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nition, robotic navigation, motion control, path planning,
vehicle design, environment modeling and scene recon-
struction, 3D environment exploration, and autonomous
and teleoperated control of a robotic vehicle.

Performing a SASR task is a formidable challenge for
terrestrial vehicles. It is even more complex in an aquatic
environment. In addition to the increased degrees of
freedom (DOF) associated with performing a task under
water, working in this domain introduces complications
such as station keeping, sensing, and the differences
involved in mobility in open water versus shallow water
or motion along the surface.

THE VEHICLE
A biologically inspired robot capable of both legged

and swimming motions,1,2 AQUA is based on RHex, a
terrestrial six-legged robot developed between 1999 and
2003, in part by the Ambulatory Robotics Lab at McGill
University in collaboration with the University of
Michigan, the University of California at Berkeley, and
Carnegie Mellon University.3-4 In addition to surface and
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T he aquatic environment is almost ideal for
autonomous robot development. First, it pro-
vides a range of real tasks for autonomous sys-
tems to perform, including ongoing inspection
of reef damage and renewal, tasks in the oil and

gas industry, and aquaculture. Second, operating in the
water requires robust solutions to mobility, sensing, nav-
igation, and communication. 

A common theme of many industrial aquatic tasks is
site acquisition and scene reinspection (SASR). Figure 1
shows AQUA performing a typical SASR task, in which
it walks out into the water under operator control and is
directed to a particular location where it will make sen-
sor measurements. Once near the site, the robot achieves
an appropriate pose from which to undertake extensive
sensor readings. After making the measurements, the
robot returns home autonomously. Later, the robot
autonomously returns to the site to collect additional data. 

The SASR task requires solving multiple scientific and
engineering problems including pose estimation in an
unstructured environment, underwater landmark recog-
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underwater swimming, AQUA’s capabilities
include diving to a depth of 30 meters, swimming
at up to 1.0 m/s, station keeping, and crawling on
the bottom of the sea. 

Unlike most underwater vehicles, AQUA does
not use thrusters for propulsion; instead, it uses six
paddles, which act as control surfaces during swim-
ming and as legs while walking. The paddle con-
figuration gives the robot direct control over five
of the 6 DOF that it has: surge (back and forth),
heave (up and down), pitch, roll, and yaw. Like a
bicycle or an automobile, it lacks the capacity for
lateral (side to side or sway) displacement. Its oper-
ators use an onboard inclinometer and a compass
to control the robot’s motion underwater.

The robot is approximately 65 cm long, 45 cm
wide (at the fins), and 13 cm high. It has an alu-
minum waterproof shell and displaces about 16 kg
of water. Onboard batteries provide more than
three hours of continuous operation. Optionally, a
fiber-optic tether can bring signals from cameras
mounted within the AQUA vehicle itself, from the
sensor systems mounted on the robot, and from
the command and control output to a surface-
based operator.

Within the robot, two PC/104 stacks support
local control, communication, and sensing. One
stack runs the QNX real-time operating system and
is responsible for real-time control of the vehicle
actuators. The second PC/104 runs non-real-time
Linux and provides communication and sensing for
the vehicle. Each of the robot’s fins is controlled by
a single degree-of-freedom revolute joint. The
onboard computer provides real-time control of the
six legs. The legs are compliant, and the spring
energy stored in the legs as they bend under load is
an integral part of the vehicle’s locomotion strategy.

Net vehicle motion is effected through the appli-
cation of one of several precomputed gaits.
Researchers have developed terrestrial walking,
surface swimming, and free water swimming gaits
for the vehicle. AQUA’s unique locomotion strat-
egy provides great flexibility in terms of potential
locomotion modes. The walking gait is a basic
hexapod motion. The robot uses a rich class of
alternative gaits and behaviors to swim in open
water with its six 1-DOF actuators (although there
is often coupling) performing controlled five
degree-of-freedom motion. 

