the URL of page wt,
• cluster Ct�1 of the parent page wt�1 of page wt,
• the visit priority of wt,
• probabilities a(j, t � 1) that page wt�1 is in hidden state j, for all j, capturing P(St�1jO1,. . .,t�1).
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Fig. 6. Flow chart of focused crawling.



Fig. 7. Pseudocode of crawling algorithm.
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4.3. The algorithm

The basic crawling algorithm is summarized in Fig. 7. Each Web page wt is associated with information
about its parent in the form of cluster number Ct�1 and partial probabilities a(j, t � 1). If page wt is a start
URL, its a(., .) will be calculated using the initial matrix, otherwise, it will be calculated based on information
of its parent and current observations.

5. Evaluation

5.1. Performance metrics

It is important that the focused crawler return as many relevant pages as possible while minimizing the por-
tion of irrelevant ones. The standard measures used to evaluate the performance of a crawler are Precision and
Recall.

To evaluate the effectiveness of our approach, we use precision, which is the percentage of the Web pages
crawled that are relevant. Since in general there are multiple target pages marked by the user as interesting, the
relevance assessment of a page p we are using is based on maximal Cosine similarity to the set of target pages T

with a confidence threshold c. That is, if maxt2T cos(p, t) P c then p is considered as relevant.
The recall of the standard evaluation measure is the ratio of the relevant pages found by the crawler to all

relevant pages on the entire Web. It is not possible to get the exact total number of relevant pages on the Web
so recall cannot be directly measured. However, it is reasonable for the purpose of comparing different retrie-
val algorithms on a document corpus to estimate recall using all relevant pages returned by all versions of
crawls strategies and start URLs.

The ability of the crawler to remain focused on topical Web pages during crawling can also be measured by
the average relevance of the downloaded documents [16,17]. Average Similarity is the accumulated similarity
over the number of the crawled pages. The ideal crawler will always remains focused on the topic and have the
maximum possible similarity all the time. This relevance measure also has been used in [16–18,15]. In our sys-
tem, since the user may mark multiple targets, if the query document is close to any one of the targets, it is
considered as matching the user interests. The query document is compared to all the target documents,
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and the highest similarity value is used to calculate Average Similarity, which we called the Maximum Average

Similarity r
3 htt
r ¼ max
t2T

X
p�S

cosðp; tÞ
jSj ; ð9Þ
where T is the set of target pages found, S is the set of pages crawled, and
cosðp; tÞ ¼

X
k�p\t

wpk � wtkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k�p

w2
pk

X
k�t

w2
tk

q

is the standard Cosine similarity function, and wdk is the TF–IDF weight of reduced vector term k in docu-
ment d.

5.2. Experiments

To collect training data, we selected topics from the Open Directory Project (ODP)3 categories, which are
neither too broad nor too narrow, such as Linux. Users are graduate students from computer science for each
topic and they were asked to search for Web pages they are interested in related to the given topic. We also
compare our focused crawler with a Best-First Search (BFS) crawler and a Context-Graph (CGS) crawler.

5.2.1. Algorithms for comparison

We now briefly describe the focused crawling algorithms against which we compare our focused crawler.

(1) Best-First Search crawler (BFS): This crawler assigns priorities to all children of the current page using
standard lexical cosine similarity between the set of target pages and the content of the current page.
Since we have multiple targets, the visit priority order of a URL here is based on maximal Cosine sim-
ilarity, and the priority queue is sorted by this value.

(2) Context-Graph crawler (CGS): We implemented the focused crawler which is based on the Context
Graph method [15], in which Naı̈ve Bayes classifiers are built for each layer, and a category ‘‘other’’.
We use the likelihood with a threshold of 0.5 to assign weakly matching pages to ‘‘other’’. When a
new page is seen, it will be classified to the winning layer j it belongs to and its visit priority order is
sorted by the link distance to layer 0, that is, the closer the layer j is to layer 0, the higher its visit priority.
Pages in the same layer are sorted by the likelihood score. For fair comparison of the learning perfor-
mance, during the focused crawling, we did not use the extra back-crawling feature which obtains and
includes all immediate parents of every relevant page into the queue when it is discovered.

5.2.2. Training data

We now describe the details of collecting training data for the three focused crawlers being compared.

