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Abstract—The ability to automatically discover error con-
ditions with little human input is a feature lacking in most
modern computer systems and networks. However, with the ever
increasing size and complexity of modern systems, such a feature
will become a necessity in the not too distant future. Our work
proposes a hybrid framework that allows High Performance
Clusters (HPC) to detect error conditions in their logs. Through
the use of anomaly detection, the system is able to detect portions
of the log that are likely to contain errors (anomalies). Via
visualization, human administrators can inspect these anomalies
and assign labels to clusters that correlate with error conditions.
The system can then learn a signature from the confirmed
anomalies, which it uses to detect future occurrences of the error
condition. Our evaluations show the system is able to generate
simple and accurate signatures using very little data.

Index Terms—Algorithms; Networked Systems; System Man-
agement; Modeling and Assessment

I. INTRODUCTION

Modern computer systems and networks are increasing in
size and complexity at an exponential rate. An observation of
the progression towards the building of large scale data-centers
to support cloud infrastructure and the drive to build bigger
and larger High Performance Clusters (HPC) that can perform
computations on the ever increasing amounts of data being
collected, will confirm this assertion. For the first time all the
top 10 HPC (supercomputers) in the world are capable of com-
puting performance in the petaflop (quadrillion) range. The
fastest supercomputer in the world, the K Computer located
at the RIKEN Advanced Institute of Computational Science
(AICS) in Japan is capable of 8 quadrillion calculations per
second and has 68,544 nodes with 8 cores each, leading to a
total of 548,352 cores [1]. It is fair to say that this trend is
bound to continue.

The tasks required for the management of error and fault
conditions on such systems can also be expected to reach a
level of complexity where some degree of automation will be
required to keep up with the pace. Self-healing in autonomic
computing has set a goal for the engineering of systems that
are capable of detecting and fixing their own error conditions.
In this work, we propose a framework, which attempts to
automatically detect error conditions (alerts) in HPC that

are detectable in system logs, one of the richest sources of
information on most computer systems. As a framework that
supports automatic detection of faults, our proposal falls within
the ambit of self-healing systems in autonomic computing.

Our proposed framework is a hybrid system that combines
anomaly detection, signature generation and visualization,
while making use of a mix of supervised and unsupervised
learning methods. It takes advantage of both signature and
anomaly based approaches to alert detection by creating sig-
natures from detected anomalies. The signatures are updated
as new anomalies are detected. The visualization component
of our system provides a window for Tier-1 operators, i.e.
human administrators, to view results from the system and
provide feedback. The system can in turn use this feedback
to improve on its performance over time. Our framework is
able to learn these alert signatures without the use of semantic
analysis. The investigation of such an approach was one of our
goals, as it increases the platform portability of the framework.

This framework differs from and improves on previous
approaches due to its hybrid nature and its use of techniques
that have low computational cost. Previous approaches have
utilized either a signature-based [2] or anomaly-based [3] tech-
niques but not both. Visualization techniques, if included, are
not used interactively and are used only for the visualization
of the results of analysis [4], [5].

We performed a number of experiments to test the detection
capability of the alert signatures that can be learnt by the
proposed system, using log data from 4 HPC machines i.e.
Blue-Gene/ L, Liberty, Spirit and Thunderbird [6]. These HPCs
are each built by different manufacturers, i.e. IBM, Dell,
Cray and HP, and are hosted at 2 different and reputable
research laboratories, i.e. Sandia National Labs (SNL) and
Lawrence Livermore National Labs (LLNL). This means that
the data sources are varied, which adds to the credibility of
our research findings. The alert states 1 in these log files have
been pre-labelled by the administrators of the machines, giving
ground truth for the evaluation. The results suggest that an
overall detection rate of 88% at a false positive rate of 0%
is achievable, even without the use of administrator feedback

1A detailed description of these alert states and how they were identified
can be found in [7]978-1-4673-0269-2/12/$31.00 c© 2012 IEEE



to improve the anomaly detection process. The results also
suggest that for any error condition, an effective signature may
be generated when only 10% of the exemplars that define an
alert type in the log data are used in training. By using a
hybrid anomaly detection and signature learning approach, our
proposal provides a framework that has high accuracy and can
adapt to an ever changing network environment.