Although AQUA is capable of complex gaits,
monitoring complex six-degree-of-freedom trajec-
tories externally can be challenging, so locomotion
is usually accomplished by selecting from one of a small
number of gaits that permit control of vehicle roll, pitch,
yaw, surge, or heave. These behaviors are easy to con-
trol and monitor when operating the vehicle in a tele-
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operational fashion, and they also are the foundation
of servo-controlled vehicle motion. Various hydrody-
namic vehicle simulators have been developed to aid in
tasks as varied as teleoperation rehearsal, leg design and

Figure 1. AQUA performing a SASR task. (a) The robot swimming over

a coral reef while tethered to an external operator.The vehicle has six

fins that can be controlled independently. (b) Arrangement of inter-

nal components.The robot has treaded legs for use while walking on

the shore or on the bottom of the ocean. (c) AQUA with a diver.

(a)

(C)

(b)
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evaluation, and novel gait synthesis. Figure 2 shows an
immersive virtual reality robot simulator that can be
used for teleoperational task rehearsal.

VISUAL BEHAVIOR CONTROL
One ongoing need for the robot is to estimate its cur-

rent environmental state. For an amphibious robot like
AQUA, this includes having knowledge of whether it is in
open water, on the sea bottom, in the surf, or on land. This
is particularly difficult in the surf since turbulence, spray,
and other artifacts make visual and acoustic sensing diffi-
cult. Moreover, using visual or acoustic sensing is com-
putation-intensive, straining the robot’s energy budget.

One approach to state estimation uses feedback from
the robot’s effectors—that is, the legs or flippers. Just as
biological organisms can use contact forces to moder-
ate their gait, AQUA can exploit contact forces to esti-
mate surface conditions and incrementally tune its
current gait or qualitatively change its behavior.

While walking, the need to make constant adaptive
leg placements is, to a large extent, obviated by relying
on compliance of the robot’s legs. Prior work on the leg
dynamics of the RHex vehicle family developed passive
adaptability to ground conditions, letting the legs act
somewhat like shock absorbers.3-4 The particular form
of this adaptation was strongly motivated by the bio-
logical observations of Robert Full,5 who obtained mea-
surements from cockroaches and made similar
morphologies to the RHex and AQUA robots. While
this compliance reduces the need for adaptive gait plan-
ning to maintain stability on the ground, surface esti-
mation is still important for many other reasons
including selecting the optimal gait for speed (as opposed

to stability), position estimation, mapping, or
behavior selection. A particularly interesting
behavior change is the transition from walking
to swimming as the robot enters the water.

Our current work estimates environmental
properties by measuring drive currents to the
robot’s six legs as a function of their orientation.
We used a statistical classifier to model the dif-
ference between the “feeling” of sand, carpet,
ice, water, and other terrain types, and we have
applied this information to model terrain recog-
nition with accuracies of greater than 80 percent
over a single leg cycle, and with higher accuracy
if we combine multiple measurements over time.6

Another issue with AQUA’s gait relates to
strategies used as the vehicle transitions from
one gait to another. Most terrestrial legged
robots achieve gait transition by changing leg
motion parameters during the flight phase of the
gait where the change has limited indirect effects
on the device’s trajectory. Due to the constant
contact they have with the fluid that surrounds
them, underwater robots do not have a flight

phase in their gait. This means that there is no way to repo-
sition a leg without applying unwanted forces to the robot.
This unwanted motion can be a problem for tasks such as
visual servoing, where an unexpected shift in trajectory
could cause the vehicle to loose track of its target. 

Ongoing work is examining different strategies for
gait transition based on ensuring smooth body motion
during the transition with the goal of minimizing the
energy that the transition consumes.

SENSORS
AQUA relies on vision-based sensing to operate within

its environment. Due to the inherent physical properties
of the marine environment, vision systems for aquatic
robots must cope with a host of geometrical distortions:
color, dynamic lighting conditions, and suspended par-
ticles known as “marine snow.” 

