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Abstract – This paper describes an underwater walking robotic 
system being developed under the name AQUA, the goals of the 
AQUA project, the overall hardware and software design, the 
basic hardware and sensor packages that have been developed, 
and some initial experiments.  The robot is based on the RHex 
hexapod robot and uses a suite of sensing technologies, primarily 
based on computer vision and INS, to allow it to navigate and 
map clear shallow-water environments.  The sensor-based 
navigation and mapping algorithms are based on the use of both 
artificial floating visual and acoustic landmarks as well as on 
naturally occurring underwater landmarks and trinocular stereo. 
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I.  INTRODUCTION 
Mobile robotics is frequently cited as being most 

appropriate for application domains that are costly, 
inconvenient, or inhospitable for humans to work in. The 
aquatic domain is an almost perfect fit. The environment is 
dangerous, and many tasks require long-term operation and 
significant depth. Mobile robotics is particularly well suited to 
underwater applications such as reef or pipeline inspection, 
fish stock surveillance, marine life observation and 
environmental disaster assessment.  

 
Many of these applications involve stationary observation. 

That is, although mobility is required to get the vehicle to the 
close proximity of the task, the task itself relies on the vehicle 
to maintain a constant pose (often near or on solid objects in 
the environment). Unlike the terrestrial domain, in which 
station keeping may be as simple as powering down the 
locomotion system, in the aquatic domain station keeping is a 
complex task. A thruster-driven aquatic robot must actively 
and continually control its thrusters and buoyancy in order to 
maintain its pose. In addition to the obvious energy 
consumption issue associated with this active station keeping, 
thrusters operated near the sea bottom may disturb sand and 
other debris, reducing the ability of sensors.  

A second issue with thruster-based aquatic vehicles is that 
these vehicles can only operate in the water. That is, they must 
be deployed and recovered from sufficiently deep water for 
the vehicle to be able to maneuver. Surveying/inspection in 
shallow water, or deploying the vehicle from the beach is not 
possible for traditional aquatic vehicles. 

 
In order to address these issues, we are developing an 

aquatic walking robot -- AQUA. Through an appropriate 
design of limbs for the vehicle, the vehicle’s legs can be used 
for both traditional walking locomotion strategies (either on 
land, or along the bottom of the aquatic environment), as well 
as to propel the vehicle through the water by swimming. 
  

Developing a walking aquatic robot requires the solutions 
to fundamental issues related to locomotion, sensing, 
navigation and reasoning. Many existing approaches to these 
classic robotic tasks are not directly applicable to the aquatic 
walking environment and some applicable techniques entail 
important new challenges in the aquatic domain.  

 
This paper describes the basic approaches that are being 

taken within the AQUA project to develop a fully autonomous 
walking aquatic vehicle. It describes the basic design of the 
locomotive and sensing hardware, and describes initial results 
in terms of vehicle locomotion and sensing. 

 

II. THE SASR TASK 
This Site Acquisition and Scene Re-inspection (SASR) task is 
fundamental to many underwater robotic tasks. A typical 
scenario in a SASR task is as follows. A robot is deployed 
near the site, in our case on a nearby beach. Under operator 
control or supervision, the robot walks out into the water and 
is controlled or directed to a particular location on the seabed 
where sensor measurements are to be made. (This may be the 
supposed location of some environmental incident, the 



location of known fish stocks that must be inspected 
periodically, or some similar task.) Once near the required site, 
the robot navigates to the selected location, where it utilizes its 
ability to move as a walking vehicle to achieve an appropriate 
pose from which to undertake extensive sensor readings over 
an extended time period. Once measurements are made, the 
robot then returns home autonomously. Later, the robot 
actively guides – and potentially controls – its motion to the 
previously visited site in order to collect additional data. One 
key target application we are examining relates to the regular 
inspection and monitoring of fragile marine ecosystems where 
unobtrusive observation over substantial time periods is 
appropriate. 
 

Solving the SASR task requires solutions to a number of 
scientific and engineering questions including problems of 
position and pose estimation in unstructured environments, 
underwater landmark recognition, robotic navigation, motion 
control, path planning, vehicle design, environment modeling 
and scene reconstruction, 3D environment exploration and 
autonomous and teleoperated control of an aquatic legged 
vehicle.  Here we describe some of the results to date in the 
search for solutions to these problems. 