(1) Building a Web graph using user visited pages for HMM crawling: Data is collected from a Data Collection
session as described in Section 2.1. Targets are all pages the user marked as relevant during browsing.
To collect training data, the user is given a topic such as Hockey and is asked to search for Web pages she
is interested in related to this topic. As we mentioned before, our approach is to capture the sequential
patterns leading to targets from user’s browsing and emulate them on the real Web crawling. To capture
better the topical hierarchies for training, we use ODP and search engines to help collect effective training
data of the user browsing behaviors when following from general to specific topics. The user is asked to
start browsing from 1 or 2 levels above the given topic in the ODP or from results returned by Google
using keywords on topics 1 or 2 levels above the desired topic in ODP. Note that ODP was just used
p://dmoz.org/.

http://dmoz.org/
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Fig. 8. Build context graph. Each circle represents one layer. Targets form layer 0, and layer i contains all the parents of the nodes in layer
i � 1.
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to determine starting pages, while user browsing was performed on the actual Web. For example, for the
topic Hockey, she may start from the Sports level URLs in the ODP, or type Sports keywords in Google
and start from some of the returned URLs. As a result, we will be able to capture for training hierarchical
pages sequences. We found that not sufficiently many of such sequences were captured when the user
started browsing from pages too close to the target pages (e.g., if she started browsing from pages on
Hockey in our example).
During browsing, the user clicks the Useful button to mark relevant Web pages, and clicks the Submit

button to save the training data anytime.
(2) Building a Context Graph using backlinks for Context-Graph crawling: Data is collected using the Google

[27] backlink service, starting from target pages and proceeding up to 4 layers with a maximum of 300
pages in a single layer. Layer i includes all nodes reaching targets by i hops. As shown in Fig. 8, each
circle indicates one layer, target pages form layer 0, and layer i contains all the parents of the nodes
in layer i � 1. We do not check for links between nodes in the same layer and links between nodes in
different layers except neighboring layers, as shown in Fig. 8.

(3) Building a Web graph using all nodes from the Context Graph for HMM crawling: Combination of the
above two. We use all nodes collected in the context graph to build a Web graph which includes all links
between the nodes, not just the ones going to the next layer.

For HMM crawling, we performed two sets of experiments using two kinds of training data (no. 1 and 3
above) for comparison. The motivation is to observe the effect on the performance of using data obtained
from topic-specific browsing against using the complete Web graph.

5.3. Results

The number of relevant pages plotted against the number of pages downloaded for the topic Linux with
relevance threshold 0.7 is shown in Fig. 9(a), and the average similarity over all downloaded pages on the same
topic is shown in Fig. 9(b). In the following figures, in addition to the crawling methods we mentioned above
(HMM, CGS, and BFS), we also include noLSI method which is HMM crawling without LSI dimensionality
reduction. It is used to demonstrate the impact of LSI on the performance and will be explained later.

The system collected a total of 200 user browsed Web pages including 30 marked target pages. For the CGS
crawler, we used the same target pages as layer 0 and constructed the context graph of depth 4. The results
show that our system performs significantly better than Context-Graph crawling and Best-First crawling.
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Fig. 9. Topic Linux: (a) the number of relevant pages within the set of downloaded pages with threshold 0.7, (b) average maximal
similarities to the set of target pages of all downloaded pages.
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In this case, Best-First crawling performs very poorly and when we examine closely Fig. 9(b), at the very
earlier stage, Best-First crawling pursued the links that appear the most promising (with higher similarity
score) at the expense of large longer term loss, whereas our focused crawler explored suboptimal links that
eventually lead to larger longer term gains. A typical example during the crawls is that starting from
http://www.comptechdoc.org, our system follows links quickly leading to http://www.comptechdoc.org/os/
linux/manual and crawls a lot of links during the same domains, whereas Best-First crawler picks the branch
leading to http://www.iceteks.com/forums/ and crawls many links under the branches that are far away from
relevant pages. The URL visit order in Context-Graph crawling is based on the classification score on each
layer, so the followed links include http://www.comptechdoc.org/os/linux/, http://www.comptechdoc.org/
os/windows/, http://www.comptechdoc.org/independent/.

A different topic, Call for Papers is shown in Fig. 10(a) and (b). Again our system still showed very good
performance compared to the other two. But in this case the Best-First crawler performs much better than
Context-Graph crawler overall. The system collected a total of 153 user browsed Web pages and 4 marked
target pages with the threshold c = 0.7. The basic principle behind the Best-First crawler is linkage locality
of the Web, that is the assumption that Web pages on a given topic are more likely to link to those on the
same topic. The Context-Graph crawler captures physical layers leading to targets, however, if common hier-
archies do not exist for each layer due to mixing links (cross links between topics) in the Web graph, it per-
forms poorly, which reflects our arguments before. In contrast, our model takes both content and linkage
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Fig. 10. Topic Call for Papers: (a) the number of relevant pages within the set of downloaded pages with threshold 0.7, (b) average
maximal similarities to the set of target pages of all downloaded pages.
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structure into account during the learning procedure in order to learn semantic relation to targets, and is
shown here to work well on both cases.