The rest of this paper is organized as follows. Section 2
presents previous work. Section 3 introduces the proposed
framework. Section 4 discusses its complexity and Section 5
details the methodology. Then, the results are presented in
Section 6. Finally, conclusions are drawn and the future work
is discussed in Section 7.

II. BACKGROUND AND RELATED WORK

The goal of automatic alert detection is to create systems
that are able, with limited input from a human operator,
to identify their own error conditions/states. We differentiate
here between errors as symptoms of a fault and the actual
faults. Faults usually leave traces on systems before and after
they occur. These traces manifest themselves in the form of
errors (alerts) in the system. The goal here is the automatic
identification of these error conditions that ultimately link to
the actual fault conditions, thereby reducing troubleshooting
time.

To accomplish this, the system would most likely utilize one
of its many sources of continous data streams. Examples of
such data streams include metrics of system activity (memory,
CPU, etc) and system logs. The work of Cohen et al. in [8] is a
good example of an automatic alert detection mechanism that
utilizes system metrics. In this work, the authors successfully
demonstrate a method of using system metrics to define system
states. Such observed states are clustered and indexed for
similarity based retrieval to identify problems.

Our framework does not rely on system metrics but on
system logs. To this end, Aharon et al. propose the PARIS
(Principal Atom Recognition in Sets) algorithm [4]. This al-
gorithm is able to detect atoms, i.e. sets of correlated message
types, which are produced as part of a normal process or
failure activity. Message types are textual templates, which
can be used to semantically cluster the natural language
descriptions found in log events. The authors then propose the
monitoring of these atoms through visualization as a means
of detecting failure in system logs. Xu et. al proposed a
Principal Component Analysis (PCA) based framework for the
detection of system problems through the analysis of console
logs [5]. Fu et. al [9] propose alert detection by monitoring
state transitions via Finite State Auotmata (FSA). Oliner et al.
[10] propose a ranked based system that ranks log partitions
using entropy-based information content. On the other hand
Huang et. al. propose a system for the supervised automatic
generation of classification rules for alert detection from logs.
The supervised techniques that were evaluated include three
associative classification techniques along with Naive Bayes
classification and decision tree classification using C4.5. The
framework we propose builds on previous work with the

Spatio-Temporal Alert Detection (STAD) framework for alert
detection in system logs [11] and LogView [12], a method
for visualizing system log clusters using Treemaps [13]. The
STAD alert detection framework builds on previous work in
entropy-based alert detection in system logs [3] and works
by clustering system log partitions, which are decomposed
spatio-temporally and separating the clusters into normal
and anomalous categories [14]. STAD improves on previous
entropy-based approaches by being able to detect anomalies
without relying on a ranking and being able to work on
log files even when the sources of events in the log are
not similar. Evaluations comparing the accuracy of STAD
to a previous entropy-based approach show a statistically
significant difference in performance in favour of STAD [3].

This paper shows how STAD can be used for alert detection
on production systems. By combining with a visualization
technique, signatures of the detected anomalies can be gen-
erated and used on a production system to detect future alerts
as they occur. In contrast to [4], [5], which use visualization
simply for allowing the user to inspect the output, we propose
that visualization can be used for interactive learning i.e. the
human administrator uses the visualization to give the system
feedback, which is then used by the system to improve on its
models over time, as has been done in other domains [15].