 

III. THE HARDWARE 

A. The Vehicle 
AQUA is an aquatic robot capable of both legged and 

swimming motion (see Figure 1(a)). AQUA is based on RHex, 
a terrestrial six-legged robot developed in part by the 
Ambulatory Robotics Lab at McGill in collaboration with the 
University of Michigan, the University of California at 
Berkeley and Carnegie Mellon University [1] (see figure 1(b)). 
AQUA’s required capabilities are surface and underwater 
swimming, diving to a depth of 10m, station keeping and 
crawling at the bottom of the sea. For propulsion, the vehicle 
does not use thrusters, as do most underwater vehicles. Instead 
it uses six paddles, which also act as control surfaces during 

swimming, and as legs when walking. The paddle 
configuration gives the robot direct control over five of the six 
degrees of freedom that it has: surge (back and forth), heave 
(up and down), pitch, roll and yaw. An inclinometer and a 
compass onboard are used in the control of the robot’s motion 
underwater. 

The robot is approximately 65 cm long, 50 cm wide (at the 
fins), and 13cm high. It has an aluminum waterproof shell and 
displaces about 18 kg of water. A buoyancy control system is 
currently being developed, making the robot negatively, 
neutrally or positively buoyant. The robot is also equipped 
with a rail on which can be mounted the trinocular sensor 
package or the acoustic localization system (described below). 
The robot is power autonomous. Two onboard NiMH batteries 
provide over two hours of continuous operation. Signals from 
cameras mounted within the AQUA vehicle itself, from the 
sensor systems mounted on the robot, as well as the command 
and control output, are brought to a floating platform at the 
surface via a fiber optic tether. A wireless link exists between 
the platform and a shore-based operator.  The operator uses 
the information from the onboard cameras and from the 
command interface to control the robot by means of a game 
pad joystick. 
 

B. Trinocular Sensor Package 
Due to the inherent physical properties of the marine 

environment, vision systems for aquatic robots must cope with 
a host of geometrical distortions: colour distortions, dynamic 
lighting conditions and suspended particles (known as 'marine 
snow'). The unique nature of the aquatic environment 
invalidates many of the assumptions of classic vision 
algorithms, and solutions to even simple problems -- such as 
stereo surface recovery in the presence of suspended marine 
particles -- are not yet known.  

 
A fundamental problem with visual sensing in the aquatic 

robotic domain is that it is not possible to assume that the 
sensor only moves when command to. The aquatic medium is 

 

(a) The robot at sea (b) Sketch of the robot with legs (c) Robot with diver 
Figure 1. The AQUA robot. (a) shows the robot swimming over a coral reef. The vehicle has six fins (or legs), which can be 
independently controlled. Here the vehicle is swimming up towards the surface while being tethered to an external operator. 
(b) shows the arrangement of internal components, and treaded legs for use in walking on shore and/or on the bottom. (c) 
shows the robot with a diver for scale. 



in constant (and in general unpredictable) motion, and this 
motion complicates already difficult problems in time-varying 
image understanding. One mechanism to simplify vision 
processing is to monitor the true motion of the sensor 
independently of its commanded motion. Inertial navigation 
systems (INS) have found applications in various autonomous 
systems for the determination of the relative pose of a vehicle 
over time. INS make measurements of the physical forces 
applied to them and thus under normal conditions they provide 
independent measurements of relative motion. Unfortunately 
these systems drift, and thus typically they are employed with 
some secondary sensing system in order to counteract this 
effect. Here we utilize trinocular vision as this associated 
sensor. Real time trinocular stereo sensors permit the recovery 
of 3D surfaces. Integrating an inertial 6DOF navigation 
system with a trinocular stereo sensor simplifies the 
registration process by providing relative motion information 
between frames. With this initial estimate of the camera pose, 
few features must be used to refine the registration to the 
global coordinate system. 
 

Figure 2(a) shows the trinocular sensor module and its 
aquatic housing. The module consists of three Firewire CCD 
cameras, and an INS. The INS serial signal is converted to a 
USB signal and is coupled with a pushbutton switch for local 
control of the device. The combined USB signal and the 
Firewire signal are converted to an optical signal for 
transmission via optical fiber to the surface. An onboard 12V 
battery provides power to the trinocular unit. Figure 2(b) 
shows raw data obtained with the sensor during recent field 
trials near Barbados. 

 

C. Acoustic Sensor Package 
The acoustic localization component consists of arrays of 

commercially available omni-directional surface-floating 

hydrophones, whose absolute position can be measured via a 
combination of GPS, compass, inclinometers and inertial 
sensors. The underwater sensor unit is equipped with a 
transducer generating impulsive sound in the audio frequency 
range. Localization is carried out in two steps, (a) direction of 
arrival estimation at each array, and (b) estimation of the 
intersection of the direction lines. Time-delay estimation at 
each array allows the estimation of direction of arrival at that 
array [4]. The minimum number of microphones required is 
three, leading to a system of three linear and one quadratic 
equation in the coordinates of the direction vector. With more 
than three microphones, a least mean squares approach is 
used. 