The aquatic environment’s unique nature invalidates
many of the assumptions of classic vision algorithms,
and even simple problems—such as stereo surface recov-
ery in the presence of suspended marine particles—
remain unsolved. 

A fundamental problem with visual sensing in the
aquatic robotic domain is that it is not possible to
assume that the sensor only moves when commanded.
The aquatic medium is in constant and generally unpre-
dictable motion, and this motion complicates already
difficult problems in understanding time-varying images.
One mechanism to simplify vision processing is to mon-
itor the sensor’s true motion, independent of its com-
manded motion. 

Inertial navigation systems (INS) have found applica-
tions for the determination of a vehicle’s relative pose

Figure 2. A “co-pilot” view from one of the AQUA simulators. Researchers

can use these simulators for task rehearsal as well as hydrodynamic 

simulation of gait and fin design.
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over time in various autonomous systems. Under normal
conditions, INSs measure the physical forces applied to
them and provide independent measurements of rela-
tive motion. Unfortunately, these systems drift; thus,
they typically are employed in concert with some sec-
ondary sensing system to counteract this effect. 

We use stereo vision as this associated second sensor.
Real-time stereo sensors permit the recovery of 3D sur-
faces. Integrating an inertial navigation system with a
trinocular stereo sensor simplifies the registration
process by providing a relative motion between frames.
With this initial estimate of the camera pose, we require
few features to refine the registration to the global coor-
dinate frame.

Color correction
For many inspection and observation tasks, obtain-

ing high-quality image data is desirable. We have devel-
oped a technique for image enhancement based on
training from examples. This allows the system to adapt
the image restoration algorithm to the current environ-
mental conditions and also to the task requirements. 

Image restoration involves the removal of some
known degradation in an image. Traditionally, the most
common sources of degradation are imperfections in the
sensors or in analog signal transmission and storage.
For underwater images, additional factors include poor
visibility (even in the cleanest water), ambient light, and
frequency-dependent scattering and absorption both
between the camera and the environment and also
between the light source (the sun) and the local envi-
ronment (this varies with both depth and local water
conditions). The result is an image that appears bluish,
blurry, and out of focus. 

Most prior work used idealized mathematical mod-
els to approximate the deblurring and noise processes.
Such approaches are often elegant, but they might not
be well suited to the particular phenomena in any spe-
cific real environment. Image restoration is difficult since
it is an ill-posed problem: There is not enough infor-
mation in the degraded image alone to determine the
original image without ambiguity.

Our approach is based on learning the statistical rela-
tionships between image pairs as proposed in the work
of B. Singh and colleagues.7 In our case, these pairs are
both the images we actually observe and corresponding
color-corrected and deblurred images. We use a Markov
random field model to learn the statistics from the train-
ing pairs. This model uses multiscale representations of
the corrected (enhanced) and original images to con-
struct a probabilistic enhancement algorithm that
improves the observed video. This improvement is based
on a combination of color matching, correspondence
with training data, and local context via belief propa-
gation, all embodied in the Markov random field.
Training images are small patches of regions of interest

that capture the maximum intensity variations from the
image to be restored. The corresponding pairs—that is,
the ground truth data containing the restored informa-
tion from the same regions—are captured when lights
mounted on the robot are turned on. 

Figure 3 shows some experimental results. Several fac-
tors influence the quality of the results, including having
an adequate amount of reliable information as an input
and the statistical consistency of the images in the train-
ing sets.

Sensing for environmental recovery and pose
maintenance

AQUA combines inertial sensors with a stereo camera
rig to construct local environmental models and to aid
in pose maintenance. To estimate camera motion, we
use both 2D image motion and 3D data from the
extracted disparities. First, we use the Kanade-Lucas-
Tomasi feature-tracking algorithm8-9 to extract good fea-
tures from the left camera at time t and then track these
features into the subsequent image at time t + 1. Using
the disparity map previously extracted for both time
steps, we eliminate tracked points that do not have a
corresponding disparity at both time t and t + 1. We tri-

(a)

(b)

Figure 3. Image restoration. (a) Uncorrected and (b) corrected

images. Applying a learning-based Markov random field

model accomplishes color correction and deblurring.
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angulate the surviving points to determine the metric
3D points associated with each disparity.