It is important to note that the idea of using clustering
for anomaly detection and learning signatures from labelled
anomaly clusters has also been applied in the domain of in-
trusion detection. In [16], the authors summarise and separate
the malicious activity from normal activity in a connection
log by clustering the contents of the log using the Simple
Log file Clustering algorithm (SLCT) [17] and the learning
of attack signatures from the identified clusters based also on
the iterative application of SLCT to a labelled training set
of identified anomalous clusters. The authors argue that this
approach can shorten the time required for the creation of
attack signatures and also provides a framework that can adapt
to novel attacks and ever changing attack behaviour.

III. METHODOLOGY

The main idea behind our proposed framework is to use the
content of historical logs to learn the signatures of previous
alert conditions that may have manifested in the log, with the
proviso that this be done with minimal human intervention.
Once these signatures are learnt, they can be stored and
applied online on production systems to detect future incidents
of such alerts as they occur. Our proposed system utilizes
anomaly detection, signature generation and visualization to
achieve this goal. The proposed framework is therefore a
hybrid signature and anomaly based system.

Signature based systems work by utilizing models of known
and well defined behaviors of interest. They are usually very
accurate but suffer from their inability to detect new behaviors
of interest. Anomaly based systems, on the other hand, require
less apriori knowledge of the behaviors the system aims to
detect. They instead attempt to identify behaviors that differ
from the norm and are therefore able to detect new behaviors









 













Fig. 1. Framework for Automatic Signature Generation from System Logs

of interest. However, they tend to be less accurate as legitimate
behavior can sometimes differ from the norm. By utilizing
concepts from both signature and anomaly based systems, our
framework leverages on the strengths of both systems, by both
being capable of detecting new types of alerts and being as
accurate as a signature based system.

Due to the complexity of the problem, previous work asserts
that in such situations human involvement is important to
complement the automated system [15]. Thus, the visualiza-
tion component provides the interactive component of the
framework. It allows the human administrator to interact with
the proposed system and provide feedback that will over time
improve the models learnt by the system and keep them up-
to-date. The diagram in Fig. 1 provides an overview of the
phases of our proposed alert detection framework. These are:

1) Unsupervised anomaly detection through the clustering of
system logs and the separation of normal and anomalous
log clusters.

2) Feedback from the human operator in the form of iden-
tification and labeling of anomalous clusters.

3) Using the Feedback from the administrator is used for
learning alert signatures and for cluster refinement.

4) Repeat Steps 1 - 3 as required.

For the anomaly detection component of the system we
use Spatio-Temporal Alert Detection (STAD) [11]. STAD
is described in more detail in Section III-A. It works by
clustering the spatio-temporal partitions of the log and sep-
arating the clusters into normal and anomalous categories.
These categories would contain several different types of
normal and anomalous behavior, hence the clusters would still
require labels. These labels can be provided by the human
administrator through a visualization system such as LogView
[12], albeit with a modified hierarchical structure that would
include spatio-temporal partitions and the clusters identified
by the system.

Once these labels are acquired, the system can then take all
alert clusters with the same label and generate a signature for
them. We use a frequent itemset mining paradigm for signature
generation, described in more detail in Section III-B.

The framework does not require the use of any specific
mechanisms for carrying out it phases. The choice is left to
the discretion of the user.

A. Anomaly Detection

We use STAD as the anomaly detection mechanism. Eval-
uation of STAD shows that it is able, on average, to identify
78% of all alerts while maintaining a false positive rate of
5.4% [11]. These results represent a statistically significant
improvement over the use of an entropy-based alert detection
scheme as a baseline. These evaluations were performed using
a set of logs from 4 HPC machines, which are available
from the USENIX Computer Failure repository[6]. The alerts
used as ground truth for the evaluations were labelled by the
administrators of the machines. The statistics of these logs are
listed in Table I. These logs are also used for the evaluations
performed in this paper. The steps of the STAD mechanism
are summarized below.

• Message Type Transformation: This involves the trans-
formation of the natural language description of each line
in the log into a unique token that represents the message
type that produced the description.