 

IV. SOFTWARE TASKS 
A number of different software tasks of the robot are currently 
being explored. By combining the best results of these 
capabilities, a system will be developed that is capable of 
completing the SASR scenario. 
 

A. Environmental Modelling  
When the robot is in place making observations, it is often 

desirable to construct a 3D model of the object being studied. 
This object may be a pipe that is leaking, or a coral growth 
that is being monitored. We have developed two 
complementary (but mutually supportive) methodologies for 
doing this, one based on stereo and one based on probabilistic 
extrapolation.  In either event, in order to reconstruct a 
continuous model of the environment, the depth data from the 
trinocular stereo system must be registered into a global 
coordinate system since each depth image is independently 
computed. Current approaches (e.g. [5,6]) to this problem 
typically use only depth data to minimize an error function for 
registering multiple point clouds. These approaches are limited 

 

 

 

 
(a) The Sensor  (b) Raw Aquatic footage 

 
Figure 2. The Trinocular sensor package: (a) The sensor shown partially removed from its aquatic housing, the sensor 
package consists of three firewire CCD cameras, and an IMU. Data from the CCD cameras and the IMU are encoded onto an 
optical fiber cable and transmitted to the surface via an optical fiber cable.  A 12V onboard battery provides power. (b) Raw 
trinocular data from the sensor (shown here in black and white). 



by the fact that they rely heavily on small motion between 
point clouds and thus they overlap. If a large motion were to 
occur due to underwater currents affecting the sensor package, 
then these types of algorithms would fail to produce a 
continuous 3D surface reconstruction of the environment. 
Using an inertial sensing system, this problem can be 
alleviated by providing a good initial guess to the registration. 
When registering the point clouds, the inertial data is used to 
align the data sets and other Bundle Adjustment [7] and ICP 
[8] algorithms are used to refine the estimate if an overlap 
occurs. If there is no overlap, the integrated pose from the 
inertial data is the best estimate of the sensor's motion. The 
inertial data can only be trusted for several seconds due to 
accumulating errors in the integration of the rotational rates 
and accelerations.   
 

Figure 4 shows the INS in action. Raw video data from the 
camera is rendered along the edge of a cylinder based on the 
rotation of the camera as obtained by the INS. The INS 
maintains a very accurate estimate of orientation although its 
positional accuracy is quite poor. An integrated process that 
combines both vision and INS data is required. 
 

B. Acoustic-based Vehicle Localization 
In order to complete the SASR scenario, a critical 

capability of the vehicle is to be able to revisit a previously 
visited position. Maintenance of pose with respect to a global 
coordinate system is key.  Under the AQUA project a number 
of acoustic and vision-based localization processes are being 
explored. 

 
Estimation of sound source position as the intersection of 

direction lines. Suppose that the vehicle is augmented with an 
acoustic source. The position of this acoustic source can be 
estimated using an acoustic array mounted at a known position 
under water. The position of the sound source is estimated 
through considering multiple lines in 3D space emanating 
from the reference points of the microphone arrays and along 
the direction of arrival vectors. The Sound source position is 

estimated as the intersection of these lines. Computationally, 
the optimal estimate of the source position is the point that has 
minimal overall distance from these lines.  The overall 
distance to the unknown source position P(x,y,z) is a quadratic 
function of the unknowns x,y,z, leading to a linear system of 
equations in x,y,z that can be solved for using standard 
techniques. 

 
Signal processing for time delay estimation. In order to 

calculate reliable time delays between the arrivals of the sound 
signals, two channels of audio data from two different 
hydrophones are correlated.  Peaks of the correlation function 
are identified. The location of the peak corresponds to the 
time-delay estimate. Before correlation, filtering is carried out 
to reduce noise, and then a signal variance test is performed to 
check the presence of a sound source [3]. The audio frequency 
region of interest is (200 - 4000 Hz) so as to eliminate high 
frequency noise as well as the common 60Hz electric 
interference and its second harmonic at 120Hz, extracted using 
a band pass digital FIR filter described in [2]. The variance of 
a source signal is typically greater than the variance of the 
background noise. Since the maximum time delay between 
two microphones can be calculated through the length of the 
baseline divided by the speed of sound, it would be required 
that the time delay of the maximum peak of the correlation 
function is inside a range defined by the maximum delays. 
This has the effect of reducing the likelihood of false peaks. 
The final step for the time delay estimation is to cluster the 
time delays estimated from a number of consecutive and non-
overlapping signal time windows [3]. We discard outliers and 
compute the mean value over the remaining as the final time 
delay estimate. 