Other topics, Biking and Hockey, are shown in Figs. 11 and 12. For the topic Biking, the system collected a
total of 697 user browsed Web pages and only 1 marked target pages. Since the target page information is very
specific, consequently all methods return much fewer relevant pages and less values on maximum average sim-
ilarity, as shown in Fig. 11, so we lower the threshold by 0.1 for comparison. In this case, HMM crawler still
performs the best for the number of relevant pages (Fig. 11a). The Context-Graph crawler initially beats
HMM crawler on the maximum average similarity, but the number of relevant pages received is dramatically
lower, indicating that at the earlier stage of crawl, the Context-Graph crawler gets high quality pages, but
much fewer of them (Fig. 11b). In the long run, HMM crawler returns more relevant pages and shows better
performance.

On the different topic Hockey the Best-First crawler shows very good performance compared to HMM
crawler (Fig. 12). Both of them returned a large number of relevant pages with high maximum average sim-
ilarities. The system collected a total of 201 user visited pages and 30 marked targets. As we mentioned before,
Best-First crawler always pursues the links that have the highest cosine similarity, so if the crawler enters a
large topical subgraph where topical coherence persists, it normally performs very well. The drawback in some
cases is that the crawler then tends to get stuck within the subgraph or one Web site, while other crawlers more
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Fig. 11. Topic Biking: (a) the number of relevant pages within the set of downloaded pages with threshold 0.6, (b) average maximal
similarities to the set of target pages of all downloaded pages.
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easily leave the subgraph, resulting in a small proportion of relevant pages immediately, but reaching to more
diverse target pages in the long run.

It is also worth mentioning that in the original work on the Context Graph method [15], it was demon-
strated that the linkage locality of the Web does boost the performance when including the back-crawling fea-
ture: when a page is discovered as a relevant page, its immediate parents are obtained from the search engine
and added to the crawling queue automatically. We omitted this feature in order to obtain a fair comparison,
since the other two methods do not have access to the feature. Apparently our system could be further
enriched by combining such features.

Next we examine the impact of LSI on the performance. As we mentioned before, LSI is useful in situations
where traditional lexical information retrieval approaches fail. By reducing the dimensionality of the term-
document space, the underlying semantic relationships between documents are revealed, and much of the
noise is eliminated. Web pages contains more noisy data than regular text documents, since they may contains
irrelevant information such as advertisements. We proposed to use LSI to minimize the word-based retrieval
problems. To compare the performance without using LSI, we use only the regular term-document matrix for
X-means clustering as described in Section 2.2.2. The results, as shown in Figs. 9–16, demonstrated that LSI
does significantly boost the performance almost all cases, except for the topic Biking with threshold 0.7 as
shown in Fig. 16(a).

Since cosine similarity with a relevance threshold can be sensitive to the value of the threshold, we further
investigate the effect of different threshold values. As shown in Figs. 9(a), 13, 10(a), and 14, our system shows
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Fig. 13. The effect of different relevance threshold values on topic Linux: (a) the number of relevant pages within the set of downloaded
pages with threshold 0.8, (b) the number of relevant pages within the set of downloaded pages with threshold 0.6.
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Fig. 16. The effect of different relevance threshold values on topic Biking: (a) the number of relevant pages within the set of downloaded
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robust results on both topic Linux and topic Call for Papers respect to change of the threshold. In fact, the
better performance of HMM crawler is achieved, the higher threshold is used. For the topic Hockey, we
saw that in Fig. 12, Best-First crawler performs almost matched HMM crawler for threshold 0.7. We observe
similar behavior with threshold 0.6 and 0.8: for threshold 0.6, the behaviors of HMM and Best-First crawlers
are almost identical, while for threshold 0.8, Best-First method is even better than HMM crawler (Fig. 15). On
topic Biking, the HMM crawler showed stable behaviors on threshold 0.5 (Fig. 16b) and 0.6 (Fig. 11a), and
extreme sensitivity to the choice of threshold of 0.7 (Fig. 16a). For threshold 0.7, the HMM crawler performs
poorly and is outperformed by noLSI crawler. We observe that maximum average similarity is very low (see
Fig. 11b) and the number of relevant pages is small for all crawlers, indicating that none of the crawlers per-
forms well, because there is only one target page whose content is also too specific. Therefore, in this case, a
higher threshold amplifies the sensitivity.