• Spatio-Temporal Decomposition: Spatio-Temporal de-
composition involves the partitioning of the contents of
the log, so that each partition contains all events from
a single source over a specified time period. In our
work, we use the nodehour, which is one hour of log
information from a single node[3].

• Clustering: This step requires the grouping of the node-
hours, so that each group contains nodehours that are
very similar to each other, while being very dissimilar
from nodehours in other groups. The exact method used
to achieve this can be freely chosen by the user. In our
work, we utilize information content clustering (ICC)
[14], which clusters the nodehours using the entropy
based information content of the nodehours. The ICC
technique helps to greatly simplify a task that would be
very difficult using a traditional distance based clustering
technique. Clustering of nodehours, in the most direct
way, would use the individual terms (words) that appear
in each nodehour. As the number of individual terms in
the log can easily number in the millions, this leads to
the curse of dimensionality. Information content scores
are derived from the terms that occur in the nodehour
through several abstraction steps [14] and provide a
linear time approach to clustering nodehours. Clusters
derived using ICC of the nodehours from the BGL-
Link log are visualized using the Circos visualization
technique [18] in Fig. 2. The BGL-Link log derived from
the BGL log listed in Table I, by listing only events
produced by nodes in Link category. The figure shows
the mapping between the nodehours in the four alert
clusters derived using our technique, i.e. 1, 2, 3, 4 and the
nodehours known to belong to the five alert conditions
identified by system administrators in the log data, i.e.
LINKBLL, LINKDISC, LINKIAP, LINKPAP, MONPOW .

• Anomaly Detection: We assume that the resulting clus-
ters from the previous step either contain a majority
of normal activity or a majority of anomalous (alert)



TABLE I
HPC LOG DATA STATISTICS

System # Days Size(GB) # Events
Blue-Gene/L (BGL) 215 1.21 4,747,963
Liberty 315 22.82 265,569,231
Spirit 558 30.29 272,298,969
Thunderbird(Tbird) 244 27.37 211,212,192

activity. The anomaly detection step serves to separate
such clusters. Again, the exact method used is left to
the discretion of the user. We propose the use of a
heuristic approach that differentiates the clusters based on
the number of time periods reported in the cluster, how
localized the activity in the cluster is and the periodicity
of activity in the cluster [11].

Fig. 2. BGL-Link Category: Circos-Table Plot showing the mapping between the
administrator defined alert categories and the clusters produced using the information
content clustering technique.

B. Signature Generation

The input to the signature generation mechanism, see Fig.
3, consists of the nodehours that belong to the cluster(s) that
have been identified by the human administrator as containing
activity that relates to a particular alert type. This action would
only require the administrator going over the clusters identified
by the system as being anomalous. A cluster pruning step,
as described in Algorithm 1, is then performed. During this
step, the set of message types reported in each nodehour is
pruned by iteratively computing the difference between the
set of message types in the nodehour and the cluster centroids
for each of the clusters identified as normal by STAD. Our
method for choosing cluster centroids can be found in [14].

After pruning, frequent itemset mining is performed on the
nodehours. Given a set of objects or items (called an item
base), S, we define T as a set of transactions defined over
S such that for all T ∈ T, T ⊆ S. A subset (also called
an itemset) S′ of S is said to be frequent if the number
of transactions in T that are supersets of S′ exceed a user-
specified support threshold and is referred to as a frequent
itemset. The goal of frequent itemset mining is to find all
itemsets that occur in T with a minimum support threshold.

Algorithm 1 The cluster pruning pseudo code.
Input: The nodehours that need to be prunedA. The cluster centroids

for all the nodehour clusters identified as normal by STAD, B.
Output: The pruned nodehours

1: for each A as A do
2: {A will contain a set of message types.}
3: for each B as B do
4: {B will also contain a set of message types.}
5: A = A\B {Compute set difference}
6: end for
7: end for

   

Fig. 3. Signature Creation Mechanism: This figure shows the steps in the
signature creation phase of the framework.