 
Experimental Results: Besides simulations, we have 

performed experiments in a pool using hydrophones and in the 

 
Figure 4. INS-based imagery recovery. The figure shows 
raw data collected from the sensor in the lab arranged 
based on the rotational estimate returned by the INS. 
There is very little drift in terms of orientation, although 
absolute distance information drifts quite quickly. 

 
Figure 3. The Acoustic sensor hardware 



air using microphones with a similar geometry to that of the 
pool (scaled to account for the different sound propagation 
speeds in the two media). In the experiments, we generated 
impulsive sound by hitting a metal appliance once per second. 
The problem of designing a transducer for the underwater 
robot remains to be addressed. The water experiments were 
carried out in a pool (25.0m long, 20.0m wide, and 4.3m deep 
at the flat part of the deep end). The listening apparatus 
consists of four DolphinEar/PRO omni directional 
hydrophones, which are attached at the corners of a square 
buoy of size 1.0 x 1.0m, shown in Fig. 3. Sampling frequency 
was 44100 Hz, signal resolution 16 bits, sample size 2048 
samples. 

 

C. Vision-based vehicle localization 
An alternative to audio-based localization is to utilize 

imagery captured from a camera onboard the vehicle to aid in 
localization. Two approaches are being developed: one based 
on the use of natural underwater features, and a second based 
on manually inserted surface-based visual beacons.  The use of 
natural landmarks entails simultaneous localization and 
mapping (SLAM) while the use of manual landmarks uses 
beacons with known positions.  The beacon-based approach 
uses an upward-looking camera on the underwater robot to 
observe a set of (control) points of a known extended rigid 
buoy at the surface. The buoy itself is localized with respect to 
a global coordinate system using a combination of GPS, 
compass, inclinometers and inertial sensors.  The problem can 
be stated formally as follows: Given a set of m control points 
Pi, i=1,2,...m whose 3-dimensional coordinates (xi, yi, zi) are 
known in some global coordinate system, and given an image 
(taken by a calibrated camera) in which the m control points 
are visible, determine the location (relative to the coordinate 
system of the control points) of the camera from which the 
image was obtained. 
 

Let the coordinates of control point Pi in the camera-
centered coordinate system be (xi', yi', zi') and let the image 
coordinates of point i be (ui, vi). Assuming perspective 
projection, we obtain: 
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The global coordinate system and the camera coordinate 
system are related by a rotation R and a translation T. The 3D 
coordinates of a control point in the two coordinate systems Pi 
and Pi' respectively are by: 
 

′ P i = RPi + T 
 

The goal in camera viewpoint recovery is to determine R 
and T, knowing the m correspondences between image points 
and control points. The problem of camera viewpoint recovery 
is solved in two steps. First, the control point coordinates in 

the camera-centered coordinate system are derived from the 
camera model and geometric constraints on pairs of points in 
the two coordinate systems. Second, the transformation 
between the two coordinate systems is found based on the 
correspondences between the two coordinate sets of the same 
points. 
 

Each image point provides two constraints on the three 
camera-based coordinates for each control point. Furthermore, 
since (xi',yi',zi') and (xi,yi,zi) represent the same point in 3D 
space, the distance between the pairs of points is the same in 
the two coordinate systems, giving three constraints, one for 
each pair of control points.  Thus, with three control points, 
there are enough constraints to solve for the unknown camera-
based coordinates of the control points. With m control points, 
where m > 3, we have 2m perspective projection equations, 
and m(m-1)/2 pair wise distance constraints, i.e. an over-
determined problem. To solve it, we minimize the total 
squared difference between pair wise distances. If we express 
xi',yi' in terms of zi', we obtain an unconstrained optimization 
problem in terms of zi', where the objective function is a 
polynomial of degree 4. 
 

After estimating the coordinates of the points Pi in the 
camera coordinate system, the remaining problem is to 
identify the transformation between the camera and the global 
coordinate system. This requires the solution of another least 
squares optimization problem. 

 

D. Vision-based Mapping and Localization (VSLAM) 
Our approach to vision-based mapping and localization is 
based on appearance-based features that are learned from the 
environment, and is derived from terrestrial techniques 
examined previously [9].  The process is based on 3 distinct 
computational processes: detection of potential visual 
landmarks, landmark matching and tracking, and landmark 
estimation.  The key principle is that landmarks are defined in 
the appearance domain -- that is from video data -- without an 
attempt to recover 3D structure. This allows for the use of 
visual features even in situations where 3D recovery is 
problematic, and hence provides for a pose estimation 
mechanism that is complementary to the other processes use to 
navigate the vehicle.  Further, since the landmarks are learned 
in the underwater environment at hand, the method avoids a 
dependency on particular predetermined attributes of the 
environment.  Finally, since reliability of each visual feature is 
explicitly modeled, partial pose estimation case occur even 
when the features are too impoverished to allow for accurate 
estimation of all degrees of freedom. 