Because many objects and points are visually similar
in underwater scenes, many of the feature tracks will be
incorrect. Dynamic illumination effects and moving
objects—fish, for example—increase the number of
incorrect points tracked from frame to frame. To over-
come these problems, we employ robust statistical esti-
mation techniques to label the feature tracks as either
static or nonstatic. We achieve this by creating a rotation
and translation model with the assumption that the

scene is stationary. We associate the
resulting 3D temporal correspon-
dences with stable scene points for
later processing.

We use a volumetric approach to
visualize the resulting 3D model. We
register the 3D point clouds into a
global frame using the previously
computed camera pose, and we add
each point to an octree. We average
the points added to the octree to
maintain a constant number of
points per node. We then prune the
octree to remove isolated points,
which produces a result that is less
noisy in appearance and can be
manipulated in real-time for visual-
ization. The octree can be viewed at
any level to produce a coarse or fine
representation of the underwater
data. Subsequently, we can use stan-
dard algorithms such as the con-
strained elastic surface net algo-
rithm10 to extract a mesh.

Figure 4 shows some sample
reconstructions from underwater
stereo imagery.

Acoustic vehicle localization
A critical problem in a SASR task

is relating scene structure recovered
at different times to a common
(global) reference frame. To local-
ize the robot within a global frame,
the AQUA project has developed a
global acoustic localization sensor. 

The acoustic localization compo-
nent consists of arrays of commer-
cially available omnidirectional
hydrophones attached under a sur-
face-floating buoy, the absolute
position of which can be measured
via a combination of GPS, compass,
inclinometers, and inertial sensors. 

Suppose that the vehicle is aug-
mented with an acoustic source. Using time-delay esti-
mation on a planar hydrophone array receiving sounds
the vehicle emits, we can estimate the direction line in a
3D space emanating from the array’s reference point and
pointing toward the vehicle. If multiple arrays are avail-
able, we can estimate the sound source’s position as the
intersection of their respective direction lines. 

Computationally, the optimal estimate of the source
position is the point that has minimal overall distance
from these lines. The overall distance to the unknown
source position P(x, y, z) is a quadratic function lead-

(a)

(b)

Figure 4. Fig10). Underwater stereo imagery. (a) Reference images from underwater

sequences. (b) Recovered 3D underwater structure.



ing to a linear system of equations in x, y, and z that can
be solved using standard techniques.

To calculate reliable time delays between the arrival
of the sound signals, we correlate two channels of audio
data from two different hydrophones and identify peaks
of the correlation function. The peak’s location corre-
sponds to the time-delay estimate. Before correlation,
we filter the sound signalsto reduce noise and then per-
form a signal variance test to detect the presence of a
sound source.11 The audio frequency region of interest
is 200-4,000 Hz to eliminate high-frequency noise as
well as the common 60 Hz electric interference and its
second harmonic at 120 Hz, extracted using a band pass
digital finite impulse response filter. 

Valid time delays from a hydrophone pair must be no
greater than the maximum time delay, equal to the
length of the baseline divided by the speed of sound in
water. This reduces the likelihood of false peaks. 

The final step for the time-delay estimation is to clus-
ter the time delays estimated from a number of consec-
utive, nonoverlapping signal time windows. We discard
outliers and compute the mean value over the remain-
ing windows as the final time delay estimate. 

Experimental results include software simulations,
pool tests using hydrophones, and in the air using micro-
phones with a geometry similar to the pool (properly
scaled to account for the different sound propagation
speeds in the two media). The listening apparatus con-
sists of four DolphinEar/PRO omnidirectional
hydrophones, which are attached at the corners of a 1
m � 1 m square buoy, shown in Figure 5.