The apriori algorithm is a classical algorithm for frequent
itemset and association rule mining [19] and can be used here.

We apply the frequent itemset mining paradigm to the prob-
lem of alert signature generation by supposing that message
types are items and a nodehour is a transaction. Hence the set
of message types found in a system log is the item base and the
transaction database is the set of nodehours found in the log.
We theorize that for any set of related transactions (nodehour
cluster) in the transaction database (system log), the set of
frequent itemsets that occur in the transaction cluster would
be an effective signature for identifying future occurrences of
that transaction type. If a transaction cluster is related to an
alert type, then the frequent itemsets mined from such a cluster
would form a signature for that alert. Given a nodehour cluster
C that contains some sort of alert behavior, the set of frequent
itemsets derived from C i.e. Cf will contain the signature
for that alert behavior. The alert signature defined by Cf is
triggered, if a message type that is contained in any of the
itemsets in Cf is found in a nodehour.

Once the signatures are generated, they can be stored in
a database and used to detect future alerts on a production
system, Fig. 4. This database will of course be updated as more
up-to-date signatures are discovered. The log parsing module
would parse the log event stream, searching for any events (or
log partitions) that match any of the signatures in the database.
If a match is found, an alarm is raised. The alarms can then
be passed directly to the administrator for action. Thus, we
have a system that can automatically search its own logs
for symptoms of failure and notify the administrator. Unlike
other systems that do this using signatures that are produced
and managed manually, our proposed system produces the
signatures itself, while only relying on the administrator for
class labels.

C. Visualization, Feedback and Cluster Refinement

The anomaly detection capability of STAD depends on
its ability to properly cluster spatio-temporal partitions of
a log file. The feedback received by the anomaly detection
mechanism from the visualization system and the signature
generation system can be used to refine the results of clustering















Fig. 4. Online Alert Detection: This shows how the alert signatures produced
by our system can be used for online alert detection on a production system.

for more accuracy. In this case, the feedback from the visual-
ization will be provided by human administrators in the form
of labels for identified clusters and the category for a label,
i.e. normal or anomalous. While feedback from the signature
generation system will be the generated alert signatures.

Nodehour decomposition is done arbitrarily: , it aims to
ensure that the resulting spatio-temporal partitions contain
correlated messages types that define a single system state.
However, a nodehour decomposition may separate correlated
message types or may combine correlated message types
from different states. As an example of how the system
can use feedback for cluster refinement, consider the case
where a nodehour combines correlated message types from
two different normal states, which we will call A and B.
Such a nodehour will not be clustered into either of the
normal clusters and will likely be classified as anomalous.
The information that anomaly detection mechanism receives
via the feedback loop can be used to resolve this scenario.

If one of the normal states present in the nodehour, i.e.
A, had previously been confirmed through feedback by the
administrator, then the system would have stored this feedback
by saving the centroid for that cluster in its database. The
system can thus search that nodehour for message type(s) that
define the centroid of A. If, as we will assume in this example,
the system finds the message types in the nodehour, an IF
clustering scenario can then be created by re-clustering the
nodehour without considering the message types that are part
of the cluster centroid of A. This action will show that the
cluster also belongs to B. The system therefore now knows
that the nodehour is actually a soft cluster that belongs partially
to A and B . It can thus eliminate the cluster that the nodehour
belongs to as an anomalous cluster and in effect can reduce
its FPs. This is just one example of how feedback can be used
for cluster refinement, other scenarios exist.

IV. COMPLEXITY

For our proposed framework to be usable in an online
environment, its time complexity must allow quick processing
of the content of very large logs, which is the trend in today’s
network systems.