Prototype natural landmarks are detected by an interest 
operator, which selects regions of the image that should be 
detectable in subsequent views (several interest operators have 
been considered in this context [10]).  Models for these 
landmarks are incrementally constructed as a function of both 
their visual appearance and position, and possible landmarks 
that prove unstable are discarded. This allows the system to 
learn domain-specific features for use in localization and to 



estimate how useful each landmark is for various aspects of 
pose estimation and for various positions.  Finally, features 
that are reliably recognized, are modeled statistically and used 
for pose estimation using a voting scheme that robustly 
combines the estimates from each landmark (see Fig. 4). 

 

E. Statistical depth recovery from monocular data 
In order to build more reliable models of the underwater 

environment, we are also developing techniques for monocular 
shape estimation from video data augmented by partial range 
estimates.  The approach is based on extrapolation of the depth 
map given some initial set of depth estimates.  These depth 
estimates are extrapolated using the video (intensity) data 
under the assumption that the combination of intensity and 
depth at each point in an image can be modeled as a Markov 
Random Field, as described in [11].   That is, given an 
augmented depth map 

),( ZIV =      
where I is an image  

}{ ,yxiI =  
and Z, a depth map, 

}{ ,yxzZ =  
we estimate the probability P() of an augmented depth value 
from its intensity and neighboring values 

)),(,|(max(arg ,,, yxNinvizPz yxyxyx =  
where N(x,y) is set of augmented depth values in the 
neighborhood of (x,y).  This expresses the dependence of the 
depth estimate at a point of the neighboring depth and 
intensity values, and on the intensity at that point.  This 
probabilistic dependence is precisely the transition function of 
the Markov random field. 

Given that this is the case, the transition function for the 
MRF is computed from whatever partial data is available 
initially (for example as extracted from the stereo head).  
These transition probabilities are then used to compute the 
depth component of the image where measurements are 
absent, using the intensity component as a constraint. 
Conceptually, the approach has some relationship to shape-
from-shading although without any dependence on an a prior 
knowledge of the scene reflectance function, nor on a uniform 
albedo.  While such extrapolation from either depth alone, or 
from intensity alone, appears to be exceedingly difficult, the 
combination of intensity data with constraints from sparse 
depth estimates seems to make the problem tractable. 
Preliminary tests in terrestrial environments suggest that the 
approach is effective, although validation in the target 
environment remains to be carried out. 

In recent sea trials of the robot, we have observed that this 
technique may be useful not only for monocular depth 
recovery, but also for deblurring and removal of scattering 
artifacts. 
 

V. DISCUSSION AND FUTURE WORK 
In recent sea trials, the physical robot, trinocular vision system 
and other components were tested in the Caribbean Sea up to a 
depth of about 23 feet.  Once the buoyancy was manually 
adjusted to compensate for the salinity where the test was 
conducted, the robot performed well using nearly-neutral 
buoyancy.  Gait control was accomplished manually but 
controlling the robot using only the forward-mounted cameras 
proved to be a challenge.  In ongoing work we will be adding 
both an inclinometer readout and tele-robotic control modes to 
improve manual controllability.  In addition, we are also 
developing automated control modes. 
 

One of the key challenges of the project is the extension of 
the SLAM philosophy (Simultaneous Localization and 
Mapping) into motion in three dimensions, with robot pose 
depending on six degrees of freedom. Much of the SLAM 
research so far has been restricted to two-dimensional 
manifolds, either planar or topographic surfaces, with robot 
pose depending on three degrees of freedom. Odometry 
information of the same nature as in terrestrial robots is 
difficult to obtain in the underwater domain, so one has to rely 
instead on an accurate dynamic model of the underwater robot 
combined with inertial sensors and sensors of external fields 
(gravity, earth's magnetic field) to come up with differential 
position estimates for mapping. Furthermore, GPS 
information, which is available to outdoor robots, is not 
available underwater, so the absolute position of the 
underwater robot needs to be constrained by its relative 
position with respect to surface vessels with access to GPS 
signals. The key sensing modality for mapping in this project 
is vision, aiming towards smaller scale mapping than that 
based on sidescan sonar. 
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