Next we observe the effect of the training data on the learning performance. We compared the performance
on two types of training data described in Section 5.2.2 for HMM-learning: HMM using user data (HMM),
and HMM using the context graph with all links added (HMM_alldata) as described in Section 5.2.2 (3),
shown in Figs. 17 and 18. The results show that using user visited pages as training data performs best. As
we expected, building the Web graph from the user’s browsing pattern not only extracts the dominant link
structure leading to target pages, but also incorporates the judgment of the user about the nature of the
Web pages. We found that constructing the Web graph using all nodes can bring too many noisy links into
the learning process, resulting in bad performance.
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Fig. 17. Comparison of HMM crawler using different training data on topic Linux: (a) the number of relevant pages within the set of
downloaded pages with threshold 0.7, (b) average maximal similarities to the set of target pages of all downloaded pages. HMM: HMM-
learning with the Web graph using user visited pages (training data no. 1); HMM_alldata: HMM-learning with the Web graph using all
nodes from Context Graph (training data no. 3).
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Fig. 18. Comparison of HMM crawler using different training data on topic hockey: (a) the number of relevant pages within the set of
downloaded pages with threshold 0.7, (b) average maximal similarities to the set of target pages of all downloaded pages. HMM: HMM-
learning with the Web graph using user visited pages (training data no. 1); HMM_alldata: HMM-learning with the Web graph using all
nodes from Context Graph (training data no. 3).

Table 1
Recall evaluation

topic Linux (%) topic Hockey (%) topic Biking (%) topic Call for Papers (%)

HMM 61.8 44.2 46.3 53.3
noLSI 19.3 17.6 42.7 12.6
CGS 18.7 0.4 10.8 0.5
BFS 0.2 37.8 0.2 33.6
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Finally we estimate the recall using all relevant pages returned by all different crawling strategies and start
URLs. This is under the assumption that all relevant pages would be found within the combined output of all
crawls. The recall scores for all crawls with threshold 0.7 are shown in Table 1.

6. Conclusions and discussion

Our contribution is to use HMM to model the link structure and content of documents leading to target
pages. Our system is unique in several respects. We think of a focused crawler as a random surfer, over an



H. Liu et al. / Data & Knowledge Engineering 59 (2006) 270–291 289
underlying Markov chain of hidden states, defined by the number of hops away from targets, from which the
actual topics of the document are generated. The prediction is based on hidden semantic content and linkage
hierarchy leading to targets instead of only physical link distance. Our experiments indicate that our system
locates relevant pages quickly and is superior to standard focused crawlers.

Our user learning model is versatile, and potentially suitable for different applications. The system does not
rely on other search engines and the parameters can be tailored to different users and topics. The proposed
approach can potentially lead to focused crawlers that retrieve the information which is the most relevant
to the user’s interests. The system could be applied to collect user browsing data during daytime, and crawl
relevant pages for the user during night time. The model can be used to build topic specific portals, while indi-
vidual users can rely on it for personal online search.

We are exploring several directions in ongoing work. The proposed way of capturing and exploiting the
user’s personalized interests can potentially lead to more effective focused crawlers. Experiments showed that
learning from user visited training data works better than using the complete Web graph of all nodes. It can be
improved by including more and longer path sequences into the training data. In the current user browsing ses-
sion, to obtain the hierarchy of topics, the user has to browse from the upper level of topical hierarchy and the
paths leading to targets are short. It will be nice if the user just starts from Google with the topic keywords as
usual, and the system automatically builds the upper topical hierarchy connected with user’s browsing data. To
make the User Modelling session more practical, we could combine backlinks and user visited pages to better
present the topical hierarchy. The user will browse towards her topic in a usual way, typing keywords in Google
to start browsing and marking targets as before. When the user marks a target, the system will automatically
trace back the path to top page, to collect all backlink sequences of these top pages. The Web graph can be
constructed from the top pages using Breadth-First search to targets, or built from the targets using the back-
link service of Google API. These top pages are either Google returned results or URLs the user types in the
URL bar. We expect that this combination can enhance user’s browsing with topical hierarchy structure with-
out much burden on the user. Furthermore, target pages can be updated automatically during the crawl.

The system can be extended for multiple topics. During surfing, the user marks target pages she is interested
in without limiting herself to one topic. Training data can be collected from a number of separate browsing
sessions. In this case, the Web graph can be comprised of several loosely connected separate subgraphs (top-
ics). Accordingly, each subgraph can be clustered separately and patterns can be learned individually for a
topic or across topics.

A major area we are investigating is the extension of the feature space. In addition to semantic content,
many useful kinds of data such as anchor texts, title/meta data, URL token, and user’s query keywords could
be included into the learning model. Words ‘‘linux’’, and ‘‘hockey’’ in anchor texts and URLs such as http://
proicehockey.about.com and http://justlinux.com/ are important features and provide potential information.
We are conducting further improvements and currently exploring more sophisticated models, such as condi-
tional random fields (CRFs) [28,29] to richly integrate more features. Including these into the current learning
model is expected to boost the performance.
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