At the anomaly detection phase, the significant operations
are message type transformation and clustering. The message
type transformation is a linear time operation, with respect
to the number of events in the logs. However, this is a
preprocessing step that can be performed in advance. The
ICC requires the calculation of a number of entropy-based
values. Let W represent the number of terms in the log, C

the number of reporting sources and H the number of spatio-
temporal partitions. ICC can be performed after calculations
are performed on two matrices of size W×C and W×H . The
time complexity is therefore of the order of W×C and W×H .
However, previous work has shown that the use of message
types to represent the terms in the log, i.e W , significantly
reduces the dimensionality of the problem by an order of
about 100 [3]. The actual clustering step that comes after these
calculations is a linear time computation with respect to H .

Let n represent the number of items in an item base. The
time and space complexity for mining the set of frequent
itemsets from a transaction database defined over the item
base is theoretically of the order of

∑n
k=1

(
n
k

)
i.e. the number

of possible itemsets that can be generated from the items in
the item base. However, in practice, the size of the largest
candidate itemset is more likely bounded by the size the largest
transaction in the transaction database, which is usually a lot
less than the number of items in the itembase. The use of
the classical apriori algorithm helps to reduce this complexity
further by reducing the number of candidate itemsets that need
to be generated. There are also several published approaches
using techniques like sampling, partitioning and transaction
reduction, that can improve the efficiency of the process even
further[20].

On the basis of this discussion, we argue that the methods
used all scale gracefully with the size of the logs.

V. EXPERIMENTS

Our experiments involved simulating the alert generation
mechanism of our framework using historical log data and
then using the signatures to detect alerts in nodehours as they
occur. The goal is to measure the detection accuracy of the
generated signatures. We make the following assumptions:
• The signatures are static, i.e. once they are created they

do not change.
• The anomaly detection portion of the framework works

perfectly, i.e. it is able to perfectly separate normal and
anomalous clusters.

• The administrator is able to accurately label all alert
clusters shown to him/her by the system. As these labels
are the basis on which the system decides what alert
clusters to mine signatures form is based, the accuracy
of this labeling will have an impact on the result.

The visualization component of the system allows the
human operator to interact with the system and provide labels
for signature generation and cluster refinement. Since in these
experiments we do not perform cluster refinement and assume
that all labels have been provided accurately, we do not
evaluate the visualization phase in this paper.

Each experiment was done for only a single alert type using
13 datasets derived from the HPC logs mentioned earlier in
Table I. Splitting the logs into these datasets was performed to
ensure that the anomaly detection mechanism can effectively
produce clusters that can be separated into anomalous and
normal categories. Statistics about these datasets are provided
in Table II. In the table # Events refers to the number of lines



in the log, # Nodes refers to the number of nodes reporting
events into the log, # Nodehours refers to the number of spatio-
temporal partitions derived from the dataset, % Alerts refers to
percentage of nodehour that contain alert signatures, # Alert
Types refers to number of alert types identified by domain
experts in the log, while Similar Nodes refers to anomaly
detection methodology used for the dataset. A Y in the Similar
Nodes column indicates that anomaly detection was carried
out under the assumption that the nodes in this dataset were
sufficiently similar, while a N indicates that the nodes were
assumed to be dissimilar.

We split each log file into five separate training and testing
pairs for each alert type, see Table II. These training and
testing pairs were not of equal size. The split point for the
training file was determined by the time at which 10%, 20%,
30%, 40% and 50% of all nodehours of the alert type had
occurred. All log events occurring after each of these points
were used to test the signatures found. Each run involved the
execution of our proposed framework on a test file, which is
assumed to be a historical log, to learn the signature for an
alert type. The generated signature(s) are then applied to the
test set to detect nodehours that contain the alert type. We
can then determine the number of true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN),
which can then be used to calculate the detection rate (DR)
and false positive rate (FPR) as defined in Eq. 1 and Eq. 2
respectively. This setup implies that a total of 980 experiment
runs were carried out.