ROBOT LOCALIZATION AND MAPPING
AQUA’s vision, inertial, and acoustic sensors provide

a foundation for constructing large-scale metric repre-
sentations of the robot’s environment. Such representa-
tions support performing a SASR task and presenting
task-related sensor readings to a human operator.
Indeed, we can envision the construction of a globally
consistent metric map that contains the positions of the
landmarks in a world coordinate system, thus permit-
ting performing a SASR task over multiple locations. 

To solve the mapping problem, the robot needs to esti-
mate its position in relation to the environment at all
times, leading to the formulation of the 3D simultane-
ous localization and mapping problem. The SLAM
problem is particularly difficult under water because of
issues such as the scarcity of solid objects with distinct
features, poor visibility, lack of odometry information,
and the inherent 6-DOF limitations.

We use parallel approaches to address the 6-DOF
SLAM problem. To overcome low sensor precision, we
are investigating two extensions to standard SLAM tech-
niques. The first establishes sophisticated dynamic mod-
els that consider earth self-rotation, measurement bias,
and system noise. The second uses a sigma-point

(unscented) Kalman filter for system-state estimation.
We have evaluated this approach through experiments
on a land vehicle equipped with an inertial measurement
unit, GPS, and a digital compass.12 

We have explored monocular image-based SLAM in
the context of consistent image mosaicing. Here, we
address the problem of constructing a globally consistent
map using a two-step optimization process. The first
step is local optimization: relating the robot’s current
environmental measurements to its previous measure-
ments based on their overlap—for example, the overlap
between the current and previous image. The second
step is global optimization, which is carried out as soon
as a loop is detected in the robot’s path—that is, a
sequence of measurements in which the first and the last
measurement have substantial overlap. This second step
generates or updates a globally consistent map.

For the underwater environment, we have developed a
method for estimating the robot’s position using a single
calibrated image with at least three visual features, the

January 2007 67

(a)

(b)

Figure 5. Surface-based sensing. (a) The passive acoustic raft

with four omnidirectional hydrophones attached to a 1 m � 1

m square buoy. (b) Self-propelled robotic surface buoy that

locates itself in a surface-coordinate system and tracks the

AQUA robot via a hydrophone array.



68 Computer

position of which is known in a world-centered coordi-
nate system. If the feature set in the working environment
is sufficiently rich, we use a binocular stereo system to
estimate the robot’s position and its related uncertainty. 

We also have used the stereo-inertial AquaSensor to
perform SLAM based on entropy minimization.13 This
algorithm uses the interframe 6-DOF camera egomo-
tion and applies a global rectification strategy to the
dense disparity information to estimate an accurate envi-
ronmental map. The global rectification step reduces
accumulated errors from the egomotion estimation that
occur due to improper feature localization and dynamic
object tracking.

The solution we envision for underwater SLAM is to
couple the robot with a self-propelled robotic surface
buoy equipped with a sensor suite including GPS and a
hydrophone array, such as the one shown in Figure 5.
The underwater AQUA robot will be augmented with a
transponder that emits a periodic chirp pulse that the
hydrophones can detect and the surface buoy can use
for localization and tracking. In this manner, the human
operators can estimate the underwater robot’s absolute
position in a world coordinate system and incorporate
it into the 3D map.

W e have tested AQUA in both terrestrial and
aquatic modes, and also in the complex envi-
ronment the robot encounters as it enters and

exits the water. In recent trials, we tested the physical
robot, trinocular vision system, and other components
at depths up to 40 feet in the Caribbean Sea and the
Atlantic Ocean.  We also have conducted sea trials near
Chester, Nova Scotia, demonstrating the effectiveness of
the robot and its sensors in the less clear waters of the
North Atlantic.

Experimental testing of the robot to date has concen-
trated on the independent evaluation of individual com-
ponents. Over the next few years, we anticipate
integrating the various sensor components within the
robot itself and performing long-term evaluation of the
SASR protocol on reef structures near Holetown,
Barbados. ■
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