DR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

We utilized an efficient open-source implementation of the
apriori algorithm 2 in all our runs. The support threshold was
set to 50% for all runs. It is not uncommon for frequent
itemset mining to generate a large number of itemsets, which
are sometimes redundant. For this reason we also generate
only closed frequent itemsets. Frequent itemsets that have no
superset with the same support value are referred to as closed.

VI. RESULTS

We present results on the detection accuracy of the signa-
tures and the nature of the signatures produced by the system.

The FPRs achieved during the experiments showed very
little variation. The FPR achieved was approximately 0% for
all runs. These FPRs are operationally acceptable and supports
the assertion that our goal of converting detected anomalies
into signatures as a means of reducing false positives was
achieved.

An average DR of 88% was achieved for all runs. However,
we state that a DR close to 100% can be expected for most of
the signatures produced. Fig. 5 shows the DR distribution for
the runs for each log file. It can be seen that the average DR

2Downloadable from http://www.borgelt.net/apriori.html

would be much higher if the few outliers are not considered.
Our investigations show that some of the outlier DR values
were due to the quality of clusters produced or due to the
distribution of signature(s) across time. In cases where the
alert state was not the majority behavior in a cluster, the
signature learnt would not relate to the alert and hence would
produce a DR close to zero. This situation can however be
mitigated by reducing the support threshold used in signature
generation. In cases where signature(s) for an alert were not
evenly distributed in time, it was possible to only partially
learn the signature(s) for an alert. Leading to less than perfect
detection, this situation in particularly pronounced in datasets
4,9,11,13 in Fig. 5. In a real life implementation, the signatures
would not be static, as is the case in our experiments.
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Fig. 5. Detection rates for the different HPC logs. Log files are numbered in the same
order as shown in Table II

The graphs in Fig. 6 show how the average DR changes
as we change the size of the training file. The entropy-based
calculations used for clustering the nodehours differed based
on whether the nodes were considered Similar or Dissimilar.
The results show that while increase in DR performance was
noticed for 3 log files i.e. Bgl-Comp, Tbird-Other and Liberty-
Other, as the size of the training file was increased, there
seemed to be no correlation between the size of the training file
and the DR performance. This is confirmed by an Analysis of
Variance (ANOVA) test performed at 5% significance, which
is summarized in Table III. The ANOVA results show no
statistically significant difference between the FPR and DRs
achieved when the training file size is changed. These results
suggest that alert signatures can be learnt when as little as
10% of the exemplars for an alert type are present in the log.

We discuss the nature of the signatures produced using three
factors; their length, their support value and the number of
signatures generated for each alert type. An alert signature, as



TABLE II
SYSTEM LOG DATA FUNCTIONAL GROUPING STATISTICS

# Events # Nodes # Nodehours % Alerts # Alert Types Similar Nodes
1: BGL-Compute 4,153,009 65,554 1,581,845 4.2 18 Y
2: BGL-IO 400,923 1,024 219,722 38.22 17 Y
3: BGL-Link 2,935 517 1,395 2.37 5 Y
4: BGL-Other 191,096 2,167 13,666 0.43 7 Y
5: Liberty-Compute 200,940,735 236 1,748,865 0.29 17 Y
6: Liberty-Admin 52,211,676 2 27,162 0.04 3 N
7: Liberty-Other 12,416,820 6 44,447 0.22 7 N
8: Spirit-Compute 218,697,851 512 6,648,719 0.19 29 Y
9: Spirit-Admin 41,847,257 2 26,216 3.10 3 N
10: Spirit-Other 11,753,861 7 57,532 0.25 11 N
11: Tbird-Compute 155,403,254 4,514 14.520,204 0.17 31 Y
12: Tbird-Admin 15,306,749 20 100,740 0.02 7 N
13: Tbird-Other 21,392,379 1,319 626,030 0.02 10 Y
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Fig. 6. Detection rates for the different HPC logs, showing variation in performance for different sizes of training files
TABLE III

ANOVA TEST SUMMARY

Treatment F P-Value F crit
FPR 0.874 0.485 2.525
DR 0.162 0.957 2.531

defined by this work, consists of a set of message types, which
disjunctively or conjunctively can be used to detect an alert
condition in a log file partition. The length of a signature is
therefore the number of message types that define it. We are
of the opinion that shorter signatures are not only simpler but
better defined i.e. compact. So we deem shorter signatures to
be preferable than longer ones. The graph in Fig. 7 (b) shows
the length distribution of the signatures for each of the HPC
machines. The results show an overall median length of 2 and
mean length of 6. Since minimum signature length is 1, these
results show that the signatures produced by our method are
relatively simple and compact.

We generate our signatures as frequent itemsets from node-
hour clusters. Therefore each signature has a support rate and
since we can have more than one frequent itemset, it is possible
to have more than one signature for an alert type. While it
can be debated, it is safe to say that signatures with higher
support rates are likely to be better detectors than those with
lower support rates. We therefore report on the support of
the signatures produced during our experiments. The graph in
Fig. 7 (a) shows the support distribution for the signatures. The
results show an overall median support rate of 100% and mean
support rate of 94.45%. These support rates are very high and
attest to the quality of the signatures produced. The results
are also not surprising given the high internal cohesion rates

TABLE IV
NUMBER OF SIGNATURES PER ALERT TYPE

# Alert Types Median Max
BGL-Compute 18 1.0 6.0

BGL-IO 17 1.0 2.0
BGL-Link 5 1.0 2.0

BGL-Other 7 1.0 2.0
Liberty-Compute 17 2.0 5.0

Liberty-Admin 3 2.0 4.0
Liberty-Other 7 1.0 9.0

Spirit-Compute 29 2.0 33.0
Spirit-Admin 3 1.0 2.0
Spirit-Other 11 1.0 3.0

Tbird-Compute 31 1.0 36.0
Tbird-Admin 7 1.0 5.0
Tbird-Other 10 1.0 2.0

reported from our assessment of the clusters produced using
ICC [14]. Generating a few (ideally one) signature for each
alert type is also desirable. The data in Table IV reports on the
median and maximum number of signatures created for each
alert type. The median number of signatures was the minimum
(1) for all the log files except Liberty-Compute, Liberty-Admin
and Spirit-Comp where the median was 2.

VII. CONCLUSION AND FUTURE WORK

We propose a hybrid framework for alert detection in system
logs in this work. The proposed framework combines the
advantages of anomaly-based and signature-based detection.
By also including an interactive visualization, the framework
hopes to provide a window by which human administrators
can provide feedback to the system, which it uses to generate
signatures and improve on its anomaly detection capability
over time.
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Fig. 7. Boxplots showing distributions for (a) Signature support levels (b) Signature length i.e. number of message types that define a signature.

Our evaluations suggest that effective signatures can be
learnt with minimal amounts of data. The signatures learnt are
also not overly complex and since they are composed of sets of
message types, they are human readable. The signatures were
also found to be relatively accurate, able to achieve a DR of
88% on average while maintaining an operational acceptable
FPR of approximately 0%. Achieving high DRs with no FPs is
dependent on accurate message type extraction and clustering.
The signatures created by our system can be created in real-
time and can be brought online immediately.

The framework also provides a lot of flexibility in the choice
of techniques used during each of its phases. None of the
techniques used in our evaluation is tied to the framework.
They can all be selected at the discretion of the user. While
we use nodehours during our evaluations, it is possible to
use spatio-temporal partitions with lower levels of granularity
e.g. nodeminutes. This is especially useful for real-time alert
detection, when quick discovery is important. Signatures once
learnt can be applied to a spatio-temporal partition at any level
of granularity desired.

Future work will involve testing of the framework on logs
collected on non-HPC systems. A user study involving a
prototype of the framework would also be useful. Such a study
would provide valuable design choices that would improve the
visualization component of the framework and also show how
the well the system is able to improve itself over time.
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